Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 9: 192, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29593556

RESUMEN

Hypoglycemia is a profound threat to the brain since glucose is its primary fuel. As a result, glucose sensors are widely located in the central nervous system and periphery. In this perspective we will focus on the role of hypothalamic glucose-inhibited (GI) neurons in sensing and correcting hypoglycemia. In particular, we will discuss GI neurons in the ventromedial hypothalamus (VMH) which express neuronal nitric oxide synthase (nNOS) and in the perifornical hypothalamus (PFH) which express orexin. The ability of VMH nNOS-GI neurons to depolarize in low glucose closely parallels the hormonal response to hypoglycemia which stimulates gluconeogenesis. We have found that nitric oxide (NO) production in low glucose is dependent on oxidative status. In this perspective we will discuss the potential relevance of our work showing that enhancing the glutathione antioxidant system prevents hypoglycemia associated autonomic failure (HAAF) in non-diabetic rats whereas VMH overexpression of the thioredoxin antioxidant system restores hypoglycemia counterregulation in rats with type 1 diabetes.We will also address the potential role of the orexin-GI neurons in the arousal response needed for hypoglycemia awareness which leads to behavioral correction (e.g., food intake, glucose administration). The potential relationship between the hypothalamic sensors and the neurocircuitry in the hindbrain and portal mesenteric vein which is critical for hypoglycemia correction will then be discussed.

2.
Auton Neurosci ; 203: 67-73, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28173996

RESUMEN

Adrenaline is an important counter-regulatory hormone that helps restore glucose homeostasis during hypoglycaemia. However, the neurocircuitry that connects the brain glucose sensors and the adrenal sympathetic outflow to the chromaffin cells is poorly understood. We used electrical microstimulation of the perifornical hypothalamus (PeH) and the rostral ventrolateral medulla (RVLM) combined with adrenal sympathetic nerve activity (ASNA) recording to examine the relationship between the RVLM, the PeH and ASNA. In urethane-anaesthetised male Sprague-Dawley rats, intermittent single pulse electrical stimulation of the rostroventrolateral medulla (RVLM) elicited an evoked ASNA response that consisted of early (60±3ms) and late peaks (135±4ms) of preganglionic and postganglionic activity. In contrast, RVLM stimulation evoked responses in lumbar sympathetic nerve activity that were almost entirely postganglionic. PeH stimulation also produced an evoked excitatory response consisting of both preganglionic and postganglionic excitatory peaks in ASNA. Both peaks in ASNA following RVLM stimulation were reduced by intrathecal kynurenic acid (KYN) injection. In addition, the ASNA response to systemic neuroglucoprivation induced by 2-deoxy-d-glucose was abolished by bilateral microinjection of KYN into the RVLM. This suggests that a glutamatergic pathway from the perifornical hypothalamus (PeH) relays in the RVLM to activate the adrenal SPN and so modulate ASNA. The main findings of this study are that (i) adrenal premotor neurons in the RVLM may be, at least in part, glutamatergic and (ii) that the input to these neurons that is activated during neuroglucoprivation is also glutamatergic.


Asunto(s)
Glándulas Suprarrenales/metabolismo , Vías Autónomas/metabolismo , Glucosa/metabolismo , Ácido Glutámico/metabolismo , Hipotálamo/metabolismo , Sistema Nervioso Simpático/metabolismo , Glándulas Suprarrenales/efectos de los fármacos , Glándulas Suprarrenales/inervación , Anestésicos Intravenosos/farmacología , Animales , Vías Autónomas/efectos de los fármacos , Estimulación Eléctrica , Antagonistas de Aminoácidos Excitadores/farmacología , Hipotálamo/efectos de los fármacos , Ácido Quinurénico/administración & dosificación , Ácido Quinurénico/metabolismo , Vértebras Lumbares , Ratas Sprague-Dawley , Receptores de Glutamato/metabolismo , Sistema Nervioso Simpático/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología , Uretano/farmacología
3.
Am J Physiol Regul Integr Comp Physiol ; 310(1): R66-73, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26511522

RESUMEN

While the neural control of glucoregulatory responses to insulin-induced hypoglycemia is beginning to be elucidated, brain sites responsible for behavioral responses to hypoglycemia are relatively poorly understood. To help elucidate central control mechanisms associated with hypoglycemia unawareness, we first evaluated the effect of recurrent hypoglycemia on a simple behavioral measure, the robust feeding response to hypoglycemia, in rats. First, food intake was significantly, and similarly, increased above baseline saline-induced intake (1.1 ± 0.2 g; n = 8) in rats experiencing a first (4.4 ± 0.3; n = 8) or third daily episode of recurrent insulin-induced hypoglycemia (IIH, 3.7 ± 0.3 g; n = 9; P < 0.05). Because food intake was not impaired as a result of prior IIH, we next developed an alternative animal model of hypoglycemia-induced behavioral arousal using a conditioned place preference (CPP) model. We found that hypoglycemia severely blunted previously acquired CPP in rats and that recurrent hypoglycemia prevented this blunting. Pretreatment with a brain penetrant, selective orexin receptor-1 antagonist, SB-334867A, blocked hypoglycemia-induced blunting of CPP. Recurrently hypoglycemic rats also showed decreased preproorexin expression in the perifornical hypothalamus (50%) but not in the adjacent lateral hypothalamus. Pretreatment with sertraline, previously shown to prevent hypoglycemia-associated glucoregulatory failure, did not prevent blunting of hypoglycemia-induced CPP prevention by recurrent hypoglycemia. This work describes the first behavioral model of hypoglycemia unawareness and suggests a role for orexin neurons in mediating behavioral responses to hypoglycemia.


Asunto(s)
Conducta Animal , Glucemia/metabolismo , Encéfalo/metabolismo , Condicionamiento Psicológico , Conducta Alimentaria , Hipoglucemia/metabolismo , Orexinas/metabolismo , Transducción de Señal , Animales , Nivel de Alerta , Conducta Animal/efectos de los fármacos , Benzoxazoles/farmacología , Encéfalo/efectos de los fármacos , Encéfalo/fisiopatología , Condicionamiento Psicológico/efectos de los fármacos , Modelos Animales de Enfermedad , Conducta Alimentaria/efectos de los fármacos , Hipoglucemia/fisiopatología , Hipoglucemia/psicología , Masculino , Naftiridinas , Antagonistas de los Receptores de Orexina/farmacología , Receptores de Orexina/efectos de los fármacos , Receptores de Orexina/metabolismo , Ratas Sprague-Dawley , Recompensa , Sertralina/farmacología , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Urea/análogos & derivados , Urea/farmacología
4.
Neurosci Biobehav Rev ; 46 Pt 3: 429-54, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25130976

RESUMEN

Panic disorder (PD) is a severe anxiety disorder that is characterized by recurrent panic attacks (PA), which can be unexpected (uPA, i.e., no clear identifiable trigger) or expected (ePA). Panic typically involves an abrupt feeling of catastrophic fear or distress accompanied by physiological symptoms such as palpitations, racing heart, thermal sensations, and sweating. Recurrent uPA and ePA can also lead to agoraphobia, where subjects with PD avoid situations that were associated with PA. Here we will review recent developments in our understanding of PD, which includes discussions on: symptoms and signs associated with uPA and ePAs; Diagnosis of PD and the new DSM-V; biological etiology such as heritability and gene×environment and gene×hormonal development interactions; comparisons between laboratory and naturally occurring uPAs and ePAs; neurochemical systems that are associated with clinical PAs (e.g. gene associations; targets for triggering or treating PAs), adaptive fear and panic response concepts in the context of new NIH RDoc approach; and finally strengths and weaknesses of translational animal models of adaptive and pathological panic states.


Asunto(s)
Encéfalo/metabolismo , Vías Nerviosas/metabolismo , Neuroquímica , Trastorno de Pánico , Factores de Edad , Animales , Ansiedad/etiología , Ansiedad/metabolismo , Ansiedad/patología , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Vías Nerviosas/patología , Trastorno de Pánico/etiología , Trastorno de Pánico/metabolismo , Trastorno de Pánico/patología
5.
Front Neurosci ; 8: 38, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24616659

RESUMEN

Glucose is an essential metabolic substrate for all bodily tissues. The brain depends particularly on a constant supply of glucose to satisfy its energy demands. Fortunately, a complex physiological system has evolved to keep blood glucose at a constant level. The consequences of poor glucose homeostasis are well-known: hyperglycemia associated with uncontrolled diabetes can lead to cardiovascular disease, neuropathy and nephropathy, while hypoglycemia can lead to convulsions, loss of consciousness, coma, and even death. The glucose counterregulatory response involves detection of declining plasma glucose levels and secretion of several hormones including glucagon, adrenaline, cortisol, and growth hormone (GH) to orchestrate the recovery from hypoglycemia. Low blood glucose leads to a low brain glucose level that is detected by glucose-sensing neurons located in several brain regions such as the ventromedial hypothalamus, the perifornical region of the lateral hypothalamus, the arcuate nucleus (ARC), and in several hindbrain regions. This review will describe the importance of the glucose counterregulatory system and what is known of the neurocircuitry that underpins it.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA