Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Intervalo de año de publicación
1.
Materials (Basel) ; 15(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36234150

RESUMEN

The search for adsorbent materials with a certain chemical inertness, mechanical resistance, and high adsorption capacity, as is the case with alumina, is carried out with structural or surface modifications with the addition of additives or metallic salts. This research shows the synthesis, characterization, phase evolution and Cd(II) adsorbent capacity of α-Al2O3/Ba-ß-Al2O3 spheres obtained from α-Al2O3 nanopowders by the ion encapsulation method. The formation of the Ba-ß-Al2O3 phase is manifested at 1500 °C according to the infrared spectrum by the appearance of bands corresponding to AlO4 bonds and the appearance of peaks corresponding to Ba-O bonds in Raman spectroscopy. XRD determined the presence of BaO·Al2O3 at 1000 °C and the formation of Ba-ß-Al2O3 at 1600 °C. Scanning electron microscopy revealed the presence of spherical grains corresponding to α-Al2O3 and hexagonal plates corresponding to ß-Al2O3 in the spheres treated at 1600 °C. The spheres obtained have dimensions of 4.65 ± 0.30 mm in diameter, weight of 43 ± 2 mg and a surface area of 0.66 m2/g. According to the curve of pH vs. zeta potential, the spheres have an acid character and a negative surface charge of -30 mV at pH 5. Through adsorption studies, an adsorbent capacity of Cd(II) of 59.97 mg/g (87 ppm Cd(II)) was determined at pH 5, and the data were fitted to the pseudo first order, pseudo second order and Freundlich models, with correlation factors of 0.993, 0.987 and 0.998, respectively.

2.
Mol Pharm ; 19(8): 2765-2775, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35833828

RESUMEN

A graphical analysis of both drug and coformer concentrations contributed by dissolving cocrystals is presented in the context of a simplified cocrystal phase diagram. The conceptual basis and analysis identify parameters that control cocrystal dissolution-drug supersaturation-precipitation (DSP) behavior. The important effects of coformer concentration, cocrystal dose, and cocrystal solubility on drug supersaturation levels are demonstrated and quantified by the DSPindex. While the studies presented rely on high and nonstoichiometric coformer concentrations contributed by the dissolving cocrystals, the concepts and findings can answer the question of whether and how much coformer should be added to cocrystal dissolution media or formulations.


Asunto(s)
Solubilidad , Cristalización , Composición de Medicamentos
3.
J Mech Behav Biomed Mater ; 123: 104783, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34419886

RESUMEN

OBJECTIVE: A silica-based nanofilm has been successfully deposited via Room-Temperature Atomic Layer Deposition (RT-ALD) on the surface of a glass. The purpose of this study was to evaluate the mechanical performance of a hybrid interface created between yttria-stabilized zirconia (Y-PSZ) transformed layer and silica-based nanofilm via RT-ALD. MATERIAL AND METHODS: Fully-sintered Y-PSZ (14 × 4.0 × 1.5 mm) specimens in different translucencies (MO, MT, LT; IPS e.max Zircad, Ivoclar Vivadent) were distributed in 5 groups: control (C - no treatment); hydrothermal treatment (HT- 15h, 134°C, 2 bar); alumina blasting (B - 50 µm Al2O3); RT-ALD silica deposition (S); HT followed by silica deposition (HTS). RT-ALD cycles consisted of the sequential exposure of specimens to tetramethoxysilane orthosilicate (TMOS - 60s) and ammonium hydroxide (NH4OH - 10 min) vapors in 40 cycles. Mechanical performance was analyzed by flexural strength (FS) (n = 10) and fatigue failure load (staircase method; n = 20) tests. Surface hardness (H) and Young's modulus (YM) were analyzed by nanoindentation. For surface chemical and topographical characterization, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) were performed. Data from surface H, YM, FS, and fatigue limit (FL) were analyzed by two-way analysis of variance (ANOVA). RESULTS: The interaction between material and treatment had a significant effect on FS (p < 0.001). The FS values ranged from 436.23 MPa to 856.65 MPa. HT resulted in the highest FS (856.65 MPa) for LT and the lowest FS (436.23 MPa) for MO zirconia. For all materials, S and B treatments resulted in similar FS values (p > 0.410). S did not affect FL when compared to the C group (p > 0.277) for any material investigated. HTS resulted in higher FL than S for LT and MO materials (p < 0.001). Surface hardness and modulus were similar between control and S-treated specimens for all materials analyzed. XPS analysis showed homogeneous silica content after 20 and 40 RT-ALD cycles, and SEM did not show significant changes in surface morphology between C and S-treated specimens. CONCLUSION: RT-ALD resulted in effective silica deposition without any deleterious effect on zirconia-based materials mechanical properties. Alumina blasting promoted higher alteration on surface topography. HT prior to S resulted in superior FL (for MO and MT) and flexural strength (MO) for some of the materials investigated.


Asunto(s)
Cerámica , Circonio , Materiales Dentales , Análisis del Estrés Dental , Ensayo de Materiales , Propiedades de Superficie , Temperatura , Itrio
4.
Dent Mater ; 35(11): 1644-1653, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31575489

RESUMEN

OBJECTIVE: To evaluate the influence of extrinsic pigmentation on the biaxial flexural strength and surface topographic of translucent Y-TZP (InCoris TZI - Sirona - USA) subjected to several surface treatments. METHODS: Sintered zirconia discs-shaped specimens (n=120) (ø:12mm; thickness:1.2mm; ISO 6872) were prepared and divided (n=15) according to various factors: "extrinsic pigmentation" (n: without; p: with) and "surface treatments" (C: control - as sintered; A: abraded with silica-coated alumina particles (30µm); G: glazed with a thin film of low-fusing porcelain glaze; GH: glazed and etched with 10% hydrofluoridric acid for 60s. Mechanical cycling (1.2×106 cycles, 200N, 3.8Hz) and flexural strength test (1mm/min - 1000kg cell) were performed. Two-way ANOVA and Tukey's were used for statistical test (α=0.05). Weibull analysis was used to evaluate the strength reliability. Samples were analyzed via (1) an optical profilometer to determine the surface roughness (Ra); (2) an X-ray diffraction (XRD) to evaluate phase transformations; and (3) a SEM equipped with an energy dispersive X-ray spectroscopy (EDX) to elucidate morphological properties and chemical compositions. RESULTS: Regardless of the surface treatment (p=0.5459) (Cn: 560.16MPa; Gn: 573.36MPa; An: 643.51MPa; GHn: 542.94MPa; Cp: 628.04MPa; Gp: 641.90MPa; Ap: 554.47MPa; GHp :602.84MPa) and extrinsic pigmentation (p=0.1280) there was no difference in the flexural strength among the experimental groups. According to the XRD analysis, phase transformations occurred in the An group (t→m) and in Ap group (t→c). Surface roughness was affected by surface treatments (An - p=0.001) and extrinsic pigmentation (Gp - p=0.001). SIGNIFICANCE: The biaxial flexural strength of the tested samples was not affected neither by surface treatments nor by pigmentation, although it can cause phase transformation and promote surface roughness.


Asunto(s)
Resistencia Flexional , Circonio , Cerámica , Ensayo de Materiales , Pigmentación , Reproducibilidad de los Resultados , Estrés Mecánico , Propiedades de Superficie , Itrio
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 208: 97-108, 2019 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-30296674

RESUMEN

In this study, the vibrational frequencies of myristic acid (CH3(CH2)12COOH) were obtained using density functional theory calculations, and the results were compared with experimental Raman and infrared data. Additionally, Raman spectra of crystalline myristic acid were recorded in the 300-20 K range. Raman spectroscopy gives important insights into the effect of low temperatures on its monoclinic phase. X-ray diffraction was performed from 298 to 133 K to provide additional information about the cryogenic behavior of the crystals. These undergo a phase transformation, which was confirmed by differential scanning calorimetry through an enthalpy anomaly observed at low temperatures. Raman spectra and X-ray diffraction refinement of the cell parameters in combination with differential scanning calorimetry at low temperatures revealed slight modifications, confirming a conformational change in the myristic acid molecules involving rearrangement of dimers within the unit cell.

6.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 2): 183-191, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32830743

RESUMEN

Presented herein are detailed optical, thermal, spectroscopic and structural analyses of the phase transformation occurring in tapentadol hydrochloride (C14H24NO+·Cl-), a phenomenon already reported [Fischer et al. (2006); Patent: WO 2006000441 A2]. The thermal behaviour of the compound was studied using single-crystal X-ray diffraction, differential scanning calorimetry and Raman scattering measurements. The compound undergoes a first-order reversible phase transition at Theat = 318.0 (1) K, Tcool = 300.0 (1) K, as assessed by the coexistence of both phases in the vicinity of the transition and the abrupt changes observed in the unit-cell parameters with temperature. The process is accompanied by clear thermosalient behaviour, with a conspicuous movement of the samples. On cooling, the transformation leads from a P212121 symmetry (Z' = 1) to P21, with an abrupt change in ß [90 ↔ 94.78 (1)°] and duplication of the asymmetric unit contents (Z' = 2). The main structural differences observed across the transition are extremely small, with almost no changes in the stronger, non-covalent interaction scheme involving the `conventional' (N-H...Cl, O-H...Cl) hydrogen bonds.

7.
Acta Crystallogr C Struct Chem ; 73(Pt 12): 1116-1120, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29206123

RESUMEN

Ganciclovir (GCV; systematic name: 2-amino-9-{[(1,3-dihydroxypropan-2-yl)oxy]methyl}-6,9-dihydro-1H-purin-6-one), C9H13N5O4, an antiviral drug for treating cytomegalovirus infections, has two known polymorphs (Forms I and II), but only the structure of the metastable Form II has been reported [Kawamura & Hirayama (2009). X-ray Struct. Anal. Online, 25, 51-52]. We describe a successful preparation of GCV Form I and its crystal structure. GCV is an achiral molecule in the sense that its individual conformers, which are generally chiral objects, undergo fast interconversion in the liquid state and cannot be isolated. In the crystalline state, GCV exists as two inversion-related conformers in Form I and as a single chiral conformer in Form II. This situation is similar to that observed for glycine, also an achiral molecule, whose α-polymorph contains two inversion-related conformers, while the γ-polymorph contains a single conformer that is chiral. The hydrogen bonds are exclusively intermolecular in Form I, but both inter- and intramolecular in Form II, which accounts for the different molecular conformations in the two polymorphs.


Asunto(s)
Antivirales/química , Ganciclovir/química , Cristalización , Cristalografía por Rayos X , Enlace de Hidrógeno , Conformación Molecular
8.
Acta Crystallogr C Struct Chem ; 73(Pt 12): 1137-1143, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29206126

RESUMEN

The crystal structure of the triclinic polymorph of 1-(4-hexyloxy-3-hydroxyphenyl)ethanone, C14H20O3, differs markedly from that of the orthorhombic polymorph [Manzano et al. (2015). Acta Cryst. C71, 1022-1027]. The two molecular structures are alike with respect to their bond lengths and angles, but differ in their spatial arrangement. This gives rise to quite different packing schemes, even if built up by similar chains having the hydroxy-ethanone O-H...O hydrogen-bond synthon in common. Both phases were found to be related by a first-order thermally driven phase transformation at 338-340 K, which is discussed in detail. The relative stabilities of both polymorphs are explained on the basis of both the noncovalent interactions operating in each structure and quantum chemical calculations. The polymorphic phase transition has also been studied experimentally by means of differential scanning calorimetry (DSC) experiments, conducted on individual single crystals, Raman spectroscopy and controlled heating under a microscope of individual single crystals, which were further characterized by powder and single-crystal X-ray diffraction.

9.
Rev. mex. ing. bioméd ; 38(3): 547-562, sep.-dic. 2017. tab, graf
Artículo en Español | LILACS | ID: biblio-902371

RESUMEN

RESUMEN Objetivo: Analizar el efecto del microgranallado superficial como tratamiento experimental de regeneración, en la resistencia flexural y esfuerzos residuales de una Zirconia Y-TZP, una vez ha sido alterada con otros tratamientos mecánicos como microarenado y fresado. Métodos: Un total de 75 probetas de Zirconia Y-TZP fueron divididas en cinco grupos n=15 y sometidas a tratamientos de superficie así: fresado y microarenado (Grupos 2 y 4) microarenado + microgranallado y fresado + microgranallado (Grupos 3 y 5), y comparadas con un grupo control (Grupo 1), mediante Difracción de Rayos X (DRX), Microscopía electrónica de barrido (SEM), Microscopía confocal (CLSM) y sometida a falla en máquina universal de ensayos. Resultados: Los grupos de microgranallado y microarenado presentaron un aumento significativo de la resistencia flexural p=0.0082 con relación al grupo de fresado. Las mediciones mediante DRX no mostraron relación estadística con los cambios en la resistencia flexural. Significancia: Es posible que el microgranallado se considere un tratamiento para regenerar las propiedades mecánicas reducidas por fresado o arenado en la Zirconia Y-TZP.


ABSTRACT Objective: To analyze the effect of surface micro shot peening as an experimental regeneration treatment on the flexural strength and residual stresses of a Y-TZP Zirconia, once it has been altered with other mechanical treatments such as micro sandblasting and milling. Methods: A total of 75 Zirconia Y-TZP specimens were divided into five n = 15 groups and subjected to surface treatments such as: milling and micro sandblasting (Groups 2 and 4) micro sandblasting + micro shot peening; and milling + micro shot peening (Groups 3 and 5), compared to a control group (Group 1), by X-ray diffraction (XRD), scanning electron microscopy (SEM), confocal microscopy (CLSM) and subjected to failure in a universal testing machine. All the results were compared to find a statistical relationship between them using a mixed linear model and Tuckey. Results: The groups of micro shot peening and micro sandblasting presented a significant increase of the flexural strength p = 0.0082 vs the milling group. The XRD technique is not related to flexural strength measurements. Significance: It is possible that the micro shot peening be considered a treatment to regenerate the mechanical properties reduced by milling or sandblasting in Zirconia Y-TZP.

10.
J Mech Behav Biomed Mater ; 72: 14-21, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28432999

RESUMEN

The aim of the present study was to evaluate the influence of intra-oral aging on the tetragonal-to-monoclinic (t→m) phase transformation of two Y-TZP dental ceramics - Lava Frame (Frame) and Lava Plus (Plus) - and determine the impact of this response on their microstructures and mechanical properties: flexural strength, Young's modulus, microhardness and fracture toughness. Standardized ceramic specimens were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM). After the baseline analysis, the specimens were attached to personalized intra-oral resin appliances and exposed to the oral cavity of 20 subjects for 60 days and then analyzed again. Specimens produced for mechanical properties evaluation were also analyzed before and after the 60-day intra-oral aging. The data were analyzed using two-way ANOVA and Tukey HSD's post hoc test (α=0.05). Weibull analysis was used to evaluate the strength reliability. Both Y-TZP ceramics suffered t→m phase transformation after 60-day intra-oral aging (Plus=4.7%/Frame=7.7%). SEM and AFM analyses showed dislodgement of ZrO2 grains and a significant increase in roughness after intra-oral aging for both ceramics. Both Y-TZP ceramics suffered a decrease on flexural strength, Young's modulus and fracture toughness after intra-oral aging (p<0.05). Only Plus presented a decrease of microhardness after intra-oral aging (p<0.05). Intra-oral aging for 60 days produced t→m phase transformation, changed the microstructure and decreased the mechanical properties of two Y-TZP dental ceramics.


Asunto(s)
Cerámica/análisis , Materiales Dentales/análisis , Itrio/análisis , Circonio/análisis , División Celular , Humanos , Ensayo de Materiales , Docilidad , Reproducibilidad de los Resultados , Estrés Mecánico , Propiedades de Superficie , Factores de Tiempo
11.
Eur J Pharm Sci ; 96: 299-308, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27650458

RESUMEN

The thermal behavior, phase stability, indicative stability and intrinsic dissolution rates of a series of cocrystals and cocrystal hydrates derived from the pharmaceutically active ingredient acetazolamide (ACZ) and 2-aminobenzamide (2ABAM), 2,3-dihydroxybenzoic acid (23DHBA), 2-hydroxybenzamide (2HBAM), 4-hydroxybenzoic acid (4HBA), nicotinamide (NAM) and picolinamide (PAM) as cocrystal formers have been evaluated. Upon heating in an inert atmosphere most of the cocrystals tested demonstrated first the elimination of the crystal former, followed by ACZ degradation. Only in cocrystals with NAM was melting observed. Under controlled temperature and relative humidity conditions all cocrystals tested were stable. However, phase stability tests in a medium simulating physiological conditions (HCl 0.01N, pH2.0) indicated that cocrystals ACZ-NAM-H2O and ACZ-PAM gradually transform into ACZ. All cocrystals examined gave enhanced intrinsic dissolution rates when compared to pure ACZ and the largest dissolution rate constants were measured for the cocrystals that transformed in the phase stability test (approximate two-fold increase of the dissolution rate constants). The series of cocrystals examined herein exhibits an inverse correlation between the intrinsic dissolution rates and the melting/decomposition temperatures as well as the dimension of the hydrogen-bonded ACZ aggregates found in the corresponding crystal structure, indicating that solid-state stability is the major influence on dissolution performance.


Asunto(s)
Acetazolamida/química , Acetazolamida/metabolismo , Cristalización , Solubilidad , Difracción de Rayos X/métodos
12.
J Biomed Mater Res B Appl Biomater ; 105(7): 1972-1977, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-27312806

RESUMEN

OBJECTIVES: This study evaluated the influence of two aging procedures on the biaxial flexural strength of yttria-stabilized tetragonal zirconia ceramics. MATERIAL AND METHODS: Disc-shaped zirconia specimens and (ZE: E.max ZirCAD, Ivoclar; ZT: Zirkon Translucent, Zirkonzahn) (N = 80) (∅:12 mm; thickness:1.2 mm, ISO 6872) were prepared and randomly divided into four groups (n = 10 per group) according to the aging procedures: C: Control, no aging; M: mechanical cycling (2 × 106 cycles/3.8 Hz/200 N); AUT: Aging in autoclave at 134°C, 2 bar for 24 h; AUT + M: Autoclave aging followed by mechanical cycling. After aging, the transformed monoclinic zirconia (%) were evaluated using X-ray diffraction and surface roughness was measured using atomic force microscopy. The average grain size was measured by scanning electron microscopy and the specimens were submitted to biaxial flexural strength testing (1 mm/min, 1000 kgf in water). Data (MPa) were statistically analyzed using 2-way analysis of variance and Tukey's test (α = 0.05). RESULTS: Aging procedures significantly affected (p = 0.000) the flexural strength data but the effect of zirconia type was not significant (p = 0.657). AUTZT (936.4 ± 120.9b ) and AUT + MZE (867.2 ± 49.3b ) groups presented significantly higher values (p < 0.05) of flexural strength than those of the control groups (CZT : 716.5 ± 185.7a ; CZE : 779.9 ± 114a ) (Tukey's test). The monoclinic phase percentage (%) was higher for AUTZE (71), AUTZT (66), AUT + MZE (71), and AUT + MZM (66) compared to the C groups (ZE:0; ZT:0). Surface roughness (µm) was higher for AUTZE (0.09), AUTZT (0.08), AUT + MZE (0.09 µm), and AUT + MZT (0.09 µm) than those of other groups. CONCLUSIONS: Regardless of the zirconia type, autoclave aging alone or with mechanical aging increased the flexure strength but also induced higher transformation from tetragonal to monoclinic phase in both zirconia materials tested. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1972-1977, 2017.


Asunto(s)
Cerámica/química , Estrés Mecánico , Circonio/química , Calor , Presión
13.
São Paulo; s.n; s.n; 2017. 124 p. tab, ilus, graf.
Tesis en Portugués | LILACS | ID: biblio-875323

RESUMEN

O presente trabalho teve como objetivo o estudo do estado sólido do ganciclovir (GCV) e suas diferentes formas polimórficas. O GCV é um fármaco antiviral útil no tratamento de infecções por citomegalovírus (CMV). Embora seja um fármaco amplamente usado, poucos estudos têm sido realizados sobre seu estado sólido. Atualmente, o GCV é conhecido por apresentar quatro formas cristalinas, duas anidras (Forma I e II) e duas hidratas (III e IV). Neste trabalho, nós reportamos a solução da estrutura cristalográfica da Forma I do GCV, que foi encontrado durante o screening de cristalização do fármaco, em que nove ensaios de cristalização (GCV-1, GCV-A, GCV-B, GCV-C, GCV-D, GCV-E, GCV-F, GCV-G e GCV-H) foram realizados e os materiais resultantes foram caracterizados por Difratometria de raios X (DRX), análise térmica (DTA/TG) e Hot Stage Microscopy. De todas as cristalizações realizadas foram obtidas quatro formas sólidas, denominadas como Forma I (GCV-1, GCV-B e GCV-H), Forma III (GCV-C, GCV-D, GCV-F e GCV-G), Forma IV (GCV-A) e Forma V (GCV-E). Esta última está sendo descrita pela primeira vez na literatura e indica a presença de outra forma hidratada de GCV. As Formas I, III e IV corresponderam a forma anidra e as duas formas hidratadas do fármaco, respectivamente. Além disso, foi evidenciado por experimentos de conversão de slurry e análise térmica que o cristalizado de GCV-1 (Forma I) foi o mais estável entre os materiais obtidos, e este deu origem ao monocristal da Forma I de GCV, estrutura cristalina anidra do fármaco. Neste trabalho, pela primeira vez, a estrutura cristalina deste composto foi definida por cristalografia de raios X de monocristal. A análise estrutural mostrou que a Forma I do fármaco cristaliza no grupo espacial monoclínico P21/c e está composta por quatro moléculas de GCV na sua unidade assimétrica. Cada molécula está unida intermolecularmente por ligações de hidrogênio, que dão lugar à formação de cadeias infinitas e estas por sua vez se arranjam de maneira a formar uma estrutura tridimensional.


This presented work aims to study the solid state of ganciclovir (GCV) and its different polymorphic forms. GCV is an antiviral drug useful in the treatment of cytomegalovirus (CMV) infections. Although it is a widely-used drug, few studies have been conducted on its solid state. Currently, GCV is known to have four crystalline forms, two anhydrous (Form I and II) and two hydrates (III and IV). In this investigation, we report a successful preparation of GCV Form I and its crystallographic structure, which was found during the crystallization of the drug, in which nine crystallization tests (GCV-1, GCV-A, GCV-B, GCV- D, GCV-E, GCV-F, GCV-G and GCV-H) were performed and the resulting materials were characterized by X-ray diffractometry (XRD), thermal analysis (DTA/TG) and Hot Stage Microscopy. Of all the crystallizations performed, four solid forms were obtained, denoted as Form I (GCV-1, GCV-B and GCV- H), Form III (GCV-C, GCV-D, GCV-F and GCV-G), Form IV (GCV-A) and Form V (GCV-E). The latter is being described for the first time in the literature and indicates the presence of another hydrated form of GCV. Forms I, III and IV corresponded to the anhydrous form and the two hydrated forms of the drug, respectively. In addition, it was evident by both the slurry conversion and the thermal analysis methods that the GCV-1 crystallized (Form I) was indeed the most stable amongst the materials obtained. This gave rise to GCV Form I monocrystal, anhydrous crystalline structure of the drug. The compound was characterized by monocrystal X-ray crystallography. The structural analysis showed that Form I of the drug crystallized in the monoclinic system space group P21/c is composed of four molecules of GCV in its asymmetric unit. Each molecule is linked intermolecularly by hydrogen bonds, which give rise to the formation of infinite chains arranged in a way that form a three-dimensional structure.


Asunto(s)
Ganciclovir/análisis , Cristalización , Ganciclovir/química , Análisis Diferencial Térmico/métodos
14.
Braz. oral res. (Online) ; 31: e94, 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-952099

RESUMEN

Abstract This study aimed to characterize and compare the effect of different aging regimens on surface characteristic (topography and roughness), structural stability (phase transformation) and mechanical performance (Weibull analysis) of a Y-TZP ceramic. Discs (15 × 1.2 mm; VITA In-Ceram YZ) were prepared according to ISO 6872-2015 for biaxial flexural strength testing and randomly assigned into five groups (n = 30): as-sintered, no aging treatment (CTRL); 20 h in autoclave at 134°C, 2 bar pressure (AUT); intermittent mechanical loading at 20 Hz/106 load pulses (MechLoad); AUT followed by MechLoad (AUT+MechLoad); and storage in distilled water at 37°C, for 1 year (STO). The following analyses were performed: roughness (n = 30), surface topography (n = 2), phase transformation (n = 2) and biaxial flexure strength (n = 30). Phase transformation (increase of m-phase content) was shown to be a spontaneous, unavoidable and time-dependent process, occurring even under ambient conditions (dry storage after 1 year = 6.0% increase), and is considerably accelerated in the presence of moisture (STO = 17.6%; AUT= 63.1%; and AUT+MechLoad = 59.9%). For roughness parameters, only Ra was affected by aging, and the highest values were observed for AUT+MechLoad (0.25 ± 0.07 µm). For Weibull analysis, structural reliability (Weibull moduli) and characteristic strength were not impaired after aging, and some aging conditions led to increased values (highest weibull moduli in AUT, and highest characteristic strength in STO). Phase transformation proves to be a time-dependent spontaneous mechanism that is accelerated in the presence of different stimuli. However, none of the aging regimens had a negative effect on the characteristic strength and structural reliability of Y-TZP ceramic.


Asunto(s)
Estrés Mecánico , Propiedades de Superficie , Itrio , Circonio , Cerámica/química , Materiales Dentales/química , Factores de Tiempo , Ensayo de Materiales , Microscopía Electrónica de Rastreo
15.
Rev. odontol. mex ; 20(3): 166-173, jul.-sep. 2016. tab, graf
Artículo en Español | LILACS | ID: biblio-961565

RESUMEN

Resumen: Existe en el mercado una gran cantidad de alambres de aleaciones de níquel-titanio; sin embargo, no todos poseen las características ideales de memoria de forma y superelasticidad para ser utilizados en ortodoncia. El objetivo de este estudio fue encontrar la temperatura austenitica final de estos arcos con la finalidad de determinar la fase de transformación para su mejor uso clínico en Ortodoncia. Métodos: Se estudiaron once alambres de níquel-titanio más utilizados en Ortodoncia y se evaluó la fase de transformación utilizando la prueba de calorimetría de barrido diferencial. Conclusiones: Este estudio muestra cómo algunos arcos de NiTi en Ortodoncia presentan resultados contrarios a los que promocionan.


Abstract: There are many nickel-titanium alloy wires available in the market. Nevertheless not all of them possess the ideal characteristics of shape memory and super-elasticity to be used in orthodontic treatment. The aim of the present study was to find austenitic final temperature of these archwires so as to determine the transformation phase in order to better use them in orthodontics. Methods: Eleven nickel-titanium orthodontic wires were selected. Transformation phase was assessed using differential scanning calorimetry method. Conclusions: The present study illustrates how some orthodontic Ni-Ti wires elicit results contrary to those advertised.

16.
J Mech Behav Biomed Mater ; 45: 183-92, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25746851

RESUMEN

This study evaluated the effects of low-temperature aging on the surface topography, phase transformation, biaxial flexural strength, and structural reliability of a ground Y-TZP ceramic. Disc-shaped specimens were manufactured and divided according to two factors: "grinding" - without grinding (as-sintered, Ctrl), grinding with an extra-fine diamond bur (25 µm Xfine) and coarse diamond bur (181 µm Coarse); and "low-temperature-aging" (absence or presence). Grinding was performed using a contra-angle handpiece under water-cooling. Aging was performed in an autoclave at 134 °C, under 2 bar, over a period of 20 h. Surface topography analysis showed an increase in roughness based on grit-size (Coarse>Xfine>Ctrl), and aging promoted different effects on roughness (Ctrl AgCoarse). Grinding and aging promoted an increase in the amount of m-phase, although different susceptibilities to degradation were observed. Weibull analysis showed an increase in characteristic strength after grinding (Coarse=Xfine>Ctrl); however, distinct effects were observed for aging (CtrlCoarse Ag). Weibull moduli were statistically similar. Grinding promoted an increase in characteristic strength as a result of an increase in m-phase content; when the Y-TZP surface was ground by coarse diamond burs followed by aging, characteristic strength was reduced, meaning the low-temperature degradation appeared to intensify for rougher Y-TZP surfaces.


Asunto(s)
Fenómenos Mecánicos , Temperatura , Itrio , Circonio , Transición de Fase , Propiedades de Superficie , Factores de Tiempo , Itrio/química , Circonio/química
17.
Dent Mater ; 30(12): e396-404, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25244926

RESUMEN

OBJECTIVE: To determine the effects of different aging methods on the degradation and flexural strength of yttria-stabilized tetragonal zirconia (Y-TZP) METHODS: Sixty disc-shaped specimens (∅, 12mm; thickness, 1.6mm) of zirconia (Vita InCeram 2000 YZ Cubes, VITA Zahnfabrik) were prepared (ISO 6872) and randomly divided into five groups, according to the aging procedures (n=10): (C) control; (M) mechanical cycling (15,000,000 cycles/3.8Hz/200N); (T) thermal cycling (6,000 cycles/5-55°C/30s); (TM) thermomechanical cycling (1,200,000 cycles/3.8Hz/200N with temperature range from 5°C to 55°C for 60s each); (AUT) 12h in autoclave at 134°C/2bars; and (STO) storage in distilled water (37°C/400 days). After the aging procedures, the monoclinic phase percentages were evaluated by X-ray diffraction (XRD), and topographic surface analysis was performed by 3D profilometry. The specimens were then subjected to biaxial flexure testing (1mm/min, load 100kgf, in water). The biaxial flexural strength data (MPa) were analyzed by 1-way ANOVA and Tukey's test (α=0.05). The data for monoclinic phase percentage and profilometry (Ra) were analyzed by Kruskal-Wallis and Dunn's tests. RESULTS: ANOVA revealed that flexural strength was affected by the aging procedures (p=0.002). The M (781.6MPa) and TM (771.3MPa) groups presented lower values of flexural strength than did C (955MPa), AUT (955.8MPa), T (960.8MPa) and STO (910.4MPa). The monoclinic phase percentage was significantly higher only for STO (12.22%) and AUT (29.97%) when compared with that of the control group (Kruskal-Wallis test, p=0.004). In addition, the surface roughnesses were similar among the groups (p=0.165). SIGNIFICANCE: Water storage for 400 days and autoclave aging procedures induced higher phase transformation from tetragonal to monoclinic; however, they did not affect the flexural strength of Y-TZP ceramic, which decreased only after mechanical and thermomechanical cycling.


Asunto(s)
Cerámica/química , Materiales Dentales/química , Itrio/química , Circonio/química , Algoritmos , Cristalografía , Imagenología Tridimensional/métodos , Ensayo de Materiales , Docilidad , Distribución Aleatoria , Estrés Mecánico , Propiedades de Superficie , Temperatura , Factores de Tiempo , Agua/química , Difracción de Rayos X
18.
Rev. bras. eng. biomed ; 30(3): 257-264, Sept. 2014. ilus, graf, tab
Artículo en Inglés | LILACS | ID: lil-723263

RESUMEN

INTRODUCTION: The mechanical properties and corrosion resistance of a material are dependent on its microstructure and can be modified by phase transformation. When a phase transformation occurs in a material it usually forms at least one new phase, with physical-chemical characteristics that differ from the original phase. Moreover, most phase transformations do not occur instantly. This paper presents an evaluation of the phase transformation of martensitic stainless steels ASTM 420A and ASTM 440C when submitted to different thermal processes. METHODS: Dilatometry tests were performed with several continuous heating and cooling rates in order to obtain the profiles of the continuous heating transformation (CHT) and continuous cooling transformation (CCT) diagrams for these two types of steel. Also, the temperature ranges for the formation of the different phases (ferrite and carbides; ferrite; austenite and carbides; non-homogeneous and homogeneous austenite phases) were identified. Rockwell hardness (HRC) tests were performed on all thermally treated steels. Anodic and cathodic potential dynamic polarization measurements were carried out through immersion in enzymatic detergent as an electrolyte for different samples submitted to the thermal processes in order to select the best routes for the heat treatment and to recommend steels for the manufacture of surgical tools. RESULTS: The martensitic transformation temperature tends to increase with increasing temperature for the initiation of cooling. The 440C steel had a higher hardness value than the 420A steel at the austenitizing temperature of 1100 °C. Above the austenitizing temperature of 1100 °C, the material does not form martensite at the cooling rate used, which explains the sharp decline in the hardness values. CONCLUSION: The study reported herein achieved its proposed objectives, successfully investigating the issues and indicating solutions to the industrial problems addressed, which are frequently encountered in the manufacture of surgical instruments.

19.
Rev. bras. eng. biomed ; 29(1): 25-31, jan.-mar. 2013. graf, tab
Artículo en Inglés | LILACS | ID: lil-670971

RESUMEN

This research consisted of implementing and evaluating an empirical mathematical model to reproduce analytically the dilatometric behavior of ASTM 420A and ASTM 440C martensitic stainless steels, widely used for manufacturing surgical tools. Martensitic stainless steels can be subdivided into three subgroups: low-carbon, medium-carbon and high-carbon steels. The microstructure of each group is also characteristic as needlelike martensitic; very fine martensitic; and ultra-fine martensitic containing carbides. The proposed method was based on experimental data obtained from the dilatometric testing of the steel samples applying low heating rates. It was possible to determine the formation of phase fields near the equilibrium conditions. The method, being based on empirical data, ensured a greater approximation to the experimental values, verifying that it can be applied as a useful tool in the evaluation of industrial heat treatments for surgical tools.


O presente trabalho consistiu em implementar e avaliar um modelo matemático empírico que reproduz analiticamente o comportamento dilatométrico dos aços inoxidáveis martensíticos ASTM 420A e ASTM 440C, utilizados em ferramental cirúrgico. Aços inoxidáveis martensíticos podem ser subdivididos em três subgrupos, ou seja, baixo carbono; médio carbono e alto carbono. A microestrutura de cada grupo é caracterizada por martensita em forma de agulha; martensita fina e martensita ultra-fina contendo carbetos. A elaboração do método matemático se baseou em dados extraídos de ensaios dilatométricos sob baixas taxas de aquecimento. Foi possível determinar a formação dos campos de fase próximos às condições de equilíbrio. Os resultados obtidos garantiram boa aproximação com os valores experimentais, evidenciando que o modelo aplicado é um instrumento útil na avaliação dos tratamentos térmicos industriais para ferramental cirúrgico.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA