Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 476
Filtrar
1.
Front Cell Dev Biol ; 12: 1426762, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39291269

RESUMEN

Human periodontal ligament stem cells (hPDLSCs) differentiate into periodontal ligament (PDL) fibroblasts, osteoblasts, and cementoblasts. To identify inducers of PDL fibroblastic differentiation, monoclonal antibody series were developed a series of against membrane/extracellular matrix (ECM) molecules through decoy immunization. The anti-PDL13 antibody targets ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), renowned for regulating skeletal and soft tissue mineralization. ENPP1 accumulates in the periodontal ligament region of tooth roots, and specifically localizes to the cell boundaries and elongated processes of the fibroblastic cells. As ENPP1 expression increases during fibroblastic differentiation, mineralization induced by tissue-nonspecific alkaline phosphatase (TNAP), a pyrophosphate-degrading enzyme, is completely inhibited. This is consistent with ENPP1 and TNAP acting in opposition, and TGF-ß1-induced ENPP1 expression creates an essential environment for PDL fibroblast differentiation. Representative fibroblastic differentiation markers decrease with endogenous ENPP1 inhibition by siRNA and antibody blocking. ENPP2 generates lipid signaling molecules. In contrast to ENPP1, ENPP2 disappears in TGF-ß1-induced PDL fibroblasts. Ectopic expression of ENPP2 hinders TGF-ß1-induced PDL fibroblastic differentiation. Suppression of ENPP1 and ENPP2 leads to severe defects in undifferentiated and differentiated cells, demonstrating that these two factors play opposing roles in soft and hard tissue differentiation but can complement each other for cell survival. In conclusion, increased ENPP1 is crucial for TGF-ß1-induced PDL differentiation, while ENPP2 and TNAP can inhibit ENPP1. ENPP1 and ENPP2 exhibit complementary functions in the cell survival.

2.
Heliyon ; 10(16): e35744, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39224355

RESUMEN

Objective: To investigate the material basis, targets and molecular mechanism of Scutellariae Radix against periodontitis to provide theoretical basis for clinical applications. Materials and methods: The active compounds and targets of Scutellariae Radix were obtained from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database, and the periodontitis-related targets were collected by integrating Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), Genecards and Gene Expression Omnibus (GEO) database together. The potential targets of Scutellariae Radix against periodontitis were obtained from the intersection of two target sets. Metascape database was used for Gene Ontology (GO) term enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Discovery Studio software was used for molecular docking between key targets and compounds to evaluate their binding affinity. Western blot was used to check the expression of PTGS2 and MMP9 to verify the regulatory effects of baicalein, the main active compound of Scutellariae Radix, on human periodontal ligament stem cells (hPDLSCs) cultured under inflammatory environment which induced by lipopolysaccharide (LPS). Results: 15 active compounds of Scutellariae Radix and 53 common targets for periodontitis treatment were identified. Among these targets, the 10 core targets were AKT1, IL-6, TNF, VEGFA, TP53, PTGS2, CASP3, JUN, MMP9 and HIF1A. GO and KEGG analysis mainly focused on response to LPS and pathways in cancer. Molecular docking showed that the main active compounds had good binding affinity with key targets. Cell experiments confirmed that baicalein can interfere the expression of pro-inflammatory factors PTGS2 and MMP9 proteins and exert anti-inflammatory effects. Conclusion: Current study preliminarily analyzed the mechanism of Scutellariae Radix against periodontitis, which provide a new idea for the utilization of Scutellariae Radix and the development of novel medicine for the clinical treatment of periodontitis.

3.
Int J Nanomedicine ; 19: 8751-8768, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39220194

RESUMEN

Purpose: Periodontitis is a chronic infectious disease characterized by progressive inflammation and alveolar bone loss. Forkhead box O1 (FoxO1), an important regulator, plays a crucial role in maintaining bone homeostasis and regulating macrophage energy metabolism and osteogenic differentiation of mesenchymal stem cells (MSCs). In this study, FoxO1 was overexpressed into small extracellular vesicles (sEV) using engineering technology, and effects of FoxO1-overexpressed sEV on periodontal tissue regeneration as well as the underlying mechanisms were investigated. Methods: Human periodontal ligament stem cell (hPDLSCs)-derived sEV (hPDLSCs-sEV) were isolated using ultracentrifugation. They were then characterized using transmission electron microscopy, Nanosight, and Western blotting analyses. hPDLSCs were treated with hPDLSCs-sEV in vitro after stimulation with lipopolysaccharide, and osteogenesis was evaluated. The effect of hPDLSCs-sEV on the polarization phenotype of THP-1 macrophages was also evaluated. In addition, we measured the reactive oxygen species (ROS) levels, adenosine triphosphate (ATP) production, mitochondrial characteristics, and metabolism of hPDLSCs and THP-1 cells. Experimental periodontitis was established in vivo in mice. HPDLSCs-sEV or phosphate-buffered saline (PBS) were injected into periodontal tissues for four weeks, and the maxillae were collected and assessed by micro-computed tomography, histological staining, and small animal in vivo imaging. Results: In vitro, FoxO1-overexpressed sEV promoted osteogenic differentiation of hPDLSCs in the inflammatory environment and polarized THP-1 cells from the M1 phenotype to the M2 phenotype. Furthermore, FoxO1-overexpressed sEV regulated the ROS level, ATP production, mitochondrial characteristics, and metabolism of hPDLSCs and THP-1 cells in the inflammatory environment. In the in vivo analyses, FoxO1-overexpressed sEV effectively promoted bone formation and inhibited inflammation. Conclusion: FoxO1-overexpressed sEV can regulate osteogenesis and immunomodulation. The ability of FoxO1-overexpressed sEV to regulate inflammation and osteogenesis can pave the way for the establishment of a therapeutic approach for periodontitis.


Asunto(s)
Vesículas Extracelulares , Proteína Forkhead Box O1 , Mitocondrias , Osteogénesis , Ligamento Periodontal , Periodontitis , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Osteogénesis/efectos de los fármacos , Animales , Humanos , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Mitocondrias/metabolismo , Periodontitis/terapia , Periodontitis/metabolismo , Ratones , Ligamento Periodontal/citología , Células THP-1 , Especies Reactivas de Oxígeno/metabolismo , Inflamación/metabolismo , Masculino , Diferenciación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Macrófagos/metabolismo , Regeneración , Células Cultivadas
4.
Front Immunol ; 15: 1438726, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39221238

RESUMEN

Mechanical forces affect periodontal health through multiple mechanisms. Normally, mechanical forces can boost soft and hard tissue metabolism. However, excessive forces may damage the periodontium or result in irreversible inflammation, whereas absence of occlusion forces also leads to tissue atrophy and bone resorption. We systemically searched the PubMed and Web of Science databases and found certain mechanisms of mechanical forces on immune defence, extracellular matrix (ECM) metabolism, specific proteins, bone metabolism, characteristic periodontal ligament stem cells (PDLSCs) and non-coding RNAs (ncRNAs) as these factors contribute to periodontal homeostasis. The immune defence functions change under forces; genes, signalling pathways and proteinases are altered under forces to regulate ECM metabolism; several specific proteins are separately discussed due to their important functions in mechanotransduction and tissue metabolism. Functions of osteocytes, osteoblasts, and osteoclasts are activated to maintain bone homeostasis. Additionally, ncRNAs have the potential to influence gene expression and thereby, modify tissue metabolism. This review summarizes all these mechanisms of mechanical forces on periodontal homeostasis. Identifying the underlying causes, this review provides a new perspective of the mechanisms of force on periodontal health and guides for some new research directions of periodontal homeostasis.


Asunto(s)
Homeostasis , Mecanotransducción Celular , Ligamento Periodontal , Periodoncio , Humanos , Periodoncio/metabolismo , Animales , Ligamento Periodontal/metabolismo , Matriz Extracelular/metabolismo , Estrés Mecánico , Enfermedades Periodontales/metabolismo , Enfermedades Periodontales/inmunología , ARN no Traducido/genética , ARN no Traducido/metabolismo , Células Madre/metabolismo
5.
Prostaglandins Other Lipid Mediat ; 174: 106882, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39151819

RESUMEN

Periodontitis is featured as the periodontium's pathologic destruction caused by the host's overwhelmed inflammation. Omentin-1 has been reported to be aberrantly downregulated in patients with periodontitis, but the specific regulation of Omentin-1 during the pathogenesis of periodontitis remains unclear. In this study, human periodontal ligament stem cells (hPDLSCs) were stimulated by lipopolysaccharide (LPS) from Porphyromonas gingivalis to establish an in vitro inflammatory periodontitis model. hPDLSCs were treated with recombinant human Omentin-1 (250, 500 and 750 ng/mL) for 3 h before LPS stimulation. Results revealed that Omentin-1 significantly inhibited LPS-induced inflammation in hPDLSCs through reducing the production of proinflammatory cytokines (tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß and IL-6) and downregulating the expression of Cox2 and iNOS. Meanwhile, Omentin-1 significantly enhanced alkaline phosphatase (ALP) activity and Alizarin red-stained area, accompanied by increasing expression osteogenic markers BMP2, OCN and Runx2, confirming that Omentin-1 restores osteogenic differentiation in LPS-induced hPDLSCs. In addition, the conditioned medium (CM) from LPS-induced hPDLSCs was harvested to culture macrophages, which resulted in macrophage polarization towards M1, while CM from Omentin-1-treated hPDLSCs reduced M1 macrophages polarization and elevated M2 polarization. Furthermore, Omentin-1 also inhibited LPS-triggered endoplasmic reticulum (ER) stress in hPDLSCs, and additional treatment of the ER stress activator tunicamycin (TM) partially reversed the functions of Omentin-1 on inflammation, osteogenic differentiation and macrophages polarization. In summary, Omentin-1 exerted a protective role against periodontitis through inhibiting inflammation and enhancing osteogenic differentiation of hPDLSCs, providing a novelty treatment option for periodontitis.


Asunto(s)
Diferenciación Celular , Citocinas , Estrés del Retículo Endoplásmico , Proteínas Ligadas a GPI , Inflamación , Lectinas , Lipopolisacáridos , Macrófagos , Osteogénesis , Ligamento Periodontal , Células Madre , Ligamento Periodontal/citología , Ligamento Periodontal/efectos de los fármacos , Ligamento Periodontal/metabolismo , Humanos , Lipopolisacáridos/farmacología , Osteogénesis/efectos de los fármacos , Citocinas/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Lectinas/farmacología , Diferenciación Celular/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Proteínas Ligadas a GPI/metabolismo , Proteínas Ligadas a GPI/farmacología , Inflamación/patología , Inflamación/metabolismo , Periodontitis/patología , Periodontitis/metabolismo , Porphyromonas gingivalis , Células Cultivadas
7.
Stem Cell Res Ther ; 15(1): 247, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113140

RESUMEN

BACKGROUND: The role of periodontal ligament stem cells (PDLSCs) in repairing periodontal destruction is crucial, but their functions can be impaired by excessive oxidative stress (OS). Nocardamine (NOCA), a cyclic siderophore, has been shown to possess anti-cancer and anti-bacterial properties. This study aimed to investigate the protective mechanisms of NOCA against OS-induced cellular dysfunction in PDLSCs. METHODS: The cytotoxicity of NOCA on PDLSCs was assessed using a CCK-8 assay. PDLSCs were then treated with hydrogen peroxide (H2O2) to induce OS. ROS levels, cell viability, and antioxidant factor expression were analyzed using relevant kits after treatment. Small molecule inhibitors U0126 and XAV-939 were employed to block ERK signaling and Wnt pathways respectively. Osteogenic differentiation was assessed using alkaline phosphatase (ALP) activity staining and Alizarin Red S (ARS) staining of mineralized nodules. Expression levels of osteogenic gene markers and ERK pathway were determined via real-time quantitative polymerase chain reaction (RT-qPCR) or western blot (WB) analysis. ß-catenin nuclear localization was examined by western blotting and confocal microscopy. RESULTS: NOCA exhibited no significant cytotoxicity at concentrations below 20 µM and effectively inhibited H2O2-induced OS in PDLSCs. NOCA also restored ALP activity, mineralized nodule formation, and the expression of osteogenic markers in H2O2-stimulated PDLSCs. Mechanistically, NOCA increased p-ERK level and promoted ß-catenin translocation into the nucleus; however, blocking ERK pathway disrupted the osteogenic protection provided by NOCA and impaired its ability to induce ß-catenin nuclear translocation under OS conditions in PDLSCs. CONCLUSIONS: NOCA protected PDLSCs against H2O2-induced OS and effectively restored impaired osteogenic differentiation in PDLSCs by modulating the ERK/Wnt signaling pathway.


Asunto(s)
Diferenciación Celular , Peróxido de Hidrógeno , Osteogénesis , Estrés Oxidativo , Ligamento Periodontal , Células Madre , Ligamento Periodontal/citología , Ligamento Periodontal/metabolismo , Ligamento Periodontal/efectos de los fármacos , Humanos , Estrés Oxidativo/efectos de los fármacos , Células Madre/metabolismo , Células Madre/efectos de los fármacos , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/toxicidad , Osteogénesis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , beta Catenina/metabolismo , Supervivencia Celular/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Células Cultivadas , Especies Reactivas de Oxígeno/metabolismo
8.
FASEB J ; 38(15): e23865, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39096136

RESUMEN

A thorough comprehension of age-related variances in orthodontic tooth movement (OTM) and bone remodeling response to mechanical force holds significant implications for enhancing orthodontic treatment. Mitophagy plays a crucial role in bone metabolism and various age-related diseases. However, the impact of mitophagy on the bone remodeling process during OTM remains elusive. Using adolescent (6 weeks old) and adult (12 months old) rats, we established OTM models and observed that orthodontic force increased the expression of the mitophagy proteins PTEN-induced putative kinase 1 (PINK1) and Parkin, as well as the number of tartrate-resistant acid phosphatase-positive osteoclasts and osteocalcin-positive osteoblasts. These biological changes were found to be age-related. In vitro, compression force loading promoted PINK1/Parkin-dependent mitophagy in periodontal ligament stem cells (PDLSCs) derived from adolescents (12-16 years old) and adults (25-35 years old). Furthermore, adult PDLSCs exhibited lower levels of mitophagy, impaired mitochondrial function, and a decreased ratio of RANKL/OPG compared to young PDLSCs after compression. Transfection of siRNA confirmed that inhibition of mitophagy in PDLSC resulted in decreased mitochondrial function and reduced RANKL/OPG ratio. Application of mitophagy inducer Urolithin A enhanced bone remodeling and accelerated OTM in rats, while the mitophagy inhibitor Mdivi-1 had the opposite effect. These findings indicate that force-stimulated PDLSC mitophagy contributes to alveolar bone remodeling during OTM, and age-related impairment of mitophagy negatively impacts the PDLSC response to mechanical stimulus. Our findings enhance the understanding of mitochondrial mechanotransduction and offer new targets to tackle current clinical challenges in orthodontic therapy.


Asunto(s)
Mitocondrias , Mitofagia , Osteoprotegerina , Ligamento Periodontal , Ligando RANK , Técnicas de Movimiento Dental , Animales , Mitofagia/fisiología , Ratas , Ligando RANK/metabolismo , Ligamento Periodontal/metabolismo , Osteoprotegerina/metabolismo , Mitocondrias/metabolismo , Masculino , Proteínas Quinasas/metabolismo , Ratas Sprague-Dawley , Adolescente , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Células Madre/metabolismo , Remodelación Ósea/fisiología , Células Cultivadas
9.
Stem Cell Rev Rep ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134887

RESUMEN

Approximately half of the adult population is suffering from periodontal disease, and conventional periodontal treatment strategies can only slow the progression of the disease. As a kind of tissue engineering, periodontal regeneration brings hope for the treatment of periodontal disease. Low-intensity pulsed ultrasound (LIPUS) is a form of ultrasound with a frequency of 1-3 MHz and a much lower intensity (< 1W/cm2) than traditional ultrasound energy and output. LIPUS has been adopted for a variety of therapeutic purposes due to its bioeffects such as thermal, mechanical, and cavitation effects, which induce intracellular biochemical effects and lead to tissue repair and regeneration ultimately. In this systematic review, we summarize the basic research of LIPUS in the treatment of periodontal disease in periodontal disease animal models and the influence of LIPUS on the biological behavior (including promoting osteogenic differentiation of stem cells and inhibiting inflammatory response) and potential mechanism of periodontal ligament stem cells (PDLSCs), hoping to provide new ideas for the treatment of periodontal disease. We believe that LIPUS can be used as an auxiliary strategy in the treatment of periodontal disease and play an exciting and positive role in periodontal regeneration.

10.
Inflammation ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136902

RESUMEN

Periodontitis is a multifactorial chronic inflammatory disease that destroy periodontium. Apart from microbial infection and host immune responses, emerging evidence shows aging and endoplasmic reticulum stress (ER stress) play a key role in periodontitis pathogenesis. The aim of this study is to identify aging-related genes (ARGs) and endoplasmic reticulum stress-related genes (ERGs) in periodontitis. Data were obtained from the Gene Expression Omnibus (GEO), Human Ageing Genomic Resources (HAGR) and GeneCards databases to identify differentially expressed mRNAs/miRNAs/lncRNAs (DEmRNAs/DEmiRNAs/DElncRNAs), ARGs and ERGs, respectively. We used the MultiMiR database for the reverse prediction of miRNAs and predicted miRNA-lncRNA interactions using the STARBase database. Afterwards, we constructed a mRNA-miRNA-lncRNA ceRNA network. A total of 10 hub genes, namely LCK, LYN, CXCL8, IL6, HCK, IL1B, BTK, CXCL12, GNAI1 and FCER1G, and 5 DEmRNAs-ARGs-ERGs were then discovered. Further, weighted gene co-expression network analysis (WGCNA) and single sample gene set enrichment analysis (ssGSEA) were performed to explore co-expression modules and immune infiltration respectively. Finally, we used transmission electron microscope (TEM), inverted fluorescence microscopy, quantitative real-time polymerase chain reaction (qRT-PCR) and Western Blot to verify the bioinformatic results in periodontal ligament stem cells (PDLSCs) infected with Porphyromonas gingivalis (P. gingivalis). The experimental results broadly confirmed the accuracy of bioinformatic analysis. The present study established an aging- and ER stress-related ceRNA network in periodontitis, contributing to a deeper understanding of the pathogenesis of periodontitis.

11.
Heliyon ; 10(14): e34203, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39104492

RESUMEN

Objective: The present study aimed to explore the function of human bone marrow mesenchymal stem cells (hBMMSCs)-derived exosomal long noncoding RNA histocompatibility leukocyte antigen complex P5 (HCP5) in the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) to improve chronic periodontitis (CP). Methods: Exosomes were extracted from hBMMSCs. Alizarin red S staining was used to detect mineralised nodules. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to measure HCP5 and miR-24-3p expression. The mRNA and protein levels of alkaline phosphatase (ALP), osteocalcin, osterix, runt-related transcription factor 2, bone morphogenetic protein 2, osteopontin, fibronectin, collagen 1, heme oxygenase 1 (HO1), P38, and ETS transcription factor ELK1 (ELK1) were detected using RT-qPCR and Western blot. Enzyme-linked immunosorbent assay (ELISA) kits were used to determine the HO1 and carbon monoxide concentrations. Heme, biliverdin, and Fe2+ levels were determined using detection kits. Micro-computed tomography, hematoxylin and eosin staining, ALP staining, tartrate-resistant acid phosphatase staining, ELISA, and RT-qPCR were conducted to evaluate the effect of HCP5 on CP mice. Dual luciferase, RNA immunoprecipitation, and RNA pulldown experiments were performed to identify the interactions among HCP5, miR-24-3p, and HO1. Results: The osteogenic ability of hPDLSCs significantly increased when co-cultured with hBMMSCs or hBMMSCs exosomes. Overexpression of HCP5 and HO1 in hBMMSCs exosomes promoted the osteogenic differentiation of hPDLSCs, and knockdown of HCP5 repressed the osteogenic differentiation of hPDLSCs. HCP5 knockdown enhanced the inflammatory response and repressed osteogenesis in CP mice. MiR-24-3p overexpression diminished the stimulatory effect of HCP5 on the osteogenic ability of hPDLSCs. Mechanistically, HCP5 acted as a sponge for miR-24-3p and regulated HO1 expression, and HO1 activated the P38/ELK1 pathway. Conclusion: HBMMSCs-derived exosomal HCP5 promotes the osteogenic differentiation of hPDLSCs and alleviates CP by regulating the miR-24-3p/HO1/P38/ELK1 signalling pathway.

12.
Artículo en Inglés | MEDLINE | ID: mdl-39181541

RESUMEN

The potential of stem cells, for example upper periodontal ligament stem cells from the maxilla (u-PDLSC) and from the mandible (l-PDLSC), adipose-derived mesenchymal stem cells (AD-MSC), and bone marrow-derived mesenchymal stem cells (BM-MSC), with respect to periodontal remodeling and orthodontic treatment is of great importance. In this work, we focus on the comprehensive adaptability of different stem cell types to mechanical forces with the aim to better understanding cell behavior and to refine a new mechanistic approach to investigate periodontal remodeling. We comprehensively analyze stem cells and observe distinct morphological and proliferation changes under compression in dependence on stem cell type. The cell signaling of extracellular signal-regulated kinase (ERK) and protein kinase B, also called AKT, and their respective phosphorylation shows diverse responses to compression. Additionally, vascular endothelial growth factor and hepatocyte growth factor secretion were reduced under mechanical stress in all cell types, with cell-specific variations. Osteoprotegerin secretion was reduced under compression, particularly in u-PDLSC. At least, diverse soluble receptors of NF-kB-ligand secretion patterns among cell types under pressure were observed, providing crucial insights into bone metabolism. These findings offer a deeper understanding of the behavior of mesenchymal stem cells under mechanical stimuli, highlighting their roles in bone remodeling, wound healing, and tissue regeneration in orthodontic and regenerative medicine contexts. Our results underscore the potential of u-PDLSC, l-PDLSC, and AD-MSC in periodontal regeneration, with AD-MSC showing notable resilience under compression, indicating its promising role for further investigation for orthodontic research. While these findings are encouraging, further research is essential to fully comprehend the mechanism of stem cell-based periodontal therapies.

13.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(4): 512-520, 2024 Aug 01.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-39049640

RESUMEN

OBJECTIVES: RNA sequencing (RNA-seq) and bioinformatic analysis were combined and used to explore the anti-inflammatory effects and mechanisms of naringenin (Nar) in lipopolysaccharide (LPS)-stimulated human periodontal ligament stem cells (hPDLSCs). METHODS: Cell counting kit-8, quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), and enzyme-linked immunosorbent assay (ELISA) were adopted to detect the effects of Nar on the proliferation and expression of inflammatory factors in LPS-stimulated hPDLSCs, screening for the optimal anti-inflammatory concentration of Nar. Differentially expressed genes (DEGs) were screened using |log2FC|≥1 and P≤0.05 as criteria. Volcano plot analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, the String database, and the MCODE module of Cytoscape were utilized to select core genes and enriched pathways. The effects on the nuclear factor κB (NF-κB) signaling pathway were verified using ELISA, qRT-PCR, and Western blot. RESULTS: Appropriate concentrations of Nar could alleviate the expression of inflammatory factors and promote the proliferation of hPDLSCs stimulated by LPS. The best anti-inflammatory effect was achieved with 20 µmol/L Nar. RNA-seq showed significant enrichment of inflammation-related signaling pathways. The anti-inflammatory effect of Nar was mediated by inhibiting the NF-κB signaling pathway, similar to the effect of the NF-κB inhibitor BAY 11-7802. CONCLUSIONS: Nar could exert its anti-inflammatory effects by inhibiting the NF-κB signaling pathway, making it a potential therapeutic option for the adjuvant treatment of periodontitis.


Asunto(s)
Antiinflamatorios , Flavanonas , Lipopolisacáridos , FN-kappa B , Ligamento Periodontal , Análisis de Secuencia de ARN , Transducción de Señal , Células Madre , Humanos , Lipopolisacáridos/farmacología , Ligamento Periodontal/citología , Ligamento Periodontal/efectos de los fármacos , Ligamento Periodontal/metabolismo , Flavanonas/farmacología , Antiinflamatorios/farmacología , Células Madre/efectos de los fármacos , Células Madre/metabolismo , FN-kappa B/metabolismo , Proliferación Celular/efectos de los fármacos , Nitrilos/farmacología , Sulfonas
14.
Biochem Biophys Res Commun ; 733: 150450, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39067248

RESUMEN

BACKGROUND: Mechano-growth factor (MGF), which is a growth factor produced specifically in response to mechanical stimuli, with potential of tissue repair and regeneration. Our previous research has shown that MGF plays a crucial role in repair of damaged periodontal ligaments by promoting differentiation of periodontal ligament stem cells (PDLSCs). However, the molecular mechanism is not fully understood. This study aimed to investigated the regulatory effect of MGF on differentiation of PDLSCs and its molecular mechanism. METHODS: Initially, we investigated how MGF impacts cell growth and differentiation, and the relationship with the activation of Fyn-p-YAPY357 and LATS1-p-YAPS127. Then, inhibitors were used to interfere Fyn phosphorylation to verify the role of Fyn-p-YAP Y357 signal after MGF stimulation; moreover, siRNA was used to downregulate YAP expression to clarify the function of YAP in PDLSCs proliferation and differentiation. Finally, after C3 was used to inhibit the RhoA expression, we explored the role of RhoA in the Fyn-p-YAP Y357 signaling pathway in PDLSCs proliferation and differentiation. RESULTS: Our study revealed that MGF plays a regulatory role in promoting PDLSCs proliferation and fibrogenic differentiation by inducing Fyn-YAPY357 phosphorylation but not LATS1-YAP S127 phosphorylation. Moreover, the results indicated that Fyn could not activate YAP directly but rather activated YAP through RhoA in response to MGF stimulation. CONCLUSION: The research findings indicated that the Fyn-RhoA-p-YAPY357 pathway is significant in facilitating the proliferation and fibrogenic differentiation of PDLSCs by MGF. Providing new ideas for the study of MGF in promoting periodontal regenerative repair.

15.
Stem Cell Rev Rep ; 20(6): 1521-1531, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38848014

RESUMEN

Non-coding RNA has many types which has rich functions and plays an important role in the study of basic molecular mechanisms. Many non-coding RNA have important implications for pluripotent stem cells and embryonic stem cells. It has been found to affect the self-renewal and osteogenesis of many types of stem cells. They have also been found to regulate stem cell proliferation and induct bone differentiation. Periodontal ligament stem cells are essential for the regeneration of periodontal tissue. In recent years, in the field of stomatology, studies have found that many non-coding RNA also have significant regulatory effects on the proliferation and differentiation of periodontal stem cells and may become potential therapeutic targets for many common periodontal diseases such as periodontitis, bone/tooth/soft tissue loss and orthodontic treatment. Therefore, we summarized the current research status of non-coding RNA in the field of molecular mechanism of periodontal ligament stem cells and prospected its future progress.


Asunto(s)
Diferenciación Celular , Ligamento Periodontal , ARN no Traducido , Células Madre , Ligamento Periodontal/citología , Ligamento Periodontal/metabolismo , Humanos , Células Madre/metabolismo , Células Madre/citología , ARN no Traducido/genética , ARN no Traducido/metabolismo , Diferenciación Celular/genética , Animales , Proliferación Celular/genética , Osteogénesis/genética
16.
BMC Oral Health ; 24(1): 733, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926705

RESUMEN

BACKGROUND: Human periodontal ligament stem cells (hPDLSCs) are important candidate seed cells for periodontal tissue engineering, but the presence of lipopolysaccharide(LPS) in periodontal tissues inhibits the self-renewal and osteogenic differentiation of hPDLSCs. Our previous studies demonstrated that TAZ is a positive regulator of osteogenic differentiation of hPDLSCs, but whether TAZ can protect hPDLSCs from LPS is still unknown. The present study aimed to explore the regulatory effect of TAZ on the osteogenic differentiation of hPDLSCs in an LPS-induced inflammatory model, and to preliminarily reveal the molecular mechanisms related to the NF-κB signaling pathway. METHODS: LPS was added to the culture medium of hPDLSCs. The influence of LPS on hPDLSC proliferation was analyzed by CCK-8 assays. The effects of LPS on hPDLSC osteogenic differentiation were detected by Alizarin Red staining, ALP staining, Western Blot and qRT-PCR analysis of osteogenesis-related genes. The effects of LPS on the osteogenic differentiation of hPDLSCs with TAZ overexpressed or knocked down via lentivirus were analyzed. NF-κB signaling in hPDLSCs was analyzed by Western Blot and immunofluorescence. RESULTS: LPS inhibited the osteogenic differentiation of hPDLSCs, inhibited TAZ expression, and activated the NF-κB signaling pathway. Overexpressing TAZ in hPDLSCs partly reversed the negative effects of LPS on osteogenic differentiation and inhibited the activation of the NF-κB pathway by LPS. TAZ knockdown enhanced the inhibitory effects of LPS on osteogenesis. CONCLUSION: Overexpressing TAZ could partly reverse the inhibitory effects of LPS on the osteogenic differentiation of hPDLSCs, possibly through inhibiting the NF-κB signaling pathway. TAZ is a potential target for improving hPDLSC-based periodontal tissue regeneration in inflammatory environments.


Asunto(s)
Diferenciación Celular , Lipopolisacáridos , FN-kappa B , Osteogénesis , Ligamento Periodontal , Transducción de Señal , Células Madre , Humanos , Ligamento Periodontal/citología , Ligamento Periodontal/efectos de los fármacos , Lipopolisacáridos/farmacología , Osteogénesis/efectos de los fármacos , FN-kappa B/metabolismo , Diferenciación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Células Madre/efectos de los fármacos , Factores de Transcripción/metabolismo , Células Cultivadas , Proliferación Celular/efectos de los fármacos , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Western Blotting
17.
Bioengineering (Basel) ; 11(6)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38927838

RESUMEN

Advanced glycation end product (AGE) accumulation due to diabetes causes vascular and neurological lesions, delaying healing. The use of stem cells could overcome these problems. Although many studies have shown the potential beneficial effects of stem cell therapies in the treatment of chronic and refractory skin ulcers, their delivery methods are still under investigation. Human periodontal ligament stem cells (hPDLSCs) can spontaneously differentiate into myofibroblasts in specific cultures; therefore, they have the potential to effectively treat diabetic wounds and may also have applications in the field of medical cosmetics. The myofibroblastic differentiation ability of hPDLSCs in the presence of AGEs was evaluated by the expression of α-SMA and COL1A1 using RT-qPCR and WB technology. Wound healing in diabetic mice, induced by streptozotocin (STZ) and assessed using H&E staining, Masson staining, and immunohistochemical (IHC) and immunofluorescence (IF) staining, was used to validate the effects of hPDLSCs. In the wound tissues, the expression of α-SMA, COL1A1, CD31, CD206, iNOS, and vimentin was detected. The findings indicated that in H-DMEM, the expression of COL1A1 exhibited a significant decrease, while α-SMA demonstrated an increase in P7 cells, ignoring the damage from AGEs (p < 0.05). In an STZ-induced diabetic C57BL/6J mice whole-skin defect model, the healing rate of the hPDLSCs treatment group was significantly higher than that in the models (on the 7th day, the rate was 65.247% vs. 48.938%, p < 0.05). hPDLSCs have been shown to spontaneously differentiate into myofibroblasts in H-DMEM and resist damage from AGEs in both in vivo and in vitro models, suggesting their potential in the field of cosmetic dermatology.

18.
Int J Mol Med ; 54(2)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38940332

RESUMEN

Naringenin (NAR) is a prominent flavanone that has been recognized for its capacity to promote the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs). The present study aimed to explore how NAR promotes the osteogenic differentiation of hPDLSCs and to assess its efficacy in repairing alveolar bone defects. For this purpose, a protein­protein interaction network of NAR action was established by mRNA sequencing and network pharmacological analysis. Gene and protein expression levels were evaluated by reverse transcription­quantitative and western blotting. Alizarin red and alkaline phosphatase staining were also employed to observe the osteogenic capacity of hPDLSCs, and immunofluorescence was used to examine the co­localization of NAR molecular probes and AKT in cells. The repair of mandibular defects was assessed by micro­computed tomography (micro­CT), Masson staining and immunofluorescence. Additionally, computer simulation docking software was utilized to determine the binding affinity of NAR to the target protein, AKT. The results demonstrated that activation of the nitric oxide (NO)­cyclic guanosine monophosphate (cGMP)­protein kinase G (PKG) signaling pathway could promote the osteogenic differentiation of hPDLSCs. Inhibition of AKT, endothelial nitric oxide synthase and soluble guanylate cyclase individually attenuated the ability of NAR to promote the osteogenic differentiation of hPDLSCs. Micro­CT and Masson staining revealed that the NAR gavage group exhibited more new bone formation at the defect site. Immunofluorescence assays confirmed the upregulated expression of Runt­related transcription factor 2 and osteopontin in the NAR gavage group. In conclusion, the results of the present study suggested that NAR promotes the osteogenic differentiation of hPDLSCs by activating the NO­cGMP­PKG signaling pathway through its binding to AKT.


Asunto(s)
Diferenciación Celular , Flavanonas , Osteogénesis , Transducción de Señal , Animales , Humanos , Masculino , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Flavanonas/farmacología , Óxido Nítrico/metabolismo , Osteogénesis/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Células Madre/metabolismo , Células Madre/efectos de los fármacos , Células Madre/citología
19.
J Periodontol ; 95(7): 662-672, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38708919

RESUMEN

BACKGROUND: Teeth and supporting oral tissues are attractive and accessible sources of stem cells. Periodontal ligament stem cells (PDLSC) are readily isolated from extracted third molars, and exhibit the ability to self-renew and differentiate into multiple mesodermal cell fates. Clinical experience suggests that the exact location of periodontal defects affects the oral bone remodeling and wound healing. Compared to the mandible, the maxilla heals quicker and more efficiently. Angiogenesis is key in tissue regeneration including dental tissues, yet few studies focus on the angiogenic potential of PDLSC, none of which considered the differences between upper and lower jaw PDLSC (u-PDLSC and l-PDLSC, respectively). METHODS: Here we studied the angiogenic potential of u-PDLSC and l-PDLSC and compared the results to well-established mesenchymal stem cells (MSC). Cells were characterized in terms of surface markers, proliferation, and vascular endothelial growth factor (VEGF) secretion, and angiogenic assays were performed. Newly formed capillaries were stained with CD31, and their expression of platelet endothelial cell adhesion molecule (PECAM-1), angiopoietin 2 (ANGPT2), and vascular endothelial growth factor receptor 1 and 2 (VEGFR-1, VEGFR-2) were measured. RESULTS: Periodontal stem cells from the upper jaw showed a higher proliferation capacity, secreted more VEGF, and formed capillary networks faster and denser than l-PDLSC. Gene expression of angiogenesis-related genes was significantly higher in u-PDLSC than in l-PDLSC or MSC, given that culture conditions were suitable. CONCLUSION: The oral cavity is a valuable source of stem cells, particularly PDLSC, which are promising for oral tissue engineering due to their robust growth, lifelong accessibility, low immunogenicity, and strong differentiation potential. Notably, u-PDLSC exhibit higher VEGF secretion and accelerate capillary formation compared to l-PDLSC or MSC. This study suggests a potential molecular mechanism in capillary formation, emphasizing the significance of precise location isolation of PDLSC.


Asunto(s)
Neovascularización Fisiológica , Ligamento Periodontal , Factor A de Crecimiento Endotelial Vascular , Humanos , Proyectos Piloto , Ligamento Periodontal/citología , Ligamento Periodontal/irrigación sanguínea , Neovascularización Fisiológica/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/análisis , Células Madre Mesenquimatosas , Maxilar , Mandíbula , Proliferación Celular , Células Madre/fisiología , Masculino , Diferenciación Celular , Adulto , Femenino , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/análisis , Células Cultivadas , Adulto Joven
20.
Mol Biol Rep ; 51(1): 644, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727958

RESUMEN

BACKGROUND: MicroRNAs are differentially expressed in periodontitis tissues. They are involved in cellular responses to inflammation and can be used as markers for diagnosing periodontitis. Microarray analysis showed that the expression level of microRNA-671-5p in periodontal tissues of patients with periodontitis was increased. In this study, we investigated the mechanism of action of microRNA-671-5p in human periodontal ligament stem cells (hPDLSCs) under inflammatory conditions. METHODS AND RESULTS: HPDLSCs were treated with lipopolysaccharide (LPS) to establish an inflammation model. The cell survival rate was determined using the cell counting kit-8 (CCK8). Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analyses were used to detect the expression of microRNA-671-5p and dual-specificity phosphatase (DUSP) 8 proteins, respectively, Interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α were detected using qRT-PCR and Enzyme-linked immunosorbent assay (ELISA). A dual-luciferase reporter system was employed to determine the relationship between micoRNA-671-5p and DUSP8 expression. Activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway was confirmed using western blot analysis. Following the treatment of hPDLSCs with LPS, the expression levels of microRNA-671-5p in hPDLSCs were increased, cell viability decreased, and the expression of inflammatory factors displayed an increasing trend. MicroRNA-671-5p targets and binds to DUSP8. Silencing microRNA-671-5p or overexpressing DUSP8 can improve cell survival rate and reduce inflammatory responses. When DUSP8 was overexpressed, the expression of p-p38 was reduced. CONCLUSIONS: microRNA-671-5p targets DUSP8/p38 MAPK pathway to regulate LPS-induced proliferation and inflammation in hPDLSCs.


Asunto(s)
Fosfatasas de Especificidad Dual , Inflamación , Lipopolisacáridos , MicroARNs , Ligamento Periodontal , Células Madre , Proteínas Quinasas p38 Activadas por Mitógenos , Humanos , Supervivencia Celular/genética , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Lipopolisacáridos/farmacología , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Ligamento Periodontal/metabolismo , Ligamento Periodontal/citología , Periodontitis/genética , Periodontitis/metabolismo , Periodontitis/patología , Transducción de Señal/genética , Células Madre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA