Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pathogens ; 12(3)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36986377

RESUMEN

Plasmodium falciparum parasites carrying deletions of histidine-rich protein 2 and 3 genes, pfhrp2 and pfhrp3, respectively, are likely to escape detection via HRP2-based rapid diagnostic tests (RDTs) and, consequently, treatment, posing a major risk to both the health of the infected individual and malaria control efforts. This study assessed the frequency of pfhrp2- and pfhrp3-deleted strains at four different study sites in Central Africa (number of samples analyzed: Gabon N = 534 and the Republic of Congo N = 917) and West Africa (number of samples analyzed: Nigeria N = 466 and Benin N = 120) using a highly sensitive multiplex qPCR. We found low prevalences for pfhrp2 (1%, 0%, 0.03% and 0) and pfhrp3 single deletions (0%, 0%, 0.03% and 0%) at all study sites (Gabon, the Republic of Congo, Nigeria and Benin, respectively). Double-deleted P. falciparum were only found in Nigeria in 1.6% of all internally controlled samples. The results of this pilot investigation do not point towards a high risk for false-negative RDT results due to pfhrp2/pfhrp3 deletions in Central and West African regions. However, as this scenario can change rapidly, continuous monitoring is essential to ensure that RDTs remain a suitable tool for the malaria diagnostic strategy.

2.
J Vector Borne Dis ; 58(3): 273-280, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35170466

RESUMEN

Background &objectives: The diagnosis of Plasmodium falciparum malaria is widely dependent on the P. falciparum histidine rich protein 2 (PfHRP2) antigens based rapid diagnostic tests. There are few possible factors like Pfhrp2 polymorphism, Pfhrp2 deletion and density of malaria parasite which can affect the sensitivity of the Pf-HRP2-based RDT. The primary objective of the investigation was to check whether the Pfhrp2 gene deletion is the primary cause of RDT false negative cases. METHODS: Febrile patients from three districts of Chhattisgarh, India were screened for malaria during 2016-2017 by microscopy and RDT. All microscopy P. falciparum positive samples were validated by PCR. Microscopy positive and RDT negative samples were analyzed for the presence of Exon 2, across Exon 1-2, upstream and downstream of both the Pfhrp2 and Pfhrp3 genes fragment by PCR. RESULTS: Out of 203 screened samples, 85 were detected positive for P. falciparum malaria based on microscopy and PCR. Among these 85 P. falciparum positive samples, 4 samples were observed Pf-HRP2 RDT negative. Although, it signified that the RDTs used were reliable with sensitivity of 95.3% (81/85). 3/4 PfHRP2-RDT negative samples of the P. falciparum isolates exhibited complete deletion of Pfhrp2 and Pfhrp3 genes and one sample was found RDT false negative due to high parasite density. INTERPRETATION & CONCLUSION: Pfhrp2 and Pfhrp3 deletions that result in false negative RDTs were uncommon in our setting. The continued monitoring of RDTS which results in false negative tests due to Pfhrp2/3 gene deletion is the need of the hour for an effective malaria elimination strategy.


Asunto(s)
Antígenos de Protozoos , Malaria Falciparum , Plasmodium falciparum , Proteínas Protozoarias , Antígenos de Protozoos/genética , Pruebas Diagnósticas de Rutina , Eliminación de Gen , Humanos , India , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Plasmodium falciparum/genética , Prevalencia , Proteínas Protozoarias/genética
3.
Malar J ; 19(1): 99, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32122352

RESUMEN

BACKGROUND: The World Health Organization (WHO) recommends rapid diagnostic tests (RDTs) as a good alternative malaria-diagnosis method in remote parts of sub-Saharan Africa. The majority of commercial RDTs currently available detect the Plasmodium falciparum protein histidine-rich protein 2 (PfHRP2). There have also been recent reports of pfhrp2 gene deletions being found in parasites collected from several African countries. The WHO has concluded that lacking the pfhrp2 gene must be monitored in Africa. The purpose of the study was to analyse why the samples that were positive by PCR were negative by RDTs and, therefore, to determine whether there have been deletions in the pfhrp2 and/or pfhrp3 genes. METHODS: Malaria NM-PCR was carried out on all the samples collected in the field. A group of 128 samples was positive by PCR but negative by RDT; these samples were classified as RDT false-negatives. PCR was carried out for exon2 of pfhrp2 and pfhrp3 genes to detect the presence or absence of these two genes. Frequencies with 95% confidence intervals (CIs) were used for prevalence estimates. Associations were assessed by the Chi square test or Fisher´s exact test. The level of significance was set at p ≤ 0.05. Statistical analyses were performed using the software package SPSSv.15.0. RESULTS: After PCR, 81 samples were identified (4.7%, 95% CI 3.8-5.8) which had deletion in both genes, pfhrp2 and pfhrp3. Overall, however, 11 samples (0.6%, 95% CI 0.36-1.14) had deletion only in pfhrp2 but not in pfhrp3, and 15 (0.9%, 95% CI 0.6-1.5) presented with deletion only in pfhrp3 but not in pfhrp2. Considering the pfhrp2 gene separately, within the total of 1724 samples, 92 (5.3%, 95% CI 4.37-6.5) had evidence of deletion. CONCLUSION: The present study provides the first evidence of deletion in the pfhrp2 and pfhrp3 genes in P. falciparum isolates from Equatorial Guinea. However, larger studies across different regions within the country and across different seasonal profiles are needed to determine the full extent of pfhrp2 and pfhrp3 deletion. It is strongly recommended to implement an active surveillance programme in order to detect any increases in pfhrp2 and pfhrp3 deletion frequencies.


Asunto(s)
Antígenos de Protozoos/genética , Eliminación de Gen , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Pruebas Diagnósticas de Rutina , Guinea Ecuatorial/epidemiología , Reacciones Falso Negativas , Genes Protozoarios , Microscopía , Reacción en Cadena de la Polimerasa Multiplex , Prevalencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA