Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Environ Sci Technol ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271478

RESUMEN

Granular activated carbon (GAC) adsorption is frequently used to remove recalcitrant organic micropollutants (MPs) from water. The overarching aim of this research was to develop machine learning (ML) models to predict GAC performance from adsorbent, adsorbate, and background water matrix properties. For model calibration, MP breakthrough curves were compiled and analyzed to determine the bed volumes of water that can be treated until MP breakthrough reaches ten percent of the influent MP concentration (BV10). Over 400 data points were split into training, validation, and testing sets. Seventeen variables describing MP, background water matrix, and GAC properties were explored in ML models to predict log10-transformed BV10 values. Using the ML models on the testing set, predicted BV10 values exhibited mean absolute errors of ∼0.12 log units and were highly correlated with experimentally determined values (R2 ≥ 0.88). The top three drivers influencing BV10 predictions were the air-hexadecane partition coefficient and hydrogen bond acidity (Abraham parameters L and A) of the MPs and the dissolved organic carbon concentration of the GAC influent water. The model can be used to rapidly estimate the GAC bed life, select effective GAC products for a given treatment scenario, and explore the suitability of GAC treatment for remediating emerging MPs.

2.
Toxicol Appl Pharmacol ; 490: 117044, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39074624

RESUMEN

BACKGROUND: Many studies have reported that prenatal exposure to Per- and Polyfluoroalkyl Substances (PFASs) can disrupt immune function. However, little is known about the effects of PFASs on immune molecules. The study analyzed the association between prenatal exposure to mixed and single PFASs and plasma immune molecules in three-year-old children. METHODS: Ten PFASs were measured in umbilical cord serum, while peripheral blood samples were collected at age three to measure immune molecules. Associations between exposure to individual and combined PFASs and immune molecules were analyzed using Generalized Linear Models and Weighted Quantile Sum (WQS) regression. RESULTS: (1) Interleukin-4 (IL-4) increased by 23.85% (95% CI:2.99,48.94) with each doubling of Perfluorooctanoic Acid (PFOA), and Interleukin-6 (IL-6) increased by 39.07% (95%CI:4.06,85.86) with Perfluorotridecanoic Acid (PFTrDA). Elevated PFOA and Perfluorononanoic Acid (PFNA) were correlated with increases of 34.06% (95% CI: 6.41, 70.28) and 24.41% (95% CI: 0.99, 53.27) in Eotaxin-3, respectively. Additionally, the doubling of Perfluorohexane Sulfonic Acid (PFHxS) was associated with a 9.51% decrease in Periostin (95% CI: -17.84, -0.33). (2) The WQS analysis revealed that mixed PFASs were associated with increased IL-6 (ß = 0.37, 95%CI:0.04,0.69), mainly driven by PFTrDA, PFNA, and 8:2 Chlorinated Perfluoroethyl Sulfonamide (8:2 Cl-PFESA). Moreover, mixed PFASs were linked to an increase in Eotaxin-3 (ß = 0.32, 95% CI: 0.09,0.55), primarily influenced by PFOA, PFTrDA, and Perfluorododecanoic Acid (PFDoDA). CONCLUSIONS: Prenatal PFASs exposure significantly alters the levels of immune molecules in three-year-old children, highlighting the importance of understanding environmental impacts on early immune development.


Asunto(s)
Fluorocarburos , Efectos Tardíos de la Exposición Prenatal , Humanos , Femenino , Fluorocarburos/sangre , Fluorocarburos/toxicidad , Preescolar , Embarazo , Efectos Tardíos de la Exposición Prenatal/sangre , Efectos Tardíos de la Exposición Prenatal/inmunología , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , China/epidemiología , Masculino , Contaminantes Ambientales/sangre , Sangre Fetal/inmunología , Sangre Fetal/química , Caprilatos/sangre , Caprilatos/toxicidad , Interleucina-6/sangre , Interleucina-4/sangre , Ácidos Decanoicos/sangre , Ácidos Decanoicos/toxicidad , Ácidos Alcanesulfónicos/sangre , Ácidos Alcanesulfónicos/toxicidad , Adulto , Exposición Materna/efectos adversos
3.
Environ Sci Technol ; 58(23): 10195-10206, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38800846

RESUMEN

Concentrations of 33 PFASs were determined in 20 Eurasian otters, sampled 2015-2019, along a transect away from a factory, which used PFOA in PTFE manufacture. Despite cessation of usage in 2012, PFOA concentrations remained high near the factory (>298 µg/kg ww <20 km from factory) and declined with increasing distance (<57 µg/kg ww >150 km away). Long-chain legacy PFASs dominated the Σ33PFAS profile, particularly PFOS, PFOA, PFDA, and PFNA. Replacement compounds, PFECHS, F-53B, PFBSA, PFBS, PFHpA, and 8:2 FTS, were detected in ≥19 otters, this being the first report of PFBSA and PFECHS in the species. Concentrations of replacement PFASs were generally lower than legacy compounds (max: 70.3 µg/kg ww and 4,640 µg/kg ww, respectively). Our study underscores the utility of otters as sentinels for evaluating mitigation success and highlights the value of continued monitoring to provide insights into the longevity of spatial associations with historic sources. Lower concentrations of replacement, than legacy, PFASs likely reflect their lower bioaccumulation potential, and more recent introduction. Continued PFAS use will inevitably lead to increased environmental and human exposure if not controlled. Further research is needed on fate, toxicity, and bioaccumulation of replacement compounds.


Asunto(s)
Monitoreo del Ambiente , Nutrias , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/análisis , Agua Dulce , Fluorocarburos/análisis
4.
J Hazard Mater ; 469: 134008, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38503211

RESUMEN

Congenital heart disease (CHD) is the most prevalent congenital malformation worldwide, and the association between per- and polyfluoroalkyl substances (PFASs) exposure and CHD in population has only received limited study. Therefore, we conducted a multicenter case-control study to explore the associations between prenatal exposure to individual PFASs, and also a PFAS mixture, and CHD risk, including 185 CHDs and 247 controls in China from 2016 to 2021. Thirteen PFASs in maternal plasma were quantified using liquid chromatography-tandem mass spectrometry. Logistic regression and two multipollutant models (Bayesian kernel machine regression [BKMR] and quantile g-computation [qgcomp]) were used to assess the potential associations between any individual PFAS, and also a PFAS mixture, and CHD risk. After adjusting for potential confounders, logistic regression indicated significant associations between elevated levels of perfluorononanoic acid (odds ratio [OR]= 1.30, 95% confidence intervals [CI]: 1.07-1.58), perfluorodecanoic acid (OR=2.07, 95%CI: 1.32-3.26), and perfluoroundecanoic acid (OR=2.86, 95%CI:1.45-5.65) and CHD risk. The BKMR model and qgcomp approach identified that a significant positive association between the PFAS mixture and risk for CHD. These findings provide essential evidence that there is indeed a health crisis associated with PFASs and that it is linked to CHD.


Asunto(s)
Ácidos Alcanesulfónicos , Contaminantes Ambientales , Fluorocarburos , Cardiopatías Congénitas , Efectos Tardíos de la Exposición Prenatal , Embarazo , Femenino , Humanos , Contaminantes Ambientales/toxicidad , Efectos Tardíos de la Exposición Prenatal/epidemiología , Teorema de Bayes , Estudios de Casos y Controles , Fluorocarburos/toxicidad , Cardiopatías Congénitas/inducido químicamente , Cardiopatías Congénitas/epidemiología
5.
J Environ Sci (China) ; 139: 418-427, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105065

RESUMEN

Studies have shown that per- and polyfluoroalkyl substances (PFASs) may be hepatotoxic in animals or humans. However, data on clinical epidemiology are very limited. In this study, 21 PFASs were determined in patients with liver diseases, with the highest median concentrations detected in the serum sample (26.7 ng/mL), followed by blood (10.7 ng/mL) and urine (5.02 ng/mL). Higher total PFAS concentrations were found in hepatocellular carcinoma (HCC) patients compared to non-HCC patients, with significant discrepancies in serum and blood samples. Besides, significant correlations were also found among PFAS concentrations and age, gender, body mass index (BMI), and liver function biomarkers levels. For example, PFAS concentrations are significantly higher in males than in females; Several serum PFASs concentrations increase with age and BMI, while the serum perfluorohexane sulfonic acid (PFHxS) concentrations are negatively correlated with age. In addition, multiple regression models adjusted for age, gender and BMI found that increased serum perfluorobutane sulfonic acid (PFBS), perfluoroheptane sulfonic acid (PFHpS) and perfluorohexylphosphonic acid (PFHxPA) conentrations are correlated with elevated alkaline phosphatase (ALP), aspartate aminotransferase (AST), and alpha-fetoprotein (AFP) (p < 0.05). Our results provide epidemiological support for the future study on the potential clinical hepatotoxicity of PFAS.


Asunto(s)
Ácidos Alcanesulfónicos , Carcinoma Hepatocelular , Contaminantes Ambientales , Fluorocarburos , Neoplasias Hepáticas , Masculino , Femenino , Humanos , Biomarcadores
6.
Toxics ; 11(11)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37999549

RESUMEN

This study investigates the association between prenatal exposure to per- and polyfluoroalkyl substances (PFASs) and the incidence and frequency of respiratory tract infections (RTIs) in preschool children. We selected 527 mother-infant pairs from Wuhan Healthy Baby Cohort (WHBC), China. Ten PFASs were measured in umbilical cord serum, and we collected data on common RTIs in preschool children aged 4 years through a questionnaire. Associations of single PFASs with the incidence and frequency of RTIs were analyzed via Logistic regression and Poisson regression, while the collective effect was assessed by weighted quantile sum (WQS) regression. Furthermore, stratified and interaction analyses were performed to evaluate if there were sex-specific associations. We found a positive correlation between perfluorododecanoic acid (PFDoDA) and the incidence of tonsillitis, with several PFASs also showing positive associations with its frequency. Moreover, perfluorotridecanoic acid (PFTrDA) showed a positive link with the frequency of common cold. The results of WQS regression revealed that after adjusting for other covariates, PFASs mixture showed a positive association with the incidence of tonsillitis, the frequency of common cold, and episodes. In particular, perfluoroundecanoic acid (PFUnDA), PFDoDA, PFTrDA, perfluorodecanoic acid (PFDA) and 8:2 chlorinated polyfluorinated ether sulfonic acid (8:2 Cl-PFESA) had the most significant impact on this combined effect. The results suggest that both single and mixed exposures to PFASs may cause RTIs in preschool children. However, there was no statistically significant interaction between different PFASs and sex.

7.
Molecules ; 28(22)2023 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-38005292

RESUMEN

In contrast to some low-molar-mass per- and polyfluoroalkyl substances (PFASs), which are well established to be toxic, persistent, bioaccumulative, and mobile, fluoropolymers (FPs) are water-insoluble, safe, bioinert, and durable. These niche high-performance polymers fulfil the 13 polymer-of-low-concern (PLC) criteria in their recommended conditions of use. In addition, more recent innovations (e.g., the use of non-fluorinated surfactants in aqueous radical (co)polymerization of fluoroalkenes) from industrial manufacturers of FPs are highlighted. This review also aims to show how these specialty polymers endowed with outstanding properties are essential (even irreplaceable, since hydrocarbon polymer alternatives used in similar conditions fail) for our daily life (electronics, energy, optics, internet of things, transportation, etc.) and constitute a special family separate from other "conventional" C1-C10 PFASs found everywhere on Earth and its oceans. Furthermore, some information reports on their recycling (e.g., the unzipping depolymerization of polytetrafluoroethylene, PTFE, into TFE), end-of-life FPs, and their risk assessment, circular economy, and regulations. Various studies are devoted to environments involving FPs, though they present a niche volume (with a yearly production of 330,300 t) compared to all plastics (with 460 million t). Complementary to other reviews on PFASs, which lack of such above data, this review presents both fundamental and applied strategies as evidenced by major FP producers.

8.
Sci Total Environ ; 901: 165904, 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-37527708

RESUMEN

With the growing development of modern agriculture and industry, groundwater is facing more and more complex contaminants. One such contaminant is per- and polyfluoroalkyl substances (PFASs), which pose a potential risk to human health, particularly for those who rely on groundwater as their primary source of drinking water. In this study, we conducted a comprehensive investigation on the occurrence, spatial distribution, and source apportionment of PFASs in shallow (<60 m) and deep (>80 m) groundwater samples from a reclaimed water irrigation area in Beijing's suburbs. Our results showed that the average total PFAS concentration (∑10PFAS) for all samples was 10.55 ± 7.77 ng/L, ranging from 1.05 to 34.28 ng/L. The dominant congeners were PFBA, PFOA, and PFBS. No significant linear relationship was observed between PFAS concentrations and the well depth. However, the averaged ΣPFASs in groundwater were highest in the uppermost layer and declined sharply to a few ng/L in the deep aquifer below 80 m. PFASs showed elevated concentration in shallow aquifers in 9 out of 11 paired wells, indicating an overall descending trend of PFASs with increasing aquifer depth. The spatial distribution of PFASs was highly heterogeneous and showed different patterns in shallow and deep groundwater, which may be related to the complicated attenuation behavior of PFAS compounds when they transport and diffuse through overlapping aquifer layers. The influence of the landfill on groundwater PFASs was most pronounced within a 5 km radius. Source apportionment results indicated that reclaimed water irrigation is the main non-point source of PFASs in shallow groundwater. In contrast, deep groundwater is primarily subject to point sources and lateral recharge flow. This investigation of PFASs in shallow and deep wells provides a foundation for further exploration of PFASs transportation and risk prevention in regions where groundwater is a major water resource for domestic and industrial development.

9.
J Hazard Mater ; 459: 132042, 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37480612

RESUMEN

Microplastics (MPs) in the environment are the sink and vector of organic contaminants, including per- and polyfluoroalkyl substances (PFASs). Although PFASs are low- and non-volatile compounds, they have the potential to partition and diffuse from MP into the gas phase in the environmental functions. Herein, the MP-air partition coefficient (KPA) of seven PFASs was measured using a solid-fugacity meter. The PFAS KPA values in two MPs (high-density polyethylene (HDPE) and thermoplastic polyurethane (TPU)) were determined under different times, temperatures, and relative humidities (RH), and a model was developed to predict the PFAS KPA values based on the measured data. The results showed that the KPA of PFASs increased with the prolonged partition time until 90 mins, and higher temperature and RH facilitated the distribution of PFASs in MPs into the air phase, leading to smaller KPA values. Moreover, the derived equation for predicting PFAS log KPA values was robust with 0.79 of an adjusted square of correlation coefficient (R2adjusted = 0.79) and 0.35 of root mean squared error (RMSE = 0.35). These findings provided the first knowledge for understanding the partition behavior and fate of PFASs in the MP-air microenvironment.

10.
Environ Sci Technol ; 57(23): 8739-8749, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37252902

RESUMEN

Per- and polyfluoroalkyl substances (PFASs) have potential to accumulate in crops and pose health risks to humans, but it is unclear how the widely present organic matters in soil, such as humic acid (HA), affect their uptake and translocation in plants. In this study, hydroponic experiments were conducted to systematically disclose the impacts of HA on the uptake, translocation, and transmembrane transport at the subcellular level of four PFASs, including perfluorooctane sulfonic acid, perfluorooctanoic acid, perfluorohexane sulfonic acid, and 6:2 chlorinated polyfluoroalkyl ether sulfonate in wheat (Triticum aestivum L.). The results of the uptake and depuration experiments indicated that HA depressed the adsorption and absorption of PFASs in wheat roots by reducing the bioavailability of PFASs, and HA did not affect the long-range transport of PFASs to be eliminated via the phloem of wheat. However, HA facilitated their transmembrane transport in wheat roots, while the contrary effect was observed in the shoots. The inhibitor experiments coupled with transcriptomics analysis uncover that the increased transmembrane transport of PFASs stimulated by HA is mainly driven by the slow-type anion channel pathways interacting with Ca2+-dependent protein kinases (Ca2+-CDPK-SLAC1). The promoted transmembrane transport of PFASs might cause adverse effects on the plant cell wall, which causes further concerns.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Humanos , Sustancias Húmicas/análisis , Triticum , Ácidos Alcanesulfónicos/análisis , Ácidos Alcanesulfónicos/metabolismo , Suelo , Alcanosulfonatos/análisis , Fluorocarburos/análisis , China
11.
Huan Jing Ke Xue ; 44(5): 2613-2621, 2023 May 08.
Artículo en Chino | MEDLINE | ID: mdl-37177935

RESUMEN

Per-and polyfluoroalkyl substances (PFASs) are present in surface water, tap water, and even commercial drinking water and pose a threat to human health. In this study, the occurrence and transformation of 14 PFASs were studied in large drinking water treatment plants (DWTPs) with Taihu Lake as the source, and the results showed that a total of 10 PFASs were detected in the water samples, indicating that PFAS were widely distributed in drinking water. The total concentration of PFASs in raw water was 127.4 ng·L-1, with the highest concentration being that of pentadecafluorooctanoic acid (PFOA, 49.8 ng·L-1). Pre-ozone caused a reverse increase in the concentration of PFASs, which may have been due to the presence of precursors or conversion from short to long chains. PFASs were not effectively removed by conventional treatment processes, andozone-biological activated carbon (O3-BAC) had a dominant role in the removal of PFASs (20.74%) from DWTPs. O3-BAC, the main removal process for DWTPs, contained high concentrations of PFASs in the backwash water with similar distribution characteristics to the raw water. Using a pilot plant, five common filter backwash water treatment processes were compared, and the results showed that GAC-ultrafiltration could adsorb and retain a certain amount of PFASs while ensuring a high removal rate of turbidity (99.08%). The 3D-EEM analysis indicated that GAC-ultrafiltration could also remove most of the fluorescent micro-pollutants, and for raw water containing high concentrations of PFASs DWTPs, it is practical to use it as a filter backwash water reuse treatment process.


Asunto(s)
Ácidos Alcanesulfónicos , Agua Potable , Fluorocarburos , Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Agua Potable/análisis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Fluorocarburos/análisis , Carbón Orgánico/análisis , Ácidos Alcanesulfónicos/análisis , Monitoreo del Ambiente
12.
Environ Sci Technol ; 57(46): 18317-18328, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37186812

RESUMEN

Machine learning (ML) models were developed for understanding the root uptake of per- and polyfluoroalkyl substances (PFASs) under complex PFAS-crop-soil interactions. Three hundred root concentration factor (RCF) data points and 26 features associated with PFAS structures, crop properties, soil properties, and cultivation conditions were used for the model development. The optimal ML model, obtained by stratified sampling, Bayesian optimization, and 5-fold cross-validation, was explained by permutation feature importance, individual conditional expectation plot, and 3D interaction plot. The results showed that soil organic carbon contents, pH, chemical logP, soil PFAS concentration, root protein contents, and exposure time greatly affected the root uptake of PFASs with 0.43, 0.25, 0.10, 0.05, 0.05, and 0.05 of relative importance, respectively. Furthermore, these factors presented the key threshold ranges in favor of the PFAS uptake. Carbon-chain length was identified as the critical molecular structure affecting root uptake of PFASs with 0.12 of relative importance, based on the extended connectivity fingerprints. A user-friendly model was established with symbolic regression for accurately predicting RCF values of the PFASs (including branched PFAS isomerides). The present study provides a novel approach for profound insight into the uptake of PFASs by crops under complex PFAS-crop-soil interactions, aiming to ensure food safety and human health.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Humanos , Suelo/química , Carbono , Teorema de Bayes , Fluorocarburos/análisis , Aprendizaje Automático , Contaminantes Químicos del Agua/análisis
13.
Sci Total Environ ; 885: 163753, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37121317

RESUMEN

In this study, we compare analytical methods for PFAS determination-target analysis, non-target screening (NTS), direct total oxidizable precursor assay (dTOPA) and extractable organically bound fluorine (EOF). Therefore, suspended particulate matter (SPM) samples from German rivers at different locations in time series from 2005 to 2020 were analyzed to investigate temporal and spatially resolved trends. In this study 3 PFAS mass balances approaches were utilized: (i) PFAA target vs. PFAS dTOPA, (ii) PFAS target vs. EOF and (iii) PFAS target vs. PFAS dTOPA vs. organofluorines NTS vs. EOF. Mass balance approach (i) revealed high proportions of precursor substances in SPM samples. For the time resolved analysis an increase from 94% (2005) to 97% in 2019 was observable. Also for the spatial resolved analysis precursor proportions were high with >84% at all sampling sites. Mass balance approach (ii) showed that the unidentified EOF (uEOF) fraction increased over time from 82% (2005) to 99% (2019). Furthermore, along the river courses the uEOF increased. In the combined mass balance approach (iii) using 4 different analytical approaches EOF fractions were further unraveled. The EOF pattern was fully explainable at the sampling sites at Saar and Elbe rivers. For the time resolved analysis, an increased proportion of the EOF was now explainable. However, still 27% of the EOF for the time resolved analysis and 25% of the EOF for the spatial resolved analysis remained unknown. Therefore, in a complementary approach, both the EOF and dTOPA reveal unknown gaps in the PFAS mass balance and are valuable contributions to PFAS risk assessment. Further research is needed to identify organofluorines summarized in the EOF parameter.

14.
Int J Hyg Environ Health ; 250: 114168, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37068413

RESUMEN

Per- and polyfluoroalkyl substances (PFASs) were one of the priority substance groups selected which have been investigated under the ambitious European Joint programme HBM4EU (2017-2022). In order to answer policy relevant questions concerning exposure and health effects of PFASs in Europe several activities were developed under HBM4EU namely i) synthesis of HBM data generated in Europe prior to HBM4EU by developing new platforms, ii) development of a Quality Assurance/Quality Control Program covering 12 biomarkers of PFASs, iii) aligned and harmonized human biomonitoring studies of PFASs. In addition, some cohort studies (on mother-child exposure, occupational exposure to hexavalent chromium) were initiated, and literature researches on risk assessment of mixtures of PFAS, health effects and effect biomarkers were performed. The HBM4EU Aligned Studies have generated internal exposure reference levels for 12 PFASs in 1957 European teenagers aged 12-18 years. The results showed that serum levels of 14.3% of the teenagers exceeded 6.9 µg/L PFASs, which corresponds to the EFSA guideline value for a tolerable weekly intake (TWI) of 4.4 ng/kg for some of the investigated PFASs (PFOA, PFOS, PFNA and PFHxS). In Northern and Western Europe, 24% of teenagers exceeded this level. The most relevant sources of exposure identified were drinking water and some foods (fish, eggs, offal and locally produced foods). HBM4EU occupational studies also revealed very high levels of PFASs exposure in workers (P95: 192 µg/L in chrome plating facilities), highlighting the importance of monitoring PFASs exposure in specific workplaces. In addition, environmental contaminated hotspots causing high exposure to the population were identified. In conclusion, the frequent and high PFASs exposure evidenced by HBM4EU strongly suggests the need to take all possible measures to prevent further contamination of the European population, in addition to adopting remediation measures in hotspot areas, to protect human health and the environment. HBM4EU findings also support the restriction of the whole group of PFASs. Further, research and definition for additional toxicological dose-effect relationship values for more PFASs compounds is needed.


Asunto(s)
Contaminantes Ambientales , Fluorocarburos , Animales , Adolescente , Humanos , Monitoreo Biológico , Europa (Continente) , Medición de Riesgo , Fluorocarburos/análisis
15.
Huan Jing Ke Xue ; 44(3): 1214-1227, 2023 Mar 08.
Artículo en Chino | MEDLINE | ID: mdl-36922184

RESUMEN

Per- and polyfluoroalkyl substances (PFASs) have attracted extensive attention because of their persistence, long-distance migration ability, bioaccumulation, and biological toxicity. Currently, regulatory strategies concerning PFASs in the environment primarily focus on perfluoroalkyl acids (PFAAs). However, most polyfluoroalkyl compounds can be degraded to PFAAs by environmental microorganisms, also known as precursors. Exploring the microbial transformation behavior of precursors is fundamental to comprehensively evaluate the environmental risk of PFASs and formulate control and remediation schemes of PFAS-contaminated sites. Furthermore, anaerobic microbial reductive defluorination of PFAAs is a potential and challenging remediation technology. This review summarizes degradation rules and transformation pathways of precursors (fluorotelomer compounds and perfluorooctane sulfonamide derivatives), PFAAs, and novel PFASs by microorganisms and discusses factors affecting the microbial degradation. Finally, the future research directions are put forward.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Fluorocarburos/metabolismo
16.
Huan Jing Ke Xue ; 44(3): 1593-1601, 2023 Mar 08.
Artículo en Chino | MEDLINE | ID: mdl-36922220

RESUMEN

Per- and polyfluoroalkyl substances (PFASs, n=22), including emerging alternatives, in dust samples were analyzed using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to study their pollution characteristics. These samples were collected from main and minor roads in Shijiazhuang. Some of the roads were located near sewage treatment plants and fire stations. The results showed that PFASs were ubiquitous in the road dust of Shijiazhuang; in particular, hexafluoropropylene oxide dimer acid (HFPO-DA), an alternative, was measured for the first time in China. The total concentrations of PFASs ranged from 2.62 to 137.65 ng·g-1. Perfluorooctanoic acid (PFOA) was the dominant PFAS, followed by perfluorobutanoic acid (PFBA), HFPO-DA, and perfluorooctane sulfonic acid (PFOS). The highest and lowest levels of PFASs were observed in the northwest and southeast regions of Shijiazhuang, respectively. The compositions of PFASs were obviously different in road dust near sewage treatment plants and fire stations, especially for the types of emerging alternatives. Health risk assessment indicated that road dust intake had a low risk of human exposure to PFASs and emerging alternatives. Among the three routes (ingestion intake, inhalation intake, and dermal contact), ingestion intake was the main route for PFASs and emerging alternatives in road dust to enter the human body. Under the same exposure route, the exposure dose of children was higher than that of adults.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Adulto , Niño , Humanos , Espectrometría de Masas en Tándem , Polvo/análisis , Aguas del Alcantarillado/análisis , Fluorocarburos/análisis , Ácidos Alcanesulfónicos/análisis , Medición de Riesgo , China
17.
J Hazard Mater ; 446: 130652, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36603420

RESUMEN

Per- and polyfluoroalkyl substances (PFASs) present adverse effects for human health, which result in strong needs for reliable tools monitoring personal exposure to PFASs. This study manufactured two wristbands of high density polyethylene (HDPE) and thermoplastic polyurethane (TPU), and used the wristbands to monitor PFASs personal exposure. The analytical method was developed to measure 32 PFASs in the paired HDPE and TPU wristbands worn by 60 postgraduates. Twenty-nine of 32 PFASs were detected and hexafluoropropylene oxide dimer acid (HFPO-DA) was predominant individual PFASs with median concentrations of 337 and 554 pg/g for HDPE and TPU wristbands respectively. The gender and grade of students had moderate effects on PFASs distribution in the wristbands. Higher PFASs levels were determined in the two wristbands worn by the male students compared to the females, and the greatest PFASs concentration was observed in the wristbands worn by the first-year postgraduates, follow by second- and third-year postgraduates. Additionally, significant correlations between paired HDPE and TPU wristbands were observed for perfluorobutanoic acid (PFBA), perfluorohexane sulfonic acid (PFHxS), perfluoroheptane sulfonic acid (PFHpS), perfluorooctane sulfonic acid (PFOS), and HFPO-DA. These results suggest that HDPE and TPU wristbands can be used as effective tools for monitoring personal PFAS exposure.


Asunto(s)
Ácidos Alcanesulfónicos , Fluorocarburos , Femenino , Humanos , Masculino , Polietileno , Poliuretanos , Fluorocarburos/análisis , Estudiantes , Monitoreo del Ambiente
18.
Anal Bioanal Chem ; 415(6): 1221-1233, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36631575

RESUMEN

Per- and polyfluoroalkyl substances (PFASs) are potentially neurotoxic compounds. Levels of PFASs in cerebrospinal fluid (CSF) could directly reflect their potential harm to the central nervous system. Because of the variety of PFASs and the rarity of CSF, there is an urgent need to establish a rapid online method to detect a broad spectrum of PFASs accurately and simultaneously by consuming a small amount of CSF. In this study, we developed a fast and automated method to analyze 52 PFASs in human CSF samples using online TurboFlow ultra-high-performance liquid chromatography-tandem mass spectrometry. Our method offered excellent matrix-matched standard curve linearity (correlation coefficient > 0.99), good limits of quantitation (MLOQs) (0.01 to 0.08 ng mL-1), satisfactory accuracy (recoveries of 74.6%-119.1%) and precision (relative standard deviations of 1.4%-13.2%), small sample amount consumption (50 µL), and fast analysis time (18 min per sample) without complex sample pretreatment procedures. These are advantageous for the high throughput screening of PFASs in environmental epidemiology studies. Repeated freeze-thaw experiments showed that it was better to perform the analytical process soon as possible after sample collection. The established method was used to analyze PFASs in 60 people. Short-chain PFASs, perfluorobutanoic acid (PFBA), perfluoropentanoic acid (PFPeA), and novel PFASs [sodium 2-(N-ethylperfluorooctane-1-sulfonamido)ethyl phosphate (SAmPAP), perfluoroethylcyclohexanesulfonate (PFECHS), and perfluoro-3, 7-dimethyloctanoic acid (P37DMOA)] were reported in CSF for the first time. PFBA and PFPeA were detected in all samples with mean concentrations of 0.24 and 0.22 ng mL-1, respectively. We also calculated the blood-brain barrier transmission efficiency of PFASs (RPFAS), and the mean RPFBA value was above 1, which indicated that PFBA might transfer from serum to CSF.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Humanos , Espectrometría de Masas en Tándem/métodos , Fluorocarburos/análisis , Cromatografía Líquida de Alta Presión/métodos , Contaminantes Químicos del Agua/análisis
19.
Environ Sci Technol ; 57(4): 1670-1679, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36653896

RESUMEN

Perfluoroalkyl substances (PFASs) are widely present in agricultural soils, but their sources and fate in greenhouse soils remain unclear. In this study, the sources, fractionation, and migration of PFASs were compared in the greenhouse and open-field soils of the Fen-Wei Plain, China. The total concentrations of PFASs (Σ17PFAS) were comparable in the greenhouse and open-field soils but with different profiles. Detrended correspondence and correlation analyses indicated that dry deposition was an important source of PFASs in the open-field soils, whereas surface water had a notable contribution to the greenhouse soils due to more frequent irrigation. The PFASs in the soils were mainly present in water-soluble fraction (F1). The F1 proportions of short-chain and long-chain PFASs were negatively correlated with the anion exchange capacity (AEC) and organic carbon content (foc) in soil, respectively, with that of short-chain PFASs being higher than long-chain ones. The AEC was significantly higher while foc was lower in the greenhouse soil than the open-field soil, leading to lower proportions of F1 for short-chain PFASs while higher for long-chain ones in the greenhouse soil. Frequent irrigation and elevated temperatures promoted the migration of PFASs in greenhouse soil; thus, the Σ17PFAS and F1 exhibited an increasing trend with soil depth.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Suelo , Monitoreo del Ambiente , Agricultura , Agua , Contaminantes Químicos del Agua/análisis , Fluorocarburos/análisis
20.
J Hazard Mater ; 442: 130125, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36303337

RESUMEN

Novel per- and polyfluoroalkyl substances (PFASs) raise global concerns due to their toxic effects on environment and human health. However, researches on analytical methods of novel PFASs are lacking. Here, a kind of selective cationic covalent organic framework (iCOF) was designed and loaded on the surface of cotton as an adsorbent. Then, a simple solid-phase extraction (SPE) method based on the cotton@iCOF was developed for high throughput rapid extraction of six novel PFASs in water samples, coupled with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) determination. Several important SPE parameters, such as the amount of iCOF, sample pH, desorption conditions and salinity were systematically investigated. Under optimal conditions, the limits of detection and quantification of this SPE-UHPLC-MS/MS method were as low as 0.08-2.14 ng/L and 0.28-7.15 ng/L, respectively. The recoveries were 77.9-117.6 % for the tap water and surface water, and F-53 B in surface water were detected. Notably, this SPE process was rapid (1 h for 500 mL water sample) compared with commercial SPE (normal 2-3 h), owing to little resistance of cotton@iCOF and omission of nitrogen blowing process, and high throughput with 12 samples concurrently extracted. Additionally, various characterization means and density functional theory (DFT) calculations showed that ion-exchange effect, hydrophobic interaction, hydrogen bonding and ordered channel structure synergistically contributed to the PFASs adsorption on cotton@iCOF. The cotton@iCOF-based SPE method with simplicity, rapidity, selectivity and efficiency provided new research ideas for the analysis and control of ionic emerging pollutants in water.


Asunto(s)
Fluorocarburos , Estructuras Metalorgánicas , Humanos , Espectrometría de Masas en Tándem/métodos , Fluorocarburos/análisis , Extracción en Fase Sólida/métodos , Cromatografía Líquida de Alta Presión/métodos , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA