Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121876, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36122463

RESUMEN

A fluorescent gold nanocluster was used for determining peroxyl radical scavenging activity of antioxidants. Histidine was used as a green reducing and protective agent, and glutathione (GSH) enhanced the fluorescence intensity of histidine-stabilized gold nanoclusters (AuNCs) by ligand exchange process. When AAPH-induced oxidation of GSH occurred, the initial fluorescence intensity of GSH-capped AuNCs (λex = 450 nm λem = 502 nm) was decreased with static quenching. The decline of fluorescence intensity of the GSH-capped AuNCs upon peroxyl radical attack is diminished with the addition of antioxidants to the reaction medium, the difference in fluorescence intensity being related to peroxyl radical scavenging activity of antioxidants. The 50 % inhibitive concentration of related antioxidant compounds were determined and compared to those of crocin bleaching assay. Inhibition % of sage (Salvia officinalis L.) and green tea (Camellia sinensis) infusions against peroxyl radicals were investigated. The proposed assay can be used for simple and selective estimation of the peroxyl radical scavenging activity in complex matrices, as histidine-stabilized GSH-capped AuNCs were selective toward peroxyl radicals, not affected by other ROS at the studied concentrations.


Asunto(s)
Antioxidantes , Oro , Antioxidantes/farmacología , Histidina , Glutatión , Colorantes , Depuradores de Radicales Libres/farmacología
2.
Molecules ; 25(5)2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32155763

RESUMEN

The thiosemicarbazone derivatives have a wide range of biological activities, such as antioxidant activity. In this study, the antiradical activities of six camphene-based thiosemicarbazones (TSC-1~6) were investigated by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and peroxyl radical scavenging capacity (PSC) assays, respectively, and the results reveal that TSC1~6 exhibited good abilities for scavenging free radicals in a dose-dependent way. Compound TSC-2 exhibited the best effect of scavenging DPPH radical, with the lowest EC50 (0.208 ± 0.004 mol/mol DPPH) as well as the highest bimolecular rate constant Kb (4218 M-1 s-1), which is 1.18-fold higher than that of Trolox. Meanwhile, TSC-2 also obtained the lowest EC50 (1.27 µmol of Trolox equiv/µmol) of scavenging peroxyl radical. Furthermore, the density functional theory (DFT) calculation was carried out to further explain the experimental results by calculating several molecular descriptors associated with radical scavenging activity. These theoretical data suggested that the electron-donating effect of the diethylamino group in TSC-2 leads to the enhancement of the scavenging activities and the studied compounds may prefer to undergo the hydrogen atom transfer process.


Asunto(s)
Antioxidantes/química , Antioxidantes/farmacología , Monoterpenos Bicíclicos/química , Tiosemicarbazonas/química , Tiosemicarbazonas/farmacología , Algoritmos , Teoría Funcional de la Densidad , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Modelos Moleculares , Modelos Teóricos , Conformación Molecular , Estructura Molecular
3.
Talanta ; 196: 32-38, 2019 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-30683370

RESUMEN

A novel colorimetric nanosensor was developed for evaluating peroxyl radical scavenging activity of phenolic antioxidants and for the detection of hydroperoxides formed during AAPH-induced oxidation of linoleic acid emulsions. Starch was used as a green reduction/stabilization agent for gold nanoparticles (AuNPs) synthesis in alkaline medium. When tert-butyl hydroperoxide (tert-BHP) was incubated with an excess of iodide ions in a 37 °C water bath for 90 min, triodide (I3-) was formed in an amount equivalent to tert-BHP concentration. Upon the addition of starch-stabilized gold nanoparticles (ss-AuNPs) solution to the incubation mixture, triiodide ions were rapidly adsorbed on the surface of AuNPs and caused their aggregation. A concomitant red shift (from 525 nm to 563 nm) of surface plasmon resonance (SPR) absorption of the nanoparticles was observed, absorbance linearly increasing with aqueous tert-BHP concentration. The method provided an LOD of 39 µM for tert-BHP, and was validated through linearity, precision and accuracy. The concentration of hydroperoxides estimated in linoleic acid peroxidation correlated well with those found by the reference ferric thiocyanate assay. Peroxyl radical scavenger antioxidants decreased the red-shifted SPR absorption of aggregated ss-AuNPs, thereby enabling an indirect estimation of antioxidant activity. This AuNPs-based colorimetric sensor is the first of its kind to directly determine peroxyl radical scavenging activity of polyphenols. The half-maximal inhibitive concentrations (IC50) of selected antioxidant compounds were calculated by utilizing the decrease in absorbance with increasing concentration of scavengers, and compared to those of classical oxygen radical absorbance capacity (ORAC) assay. The proposed nanosensor was superior over FL-based ORAC in determining the peroxyl radical scavenging activity of the lipophilic antioxidant α-tocopherol. The percentage scavenging of real samples such as green tea infusion and synthetic serum were determined. The proposed assay can be used for estimating the peroxyl scavenging of various food and biological samples in terms of its low cost, ease of use and compatibility.

4.
Extremophiles ; 21(4): 775-788, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28500387

RESUMEN

Thermus filiformis is an aerobic thermophilic bacterium isolated from a hot spring in New Zealand. The experimental study of the mechanisms of thermal adaptation is important to unveil response strategies of the microorganism to stress. In this study, the main pathways involved on T. filiformis thermoadaptation, as well as, thermozymes with potential biotechnological applications were revealed based on omics approaches. The strategy adopted in this study disclosed that pathways related to the carbohydrate metabolism were affected in response to thermoadaptation. High temperatures triggered oxidative stress, leading to repression of genes involved in glycolysis and the tricarboxylic acid cycle. During heat stress, the glucose metabolism occurred predominantly via the pentose phosphate pathway instead of the glycolysis pathway. Other processes, such as protein degradation, stringent response, and duplication of aminoacyl-tRNA synthetases, were also related to T. filiformis thermoadaptation. The heat-shock response influenced the carotenoid profile of T. filiformis, favoring the synthesis of thermozeaxanthins and thermobiszeaxanthins, which are related to membrane stabilization at high temperatures. Furthermore, antioxidant enzymes correlated with free radical scavenging, including superoxide dismutase, catalase and peroxidase, and metabolites, such as oxaloacetate and α-ketoglutarate, were accumulated at 77 °C.


Asunto(s)
Adaptación Fisiológica , Extremófilos/fisiología , Thermus/fisiología , Calor , Espectrometría de Masas , Metabolómica , Proteómica , Transcriptoma
5.
Biosci Biotechnol Biochem ; 63(3): 577-80, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-27393264

RESUMEN

An improved bioassay for measurement of peroxyl radical scavenging activity(1,2)) is described. The modifications included the use of (1) Enterococcus faecium strain S, (2) 25% dimethyl sulfoxide, (3) L-ascorbic acid for the termination of the bactericidal reaction, and (4) the concentration of antioxidants that gives 75% of the log (colony forming unit/ml) of the control reaction (without methemoglobin or tert-butyl hydroperoxide), for the expression of antioxidant activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA