Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 450
Filtrar
1.
J Environ Manage ; 369: 122382, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232326

RESUMEN

The global attention towards waste management and valorization has led to significant interest in recovering valuable components from sludge incineration ash (SIA) for the synthesis of functional environmental materials. In this study, the SIA was converted to an S-doped Fe2+-zeolite type catalyst (FZA) for the treatment of emerging contaminants (ECs), exemplified by sulfamethoxazole (SMX). Results demonstrate that FZA effectively catalyzed the activation of peracetic acid (PAA), achieving a remarkable degradation of 99.8% under optimized conditions. Mechanistic investigations reveal that the FZA/PAA system can generate ·OH, 1O2, O2·ï¼, and Fe(Ⅳ), with ·OH playing a dominant role in ECs degradation. Additionally, the doped S facilitated electrochemical performance, Fe2+ regeneration and fixation in FZA. Practical application elucidated that the FZA/PAA system can work in complex environments to degrade various ECs without generating high-toxicity ingredients. Overall, valorizing SIA to FZA provides dual achievement in waste management and ECs removal.


Asunto(s)
Incineración , Aguas del Alcantarillado , Sulfametoxazol , Zeolitas , Sulfametoxazol/química , Zeolitas/química , Aguas del Alcantarillado/química , Catálisis , Administración de Residuos/métodos , Hierro/química
2.
Vet Parasitol ; 332: 110302, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39288614

RESUMEN

The cuttlefish Sepia pharaonis species complex is emerging as a promising set of organisms for research in neuroscience, the behavioral sciences, and commercial aquaculture. At the same time, information about pathogens and diseases that could affect cuttlefish cultivation in intensive aquaculture settings remains limited. Our study has identified two species of parasite, the protozoan Liburna oophaga sp. nov. and the metazoan Ikanecator primus, that co-infect cuttlefish eggs, increasing mortality and reducing hatching rates. L. oophaga sp. nov. is reported here for the first time to enhance mortality during the incubation period by inducing deformity in cuttlefish eggs. We investigated the application of peracetic acid to parasite elimination during cuttlefish egg incubation. When cuttlefish eggs were treated with a peracetic acid containing product (PAA-product); 35 mg/L PAA + 15 mg/L H2O2, L. oophaga on the surfaces of the eggs were eliminated within 10 min. PAA-product; 70 mg/L PAA + 30 mg/L H2O2 was required to achieve the same effect for I. primus. Immersion treatment with PAA-product at 70 mg/L PAA + 30 mg/L H2O2 reduced parasitic load and improved survival of cuttlefish embryos and hatchling size, demonstrating that PAA product can inhibit and control parasitic co-infections in cephalopod culture.

3.
Water Res ; 266: 122351, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39217641

RESUMEN

In this study, the transformation mechanisms of extracellular polymeric substances (EPS) during ultraviolet/peracetic acid (UV/PAA) disinfection were elucidated based on multiple molecular-level analyses. After UV/PAA disinfection, the contents of soluble EPS (S-EPS), loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) were reduced by 70.47 %, 57.05 % and 47.46 %, respectively. Fluorescence excitation-emission matrix-parallel factor and Fourier transform ion cyclotron resonance mass spectrometry analyses showed that during UV/PAA disinfection, EPS was transformed from the state characterized by high aromaticity, low saturation and low oxidation to the one with reduced aromaticity, increased saturation and higher oxidation. Specifically, sulfur-containing molecules (CHOS, CHONS, etc.) in EPS were converted into highly saturated and oxidized species (such as CHO), with the aromaticity index (AImod) decreasing by up to 53.84 %. Molecular characteristics analyses further indicated that saturation degree, oxidation state of carbon and molecular weight exhibited the most significant changes in S-EPS, LB-EPS and TB-EPS, respectively. Additionally, mechanistic analysis revealed that oxygen addition reaction was the predominant reaction for S-EPS (+O) and TB-EPS (+3O) (accounting for 31.78 % and 36.47 %, respectively), while the dealkylation was the main reaction for LB-EPS (29.73 %). The results were consistent with functional groups sequential responses analyzed by Fourier transform infrared and two-dimensional correlation spectroscopy, and were further verified by density functional theory calculations. Most reactions were thermodynamically feasible, with reaction sites predominantly located at functional groups such as CO, CO, CN and aromatic rings. Moreover, metabolomics analysis suggested that changes in metabolites in raw secondary effluent during UV/PAA disinfection were strongly correlated with EPS transformation. Our study not only provides a strong basis for understanding EPS transformation during UV/PAA disinfection at molecular-level but also offers valuable insights for the application this promising disinfection process.

4.
Artículo en Inglés | MEDLINE | ID: mdl-39222001

RESUMEN

OBJECTIVES: To evaluate the antimicrobial efficacy of white vinegar, acetic acid and peracetic acid on photostimulable phosphor (PSP) plates disinfection, and to assess the disinfectant influence on the radiographic quality. METHODS: Eight PSP plates (Express system) were contaminated with Streptococcus mutans and Candida albicans. These plates were wiped with tissues without any substance, with white vinegar, acetic acid, and peracetic acid, followed by an agar imprint. Number of microbial colonies formed was recorded. Afterwards, the quality of radiographs was tested using the more efficient disinfectant. Before disinfection and after every five disinfections, two radiographs of an acrylic-block and two radiographs of an aluminum step-wedge were acquired for each plate. Density, noise, uniformity, and contrast were analyzed. Three oral radiologists evaluated the images for the presence of artifacts. One-way Analysis of Variance compared changes on gray values among the disinfections (α = 0.05). Intra- and inter-examiner agreement for the presence of artifacts was calculated by weighted Kappa. RESULTS: Peracetic acid was the only one that eliminated both microorganisms. Density and uniformity decreased after 100 disinfections, and contrast changed without a pattern in the course of disinfections (P ≤ 0.05). Small artifacts were observed after 30 disinfections. Intra- and inter-examiner agreements were almost perfect. CONCLUSIONS: Disinfection with peracetic acid eliminated both microorganisms. However, it also affected density, uniformity and contrast of radiographs, and led to the formation of small artifacts.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39264555

RESUMEN

Biofilms may contain pathogenic and spoilage bacteria and can become a recurring problem in the dairy sector, with a negative impact on product quality and consumer health. Peracetic acid (PAA) is one of the disinfectants most frequently used to control biofilm formation and persistence. Though effective, it cannot be used at high concentrations due to its corrosive effect on certain materials and because of toxicity concerns. The aim of this study was to test the possibility of PAA remaining bactericidal at lower concentrations by using it in conjunction with reuterin (3-hydroxypropionaldehyde). We evaluated the efficacy of PAA in pure form or as BioDestroy®, a PAA-based commercial disinfectant, on three-species biofilms formed by dairy-derived bacteria, namely Pseudomonas azotoformans PFlA1, Serratia liquefaciens Sl-LJJ01, and Bacillus licheniformis Bl-LJJ01. Minimum inhibitory concentrations of the three agents were determined for each bacterial species and the fractional inhibitory concentrations were then calculated using the checkerboard assay. The minimal biofilm eradication concentration (MBEC) of each antibacterial combination was then calculated against mixed-species biofilm. PAA, BioDestroy®, and reuterin showed antibiofilm activity against all bacteria within the mixed biofilm at respectively 760 ppm, 450 ppm, and 95.6 mM. The MBEC was lowered significantly to 456 ppm, 337.5 ppm, and 71.7 mM, when exposed to reuterin for 16 h followed by contact with disinfectant. Combining reuterin with chemical disinfection shows promise in controlling biofilm on food contact surfaces, especially for harsh or extended treatments. Furthermore, systems with reuterin encapsulation and nanotechnologies could be developed for sustainable antimicrobial efficacy without manufacturing disruptions.

6.
Water Res ; 265: 122270, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39167976

RESUMEN

Peracetic acid (PAA) is an alternative disinfectant for saline wastewaters, and hypohalous acids are typically regarded as the reactive species for oxidation and disinfection. However, new results herein strongly suggest that reactive radicals instead of HOI primarily contributed to decontamination during PAA treatment of iodine-containing wastewater. The presence of I- could greatly accelerate the micropollutants (e.g., sulfamethoxazole (SMX)) transformation by PAA. Chemical probes experiments and electron paramagnetic resonance analysis demonstrate acetylperoxyl radical rather than reactive iodine species primarily responsible for SMX degradation. The kinetic model was developed to further distinguish and quantify the contribution of radicals and iodine species, as well as to elucidate the transformation pathways of iodine species. Density functional theory calculations indicated that the nucleophilic attack of I- on the peroxide bond of PAA could form unstable O-I bond, with the transition state energy barrier for radical generation lower than that for HOI formation. The transformation of iodine species was regulated by acetylperoxyl radical to generate nontoxic IO3-, greatly alleviating the iodinated DBPs formation in saline wastewaters. This work provides mechanistic insights in radical-regulated iodine species transformation during PAA oxidation, paving the way for the development of viable and eco-friendly technology for iodide containing water treatment.


Asunto(s)
Yodatos , Yoduros , Oxidación-Reducción , Ácido Peracético , Ácido Peracético/química , Yodatos/química , Yoduros/química , Contaminantes Químicos del Agua/química , Descontaminación/métodos , Aguas Residuales/química , Cinética , Purificación del Agua/métodos
7.
Microorganisms ; 12(7)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39065161

RESUMEN

Copper-containing materials are attracting attention as self-disinfecting surfaces, suitable for helping healthcare settings in reducing healthcare-associated infections. However, the impact of repeated exposure to disinfectants frequently used in biocleaning protocols on their antibacterial activity remains insufficiently characterized. This study aimed at evaluating the antibacterial efficiency of copper (positive control), a brass alloy (AB+®) and stainless steel (negative control) after repeated exposure to a quaternary ammonium compound and/or a mix of peracetic acid/hydrogen peroxide routinely used in healthcare settings. A panel of six antibiotic-resistant strains (clinical isolates) was selected for this assessment. After a short (5 min) exposure time, the copper and brass materials retained significantly better antibacterial efficiencies than stainless steel, regardless of the bacterial strain or disinfectant treatment considered. Moreover, post treatment with both disinfectant products, copper-containing materials still reached similar levels of antibacterial efficiency to those obtained before treatment. Antibiotic resistance mechanisms such as efflux pump overexpression did not impair the antibacterial efficiency of copper-containing materials, nor did the presence of one or several genes related to copper homeostasis/resistance. In light of these results, surfaces made out of copper and brass remain interesting tools in the fight against the dissemination of antibiotic-resistant strains that might cause healthcare-associated infections.

8.
Water Res ; 261: 122007, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38996730

RESUMEN

Electrochemical advanced oxidation processes (EAOPs) face challenging conditions in chloride media, owing to the co-generation of undesirable Cl-disinfection byproducts (Cl-DBPs). Herein, the synergistic activation between in-situ electrogenerated HClO and peracetic acid (PAA)-based reactive species in actual wastewater is discussed. A metal-free graphene-modified graphite felt (graphene/GF) cathode is used for the first time to achieve the electrochemically-mediated activation of PAA. The PAA/Cl- system allowed a near-complete sulfamethoxazole (SMX) degradation (kobs =0.49 min-1) in only 5 min in a model solution, inducing 32.7- and 8.2-fold rise in kobs as compared to single PAA and Cl- systems, respectively. Such enhancement is attributed to the occurrence of 1O2 (25.5 µmol L-1 after 5 min of electrolysis) from the thermodynamically favored reaction between HClO and PAA-based reactive species. The antibiotic degradation in a complex water matrix was further considered. The SMX removal is slightly susceptible to the coexisting natural organic matter, with both the acute cytotoxicity (ACT) and the yield of 12 DBPs decreasing by 29.4 % and 37.3 %, respectively. According to calculations, HClO accumulation and organic Cl-addition reactions are thermodynamically unfavored. This study provides a scenario-oriented paradigm for PAA-based electrochemical treatment technology, being particularly appealing for treating wastewater rich in Cl- ion, which may derive in toxic Cl-DBPs.


Asunto(s)
Antibacterianos , Ácido Peracético , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Ácido Peracético/química , Antibacterianos/química , Contaminantes Químicos del Agua/química , Oxidación-Reducción , Electrólisis , Eliminación de Residuos Líquidos/métodos , Sulfametoxazol/química
9.
Water Res ; 261: 122065, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39002421

RESUMEN

Peracetic acid (PAA) has received increasing attention as an alternative oxidant for wastewater treatment. However, existing processes for PAA activation to generate reactive species typically require external energy input (e.g., electrically and UV-mediated activation) or catalysts (e.g., Co2+), inevitably increasing treatment costs or introducing potential new contaminants that necessitate additional removal. In this work, we developed a catalyst-free, self-sustaining bioelectrochemical approach within a two-chamber bioelectrochemical system (BES), where a cathode electrode in-situ activates PAA using renewable biogenic electrons generated by anodic exoelectrogens (e.g., Geobacter) degrading biodegradable organic matter (e.g., acetic acid) in wastewater at the anode. This innovative BES-PAA technique achieved 98 % and 81 % removal of 2 µM sulfamethoxazole (SMX) in two hours at pH 2 (cation exchange membrane) and pH 6 (bipolar membrane) using 100 µM PAA without external voltage. Mechanistic studies, including radical quenching, molecular probe validation, electron spin resonance (ESR) experiments, and density functional theory (DFT) calculations, revealed that SMX degradation was driven by reactive species generated via biogenic electron-mediated OO cleavage of PAA, with CH3C(O)OO• contributing 68.1 %, •OH of 18.4 %, and CH3C(O)O• of 9.4 %, where initial formation of •OH and CH3C(O)O• rapidly reacts with PAA to produce CH3C(O)OO•. The presence of common water constituents such as anions (e.g., Cl-, NO3-, and H2PO4-) and humic acid (HA) significantly hinders SMX removal via the BES-PAA technique, whereas CO32- and HCO3- ions have a comparatively minor impact. Additionally, the study investigated the removal of various pharmaceuticals present in secondary treated municipal wastewater, attributing differences in removal efficiency to the selective action of CH3C(O)OO•. This research demonstrates a novel PAA activation method that is ecologically benign, inexpensive, and capable of overcoming catalyst deactivation and secondary pollution issues.


Asunto(s)
Electrodos , Electrones , Ácido Peracético , Ácido Peracético/química , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Catálisis , Preparaciones Farmacéuticas/química
10.
J Hazard Mater ; 476: 135207, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39013319

RESUMEN

The peracetic acid (PAA)-based water purification process is often controlled by the solution pH. Herein, we explored the usage of biochar (BC) supported zero-valent iron/cobalt nanoparticles (Fe/Co@BC) for triggering PAA oxidation of sulfamethazine (SMT), and discovered the PAA activation mechanisms at different pHs. Fe/Co@BC exhibited extraordinary PAA activation efficiency over the pH range of 3.0-8.2, effectively broadening the working pH of the zero-valent iron nanoparticles (NZVI)-PAA process. Specifically, the SMT removal efficiency increased by 8.3 times in Fe/Co@BC-PAA system compared to the NZVI-PAA system at pH 8.2. Besides, the leaching and recycling experiments indicated the improved stability and reusability of the materials. For the mechanism study, the main reactive species was •OH under acidic conditions and R-O•/Fe(IV) under neutral/alkaline conditions. More interestingly, the reactive sites on Fe/Co@BC shifted from Fe species to Co species as pH increased, and the role of H2O2 in this reaction system also shifted from a radical precursor to a radical scavenger with increasing pH. This study highlights the distinct mechanism of PAA activation by bimetallic composites under different pH conditions and provides a new efficient approach for PAA activation to degrade organic contaminants.

11.
Water Res ; 262: 122105, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39032336

RESUMEN

Synergistic actions of peroxides and high-valent metals have garnered increasing attentions in wastewater treatment. However, how peroxides interact with the reactive metal species to enhance the reactivity remains unclear. Herein, we report the synergistic oxidation of peracetic acid (PAA) and permanganate(Ⅶ) towards micropollutants, and revisit the underlying mechanism. The PAA-Mn(VII) system showed remarkable efficiency with a 28-fold enhancement on sulfamethoxazole (SMX) degradation compared to Mn(Ⅶ) alone. Extensive quenching experiments and electron spin resonance (ESR) analysis revealed the generation of unexpected Mn(V) and Mn(VI) beyond Mn(III) in the PAA-Mn(VII) system. The utilization efficiency of Mn intermediates was quantified using 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonate (ABTS), and the results indicated that PAA could enhance the electron transfer efficiency of reactive manganese (Mn) species, thus accelerating the micropollutant degradation. Density functional theory (DFT) calculations showed that Mn intermediates could coordinate to the O1 of PAA with a low energy gap, enhancing the oxidation capacity and stability of Mn intermediates. A kinetic model based on first principles was established to simulate the time-dependent concentration profiles of the PAA-Mn complexes and quantify the contributions of the PAA-Mn(III) complex (50.8 to 59.3 %) and the PAA-Mn(Ⅴ/Ⅵ) complex (40.7 to 49.2 %). The PAA-Mn(VII) system was resistant to the interference from complex matrix components (e.g., chloride and humic acid), leading to the high efficiency in real wastewater. This work provides new insights into the interaction of PAA with reactive manganese species for accelerated oxidation of micropollutants, facilitating its application in wastewater treatment.


Asunto(s)
Compuestos de Manganeso , Manganeso , Oxidación-Reducción , Óxidos , Ácido Peracético , Ácido Peracético/química , Manganeso/química , Compuestos de Manganeso/química , Óxidos/química , Contaminantes Químicos del Agua/química
12.
J Environ Manage ; 367: 121946, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39079495

RESUMEN

In this research, the effects of peracetic acid (PAA), polymeric flocculants, and their combined conditioning on improving the dewatering performance were comprehensively evaluated. The results showed that sludge cake moisture content, capillary suction time (CST), and specific resistance to filtration (SRF) were 70.6%, 48.1 s, and 3.42 × 1012 m/kg after adding 0.10 g/gMLSS PAA for 50 min, representing reductions of 12.60%, 40.32%, and 33.98%, respectively. Additionally, conditioning of sludge with polyferric sulfate (PFS), polyaluminum chloride (PAC), and cationic polyacrylamide (CPAM) enhanced sludge properties in the following order: CPAM > PAC > PFS. After the PAA oxidation and re-flocculation process, the optimal dosages of PFS, PAC, and CPAM were reduced to 1.5 g/L, 0.9 g/L, and 0.04 g/L, respectively. The sludge dewatering performance significantly improved, with sludge cake moisture content measuring 65.8%, 66.3%, and 61.7%, respectively. Moreover, the spatial multi-porous skeleton structures were formed via re-flocculation to improve the sludge dewatering. Furthermore, economic evaluation validated that the pre-oxidation and re-flocculation process could be considered an economically viable option. These research findings could serve as a valuable reference for practical engineering applications.


Asunto(s)
Floculación , Ácido Peracético , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Ácido Peracético/química , Oxidación-Reducción , Polímeros/química , Filtración , Eliminación de Residuos Líquidos/métodos , Porosidad , Resinas Acrílicas/química
13.
Environ Sci Pollut Res Int ; 31(32): 44885-44899, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38954344

RESUMEN

The activated sludge process plays a crucial role in modern wastewater treatment plants. During the treatment of daily sewage, a large amount of residual sludge is generated, which, if improperly managed, can pose burdens on the environment and human health. Additionally, the highly hydrated colloidal structure of biopolymers limits the rate and degree of dewatering, making mechanical dewatering challenging. This study investigates the impact and mechanism of microwave irradiation (MW) in conjunction with peracetic acid (PAA) on the dewatering efficiency of sludge. Sludge dewatering effectiveness was assessed through capillary suction time (CST) and specific resistance to filtration (SRF). Examination of the impact of MW-PAA treatment on sludge dewatering performance involved assessing the levels of extracellular polymeric substances (EPS), employing three-dimensional excitation-emission matrix (3D-EEM), Fourier transform-infrared spectroscopy (FT-IR), and scanning electron microscopy. Findings reveal that optimal dewatering performance, with respective reductions of 91.22% for SRF and 84.22% for CST, was attained under the following conditions: microwave power of 600 W, reaction time of 120 s, and PAA dosage of 0.25 g/g MLSS. Additionally, alterations in both sludge EPS composition and floc morphology pre- and post-MW-PAA treatment underwent examination. The findings demonstrate that microwaves additionally boost the breakdown of PAA into •OH radicals, suggesting a synergistic effect upon combining MW-PAA treatment. These pertinent research findings offer insights into employing MW-PAA technology for residual sludge treatment.


Asunto(s)
Microondas , Ácido Peracético , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas del Alcantarillado/química , Ácido Peracético/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Espectroscopía Infrarroja por Transformada de Fourier
14.
Water Res ; 260: 121959, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38909420

RESUMEN

Combined sewer overflows (CSOs) introduce microbial contaminants into the receiving water bodies, thereby posing risks to public health. This study systematically investigated the disinfection performance and mechanisms of the combined process of ultraviolet and peracetic acid (UV/PAA) in CSOs with selecting Escherichia coli (E. coli) as a target microbial contaminant. The UV/PAA process exhibited superior performance in inactivating E. coli in simulated CSOs compared with UV, PAA, and UV/H2O2 processes. Increasing the PAA dosage greatly enhanced the disinfection efficiency, while turbidity and organic matter hindered the inactivation performance. Singlet oxygen (1O2), hydroxyl (•OH) and organic radicals (RO•) contributed to the inactivation of E. coli, with •OH and RO• playing the prominent role. Variations of intracellular reactive oxygen species, malondialdehyde, enzymes activities, DNA contents and biochemical compositions of E. coli cells suggested that UV/PAA primarily caused oxidative damage to intracellular molecules rather than the damage to the lipids of the cell membrane, therefore effectively limited the regrowth of E. coli. Additionally, the UV/PAA process displayed an outstanding performance in disinfecting actual raw CSOs, achieving a 2.90-log inactivation of total bacteria after reaction for 4 min. These results highlighted the practical applicability and effectiveness of the UV/PAA process in the disinfection of CSOs.


Asunto(s)
Desinfección , Escherichia coli , Ácido Peracético , Aguas del Alcantarillado , Rayos Ultravioleta , Desinfección/métodos , Ácido Peracético/farmacología , Escherichia coli/efectos de los fármacos , Aguas del Alcantarillado/microbiología , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
15.
Environ Sci Technol ; 58(27): 12179-12188, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38913078

RESUMEN

Extensive research has been conducted on the utilization of a metal-based catalyst to activate peracetic acid (PAA) for the degradation of micropollutants (MPs) in water. Mn(II) is a commonly employed catalyst for homogeneous advanced oxidation processes (AOPs), but its catalytic performance with PAA is poor. This study showed that the environmentally friendly chelator ethylenediamine-N,N'-disuccinic acid (EDDS) could greatly facilitate the activation of Mn(II) in PAA for complete atrazine (ATZ) degradation. In this process, the EDDS enhanced the catalytic activity of manganese (Mn) and prevented disproportionation of transient Mn species, thus facilitating the decay of PAA and mineralization of ATZ. By employing electron spin resonance detection, quenching and probe tests, and 18O isotope-tracing experiments, the significance of high-valent Mn-oxo species (Mn(V)) in the Mn(II)-EDDS/PAA system was revealed. In particular, the involvement of the Mn(III) species was essential for the formation of Mn(V). Mn(III) species, along with singlet oxygen (1O2) and acetyl(per)oxyl radicals (CH3C(O)O•/CH3C(O)OO•), also contributed partially to ATZ degradation. Mass spectrometry and density functional theory methods were used to study the transformation pathway and mechanism of ATZ. The toxicity assessment of the oxidative products indicated that the toxicity of ATZ decreased after the degradation reaction. Moreover, the system exhibited excellent interference resistance toward various anions and humid acid (HA), and it could selectively degrade multiple MPs.


Asunto(s)
Manganeso , Ácido Peracético , Manganeso/química , Ácido Peracético/química , Contaminantes Químicos del Agua/química , Oxidación-Reducción , Etilenodiaminas/química
16.
J Hazard Mater ; 476: 135033, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38941837

RESUMEN

Advanced oxidation processes (AOPs) based on peracetic acid (PAA) displayed great potential in removing emerging contaminants by generating HO• and organic radicals. Performic and perpropionic acids (PFA and PPA) also act as disinfectants, but their application potential has not been investigated yet. Here, we investigated the degradation mechanism and kinetics of sulfamethoxazole (SMX) by HO•, RC(O)O• species (including HC(O)O•, CH3C(O)O• and CH3CH2C(O)O•) and RC(O)OO• species (including HC(O)OO•, CH3C(O)OO• and CH3CH2C(O)OO•). The results show that the calculated reaction rate constants of SMX follow the order of HC(O)O• > CH3C(O)O• > CH3CH2C(O)O• > HO• > HC(O)OO• > CH3C(O)OO• > CH3CH2C(O)OO•. The reactivity towards SMX is strongly correlated with the redox potentials of reactive radicals. Hence, the RCOO• species play dominant roles in the purification of SMX in PFA/PAA/PPA-based AOPs. The degradation of SMX mainly proceeds via addition at the benzene ring, the hydrogen abstraction from the -NH2 group as well as the single electron transfer reaction. This study highlights the fundamental aspects of PFA, PAA, and PPA in the purification of sulfamethoxazole and enhances the role of organic radicals in the AOPs based on organic peracetic acids.

17.
Sci Rep ; 14(1): 14513, 2024 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914681

RESUMEN

Having been successfully bred in semi-intensive and intensive aquaculture systems, oval squids of the Sepioteuthis lessoniana species complex are emerging as promising candidates for research and industry. Nevertheless, information about pathogens and diseases that may affect squid aquaculture remains sparse. In this study, we identify new parasitic copepod species that causes squid mortality and decreases squid hatching rates, and we also offer a solution to eliminate the pathogen during incubation of squid eggs. The newly discovered copepod Ikanecator primus gen. et sp. nov. was identified on oval squid eggs for the first time using both morphological and molecular diagnostic markers. In the genomes of the copepod and associated microbiome, we identified multiple genes for enzymes involved in cephalopod eggshell degradation in genomes of the copepod and associated microbiome. Furthermore, we conducted experiments to assess efficacy of peracetic acid in inhibiting the I. primus gen. et sp. nov. both in vitro and in vivo using immersion treatment. We established that a 2-min exposure to a concentration of 250 µl/L of peracetic acid containing product (PAA-product; 35 mg/L PAA and 15 mg/L H2O2) inhibited the development of nauplii in vitro. All parasites exposed to a concentration of 500 µl/L of PAA-product (70 mg/L PAA and 30 mg/L H2O2) were eliminated within two minutes. On top of this, the immersion treatment with 500 µl/L of PAA-product (70 mg/L PAA and 30 mg/L H2O2) improved survival of squid embryos and increased size of squid hatchlings compared with control and the immersion treatment with 125 µl/L of PAA-product (17.5 mg/L PAA and 7.5 mg/L H2O2) and the immersion treatment with 250 µl/L of PAA-product (35 mg/L PAA and 15 mg/L H2O2). These findings suggest that PAA holds a great potential as inhibitor and controller of parasitic copepod infections and for overall health management in cephalopod culture.


Asunto(s)
Copépodos , Decapodiformes , Ácido Peracético , Animales , Decapodiformes/parasitología , Copépodos/efectos de los fármacos , Ácido Peracético/farmacología , Óvulo/efectos de los fármacos , Acuicultura
18.
Water Res ; 259: 121891, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38870888

RESUMEN

The practical application of the Fe-catalyzed peracetic acid (PAA) processes is seriously restricted due to the need for narrow pH working range and poor anti-interference capacity. This study demonstrates that protocatechuic acid (PCA), a natural and eco-environmental phenolic acid, significantly enhanced the removal of sulfonamide antibiotics in Fe(III)/PAA process under actually neutral pH conditions (6.0-8.0) by complexing Fe(III). With sulfamethoxazole (SMX) as the model contaminant, the pseudo-first-order rate constant of SMX elimination in PCA/Fe(III)/PAA process was 63.5 times higher than that in Fe(III)/PAA process at pH 7.0, surpassing most of the previously reported strategies-enhanced Fe-catalyzed PAA processes (i.e., picolinic acid and hydroxylamine etc.). Excluding the primary contribution of reactive species commonly found in Fe-catalyzed PAA processes (e.g., •OH, R-O•, Fe(IV)/Fe(V) and 1O2) to SMX removal, the Fe(III)-peroxy complex intermediate (CH3C(O)OO-Fe(III)-PCA) was proposed as the primary reactive species in PCA/Fe(III)/PAA process. DFT theoretical calculations indicate that CH3C(O)OO-Fe(III)-PCA exhibited stronger oxidation potential than CH3C(O)OO-Fe(III), thereby enhancing SMX removal. Four potential removal pathways of SMX were proposed and the toxicity of reaction solution decreased with the removal of SMX. Furthermore, PCA/Fe(III)/PAA process exhibited strong anti-interference capacity to common natural anions (HCO3-, Cl-and NO3-) and humic acid. More importantly, the PCA/Fe(III)/PAA process demonstrated high efficiency for SMX elimination in actual samples, even at a trace Fe(III) dosage (i.e., 5 µM). Overall, this study provided a highly-efficient and eco-environmental strategy to remove sulfonamide antibiotics in Fe(III)/PAA process under actually neutral pH conditions and to strengthen its anti-interference capacity, underscoring its potential application in water treatment.


Asunto(s)
Antibacterianos , Hidroxibenzoatos , Sulfonamidas , Concentración de Iones de Hidrógeno , Hidroxibenzoatos/química , Sulfonamidas/química , Antibacterianos/química , Hierro/química , Contaminantes Químicos del Agua/química
19.
J Hazard Mater ; 474: 134674, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38823106

RESUMEN

Peracetic acid (PAA) as emerging oxidant in advanced oxidation processes (AOPs) has attracted widespread attention in purifying water pollution. In this research, the removal of target contaminant (sulfamethoxazole, SMX) was investigated through PAA activation by a facile catalyst (Co@C), and the active sites of catalyst were identified as sp3-C, Oads, and Co0 by correlation analysis. Especially, different pH adjustment strategies were designed, including System A (adjusting pH after adding PAA) and System B (adjusting pH before adding PAA), to investigate the impact of oxidant acidity and alkalinity on solution microenvironment as well as effect and mechanism of pollutant removal. The results showed that HO· and CH3C(O)OO· dominated in System A, while Co(IV)O2+ was also observed in System B. Both systems showed optimal SMX degradation (98 %). However, System A exhibited excellent water quality tolerance (efficiency > 78 %), superior sustained catalyst activation (efficiency > 80 % in 40 h), less ion leaching (41 µg L-1), and lower products toxicity. Moreover, the pH of solution after reaction in System B was intensely acidic, requiring costly pH adjustments for discharge. This study unveils the strategy of adjusting pH after adding PAA is preferable for water purification, enriching the emerging research of PAA-based AOPs for the remediation of environments.

20.
Environ Sci Technol ; 58(25): 11152-11161, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38867504

RESUMEN

Research on the use of peracetic acid (PAA) activated by nonmetal solid catalysts for the removal of dissolved refractory organic compounds has gained attention recently due to its improved efficiency and suitability for advanced water treatment (AWT). Among these catalysts, nanocarbon (NC) stands out as an exceptional example. In the NC-based peroxide AWT studies, the focus on the mechanism involving multimedia coordination on the NC surface (reactive species (RS) path, electron reduction non-RS pathway, and singlet oxygen non-RS path) has been confined to the one-step electron reaction, leaving the mechanisms of multichannel or continuous electron transfer paths unexplored. Moreover, there are very few studies that have identified the nonfree radical pathway initiated by electron transfer within PAA AWT. In this study, the complete decomposition (kobs = 0.1995) and significant defluorination of perfluorooctanoic acid (PFOA, deF% = 72%) through PAA/NC has been confirmed. Through the use of multiple electrochemical monitors and the exploration of current diffusion effects, the process of electron reception and conduction stimulated by PAA activation was examined, leading to the discovery of the dynamic process from the PAA molecule → NC solid surface → target object. The vital role of prehydrated electrons (epre-) before the entry of resolvable electrons into the aqueous phase was also detailed. To the best of our knowledge, this is the first instance of identifying the nonradical mechanism of continuous electron transfer in PAA-based AWT, which deviates from the previously identified mechanisms of singlet oxygen, single-electron, or double-electron single-path transfer. The pathway, along with the strong reducibility of epre- initiated by this pathway, has been proven to be essential in reducing the need for catalysts and chemicals in AWT.


Asunto(s)
Diamante , Electrones , Ácido Peracético , Ácido Peracético/química , Diamante/química , Transporte de Electrón , Fluorocarburos/química , Caprilatos/química , Propiedades de Superficie , Purificación del Agua , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA