Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Front Immunol ; 15: 1385121, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119337

RESUMEN

Introduction: Before they can produce their own antibodies, newborns are protected from infections by transplacental transfer of maternal IgG antibodies and after birth through breast milk IgA antibodies. Rhinovirus (RV) infections are extremely common in early childhood, and while RV infections often result in only mild upper respiratory illnesses, they can also cause severe lower respiratory illnesses such as bronchiolitis and pneumonia. Methods: We used high-density peptide arrays to profile infant and maternal antibody reactivity to capsid and full proteome sequences of three human RVs - A16, B52, and C11. Results: Numerous plasma IgG and breast milk IgA RV epitopes were identified that localized to regions of the RV capsid surface and interior, and also to several non-structural proteins. While most epitopes were bound by both IgG and IgA, there were several instances where isotype-specific and RV-specific binding were observed. We also profiled 62 unique RV-C protein loop sequences characteristic of this species' capsid VP1 protein. Discussion: Many of the RV-C loop sequences were highly bound by IgG from one-year-old infants, indicating recent or ongoing active infections, or alternatively, a level of cross-reactivity among homologous RV-C sites.


Asunto(s)
Anticuerpos Antivirales , Inmunoglobulina G , Leche Humana , Rhinovirus , Humanos , Leche Humana/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/sangre , Femenino , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Lactante , Rhinovirus/inmunología , Inmunoglobulina A/inmunología , Inmunoglobulina A/sangre , Infecciones por Picornaviridae/inmunología , Recién Nacido , Epítopos/inmunología , Proteínas de la Cápside/inmunología , Adulto
2.
J Biosci Bioeng ; 138(4): 351-359, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39085020

RESUMEN

Inhibition of dipeptidyl peptidase IV (DPP-IV) is an effective pharmacotherapy for the management of type 2 diabetes. Recent findings have suggested that various dietary proteins can serve as precursors to peptides that inhibit DPP-IV. Although several DPP-IV inhibitory peptides derived from food materials have been reported, more effective inhibitory peptides remain to be discovered. This study aimed to identify potent DPP-IV inhibitory peptides that earlier approaches had overlooked by employing a screening method that combined peptide arrays and neutralizing antibodies. Octa-peptides covering the complete amino acid sequences of four casein proteins and two whey proteins were synthesized on arrays via a solid-phase method. These peptides were then reacted with a monoclonal antibody specifically engineered to recognize glucagon-like peptide 1 (GLP-1), a substrate of DPP-IV. The variable region of the anti-GLP-1 monoclonal antibody is utilized to mimic the substrate-binding region of DPP-IV, enabling the antibody to bind to peptides that interact with DPP-IV. Based on this feature, 26 peptides were selected as DPP-IV inhibitory peptide candidates, 11 of which showed strong DPP-IV inhibitory activity. Five of these peptides consistently contained cysteines positioned two to four residues from the N-terminus. Treatment with disulfide formation decreased the DPP-IV inhibitory activity of these cysteine-containing peptides, while the inhibitory activity of α-lactalbumin hydrolysates increased with reducing treatment. These results revealed that the thiol group is important for DPP-IV inhibitory activity. This study provides a useful screen for DPP-IV inhibitory peptides and indicates the importance of reductive cysteine residues within DPP-IV inhibitory peptides.


Asunto(s)
Anticuerpos Monoclonales , Cisteína , Dipeptidil Peptidasa 4 , Inhibidores de la Dipeptidil-Peptidasa IV , Péptido 1 Similar al Glucagón , Péptidos , Péptido 1 Similar al Glucagón/química , Anticuerpos Monoclonales/química , Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/metabolismo , Cisteína/química , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Péptidos/química , Caseínas/química , Humanos , Proteína de Suero de Leche/química , Secuencia de Aminoácidos , Análisis por Matrices de Proteínas , Diabetes Mellitus Tipo 2/tratamiento farmacológico
3.
Mol Ther ; 32(6): 1934-1955, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38582961

RESUMEN

Second mitochondrial-derived activator of caspase (SMAC), also known as direct inhibitor of apoptosis-binding proteins with low pI (Diablo), is known as a pro-apoptotic mitochondrial protein released into the cytosol in response to apoptotic signals. We recently reported SMAC overexpression in cancers as essential for cell proliferation and tumor growth due to non-apoptotic functions, including phospholipid synthesis regulation. These functions may be associated with its interactions with partner proteins. Using a peptide array with 768 peptides derived from 11 selected SMAC-interacting proteins, we identified SMAC-interacting sequences. These SMAC-binding sequences were produced as cell-penetrating peptides targeted to the cytosol, mitochondria, or nucleus, inhibiting cell proliferation and inducing apoptosis in several cell lines. For in vivo study, a survivin/baculoviral inhibitor of apoptosis repeat-containing 5 (BIRC5)-derived peptide was selected, due to its overexpression in many cancers and its involvement in mitosis, apoptosis, autophagy, cell proliferation, inflammation, and immune responses, as a target for cancer therapy. Specifically, a SMAC-targeting survivin/BIRC5-derived peptide, given intratumorally or intravenously, strongly inhibited lung tumor growth, cell proliferation, angiogenesis, and inflammation, induced apoptosis, and remodeled the tumor microenvironment. The peptide promoted tumor infiltration of CD-8+ cells and increased cell-intrinsic programmed cell death protein 1 (PD-1) and programmed cell death ligand 1 (PD-L1) expression, resulting in cancer cell self-destruction and increased tumor cell death, preserving immune cells. Thus, targeting the interaction between the multifunctional proteins SMAC and survivin represents an innovative therapeutic cancer paradigm.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Apoptosis , Proliferación Celular , Proteínas Mitocondriales , Survivin , Humanos , Survivin/metabolismo , Survivin/genética , Animales , Ratones , Proteínas Mitocondriales/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/tratamiento farmacológico , Inflamación/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Unión Proteica , Proteínas Inhibidoras de la Apoptosis/metabolismo , Proteínas Inhibidoras de la Apoptosis/genética , Péptidos de Penetración Celular/farmacología , Péptidos de Penetración Celular/química , Péptidos/farmacología , Péptidos/química , Terapia de Inmunosupresión
4.
Biochem J ; 481(4): 313-327, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38305364

RESUMEN

Leucine-rich repeat protein kinase 2 (LRRK2) is a multi-domain protein encompassing two of biology's most critical molecular switches, a kinase and a GTPase, and mutations in LRRK2 are key players in the pathogenesis of Parkinson's disease (PD). The availability of multiple structures (full-length and truncated) has opened doors to explore intra-domain cross-talk in LRRK2. A helix extending from the WD40 domain and stably docking onto the kinase domain is common in all available structures. This C-terminal (Ct) helix is a hub of phosphorylation and organelle-localization motifs and thus serves as a multi-functional protein : protein interaction module. To examine its intra-domain interactions, we have recombinantly expressed a stable Ct motif (residues 2480-2527) and used peptide arrays to identify specific binding sites. We have identified a potential interaction site between the Ct helix and a loop in the CORB domain (CORB loop) using a combination of Gaussian accelerated molecular dynamics simulations and peptide arrays. This Ct-Motif contains two auto-phosphorylation sites (T2483 and T2524), and T2524 is a 14-3-3 binding site. The Ct helix, CORB loop, and the CORB-kinase linker together form a part of a dynamic 'CAP' that regulates the N-lobe of the kinase domain. We hypothesize that in inactive, full-length LRRK2, the Ct-helix will also mediate interactions with the N-terminal armadillo, ankyrin, and LRR domains (NTDs) and that binding of Rab substrates, PD mutations, or kinase inhibitors will unleash the NTDs.


Asunto(s)
Proteínas Repetidas Ricas en Leucina , Proteínas Serina-Treonina Quinasas , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Dominios Proteicos , Mutación , Péptidos/metabolismo , Fosforilación
5.
Front Immunol ; 15: 1335446, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38318184

RESUMEN

Introduction: Lyme disease (LD), a rapidly growing public health problem in the US, represents a formidable challenge due to the lack of detailed understanding about how the human immune system responds to its pathogen, the Borrelia burgdorferi bacterium. Despite significant advances in gaining deeper insight into mechanisms the pathogen uses to evade immune response, substantial gaps remain. As a result, molecular tools for the disease diagnosis are lacking with the currently available tests showing poor performance. High interpersonal variability in immune response combined with the ability of the pathogen to use a number of immune evasive tactics have been implicated as underlying factors for the limited test performance. Methods: This study was designed to perform a broad profiling of the entire repertoire of circulating antibodies in human sera at the single-individual level using planar arrays of short linear peptides with random sequences. The peptides sample sparsely, but uniformly the entire combinatorial sequence space of the same length peptides for profiling the humoral immune response to a B.burg. infection and compare them with other diseases with etiology similar to LD and healthy controls. Results: The study revealed substantial variability in antibody binding profiles between individual LD patients even to the same antigen (VlsE protein) and strong similarity between individuals diagnosed with Lyme disease and healthy controls from the areas endemic to LD suggesting a high prevalence of seropositivity in endemic healthy control. Discussion: This work demonstrates the utility of the approach as a valuable analytical tool for agnostic profiling of humoral immune response to a pathogen.


Asunto(s)
Borrelia burgdorferi , Enfermedad de Lyme , Humanos , Inmunidad Humoral , Proteínas Bacterianas , Péptidos/metabolismo
6.
Foods ; 13(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338542

RESUMEN

Food allergies are a significant health issue worldwide. In many countries, labeling of primary allergens in food products has been made mandatory to ensure consumer safety. In food manufacturing settings, the lateral flow immunoassay (LFI)-based on antigen-antibody reactions-is a rapid and accurate method for allergen testing and is widely used. Peptide arrays are tools that enable the synthesis of peptides of any sequence on a substrate and high-throughput analysis of their interactions with chemicals. This study aimed to investigate a new application of peptide arrays in the field of food technology, particularly in the development of antibodies for food allergen testing. First, monoclonal antibodies against hen egg ovalbumin, a major food allergen, were produced. Then, using a peptide array, the epitope and specificity of the antibodies were comprehensively and precisely analyzed. Finally, an LFI kit incorporating the antibodies demonstrated both high specificity and detection sensitivity for food allergen testing. These findings indicate that peptide arrays are valuable tools in the development of antibodies for food allergen testing, ensuring reliability and accuracy at the molecular level.

7.
J Biosci Bioeng ; 137(2): 94-100, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38092600

RESUMEN

Dipeptidyl peptidase IV (DPP-IV) has become an important target in the prevention and treatment of diabetes. Although many DPP-IV inhibitory peptides have been identified by a general approach involving the repeated fractionation of food protein hydrolysates, the obtained results have been dependent on the content of each peptide and fractionation conditions. In the present study, a peptide array that provides comprehensive assays of peptide sequences was used to identify novel DPP-IV inhibitory peptides derived from bovine milk proteins; these peptides were then compared with those identified using the general approach. While the general approach identified only known peptides that were abundant in the hydrolysate, the peptide array-based approach identified 10 novel DPP-IV inhibitory peptides, all of which had proline at the second residue from the N-terminus. The proper or combined use of these two approaches, which have different advantages, will enable the efficient development of novel bioactive foods and drugs.


Asunto(s)
Inhibidores de la Dipeptidil-Peptidasa IV , Proteínas de la Leche , Dipeptidil Peptidasa 4/química , Dipeptidil Peptidasa 4/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Péptidos/química , Secuencia de Aminoácidos
8.
Front Immunol, v. 14, 1269336, fev. 2024
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5295

RESUMEN

The self-cure of rhesus macaques from a schistosome infection and their subsequent strong immunity to a cercarial challenge should provide novel insights into the way these parasites can be eliminated by immunological attack. High-density arrays comprising overlapping 15-mer peptides from target proteins printed on glass slides can be used to screen sera from host species to determine antibody reactivity at the single epitope level. Careful selection of proteins, based on compositional studies, is crucial to encompass only those exposed on or secreted from the intra-mammalian stages and is intended to focus the analysis solely on targets mediating protection. We report the results of this approach using two pools of sera from hi- and lo-responder macaques undergoing self-cure, to screen arrays comprising tegument, esophageal gland, and gastrodermis proteins. We show that, overall, the target epitopes are the same in both groups, but the intensity of response is twice as strong in the high responders. In addition, apart from Sm25, tegument proteins elicit much weaker responses than those originating in the alimentary tract, as was apparent in IFNγR KO mice. We also highlight the most reactive epitopes in key proteins. Armed with this knowledge, we intend to use multi-epitope constructs in vaccination experiments, which seek to emulate the self-cure process in experimental animals and potentially in humans.

9.
Front Immunol ; 14: 1221155, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38077403

RESUMEN

Sera of immune mice that were previously cured of their melanoma through a combined radiation and immunocytokine immunotherapy regimen consisting of 12 Gy of external beam radiation and the intratumoral administration of an immunocytokine (anti-GD2 mAb coupled to IL-2) with long-term immunological memory showed strong antibody-binding against melanoma tumor cell lines via flow cytometric analysis. Using a high-density whole-proteome peptide array (of 6.090.593 unique peptides), we assessed potential protein-targets for antibodies found in immune sera. Sera from 6 of these cured mice were analyzed with this high-density, whole-proteome peptide array to determine specific antibody-binding sites and their linear peptide sequence. We identified thousands of peptides that were targeted by these 6 mice and exhibited strong antibody binding only by immune (after successful cure and rechallenge), not naïve (before tumor implantation) sera and developed a robust method to detect these differentially targeted peptides. Confirmatory studies were done to validate these results using 2 separate systems, a peptide ELISA and a smaller scale peptide array utilizing a slightly different technology. To the best of our knowledge, this is the first study of the full set of germline encoded linear peptide-based proteome epitopes that are recognized by immune sera from mice cured of cancer via radio-immunotherapy. We furthermore found that although the generation of B-cell repertoire in immune development is vastly variable, and numerous epitopes are identified uniquely by immune serum from each of these 6 immune mice evaluated, there are still several epitopes and proteins that are commonly recognized by at least half of the mice studied. This suggests that every mouse has a unique set of antibodies produced in response to the curative therapy, creating an individual "fingerprint." Additionally, certain epitopes and proteins stand out as more immunogenic, as they are recognized by multiple mice in the immune group.


Asunto(s)
Melanoma , Animales , Ratones , Proteoma , Ratones Endogámicos C57BL , Inmunoterapia , Péptidos , Epítopos , Sueros Inmunes
10.
Pathogens ; 12(10)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37887731

RESUMEN

After many decades of research, a schistosome vaccine still looks to be a distant prospect. These helminths can live in the human bloodstream for years, even decades, surrounded by and feeding on the components of the immune response they provoke. The original idea of a vaccine based on the killing of invading cercariae in the skin has proven to be illusory. There has also been a realisation that even if humans develop some protection against infection over a protracted period, it very likely involves IgE-mediated responses that cannot provide the basis for a vaccine. However, it has also become clear that both invasive migrating larvae and adult worms must expose proteins and release secretions into the host environment as part of their normal biological activities. The application of modern 'omics approaches means that we now have a much better idea of the identity of these potential immune targets. This review looks at three animal models in which acquired immunity has been demonstrated and asks whether the mechanisms might inform our vaccine strategies to achieve protection in model hosts and humans. Eliciting responses, either humoral or cellular, that can persist for many months is a challenge. Arming of the lungs with effector T cells, as occurs in mice exposed to the radiation-attenuated cercarial vaccine, is one avenue. Generating IgG antibody titres that reach levels at which they can exert sustained immune pressure to cause worm elimination, as occurs in rhesus macaques, is another. The induction of memory cell populations that can detect trickle invasions of larval stages remains to be explored. One promising approach is the analysis of protective antibodies using high-density peptide arrays of target proteins to identify reactive regions. These can be combined in multi-epitope constructs to immunise a host against many targets simultaneously and cheaply.

11.
Vaccines (Basel) ; 11(9)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37766081

RESUMEN

(1) Background: Coronavirus proteins are quite conserved amongst endemic strains (eCoV) and SARS-CoV-2. We aimed to evaluate whether peptide epitopes might serve as useful diagnostic biomarkers to stratify previous infections and COVID-19. (2) Methods: Peptide epitopes were identified at an amino acid resolution that applied a novel statistical approach to generate data sets of potential antibody binding peptides. (3) Results: Data sets from more than 120 COVID-19 or eCoV-infected patients, as well as vaccinated persons, have been used to generate data sets that have been used to search in silico for potential epitopes in proteins of SARS-CoV-2 and eCoV. Peptide epitopes were validated with >300 serum samples in synthetic peptide micro arrays and epitopes specific for different viruses, in addition to the identified cross reactive epitopes. (4) Conclusions: Most patients develop antibodies against non-structural proteins, which are useful general markers for recent infections. However, there are differences in the epitope patterns of COVID-19, and eCoV, and the S-protein vaccine, which can only be explained by a high degree of cross-reactivity between the viruses, a pre-existing immune response against some epitopes, and even an alternate processing of the vaccine proteins.

12.
Methods Enzymol ; 686: 143-163, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37532398

RESUMEN

The N-degron pathways are a set of proteolytic systems that relate the half-life of a protein to its N-terminal (Nt) residue. In Escherichia coli the principal N-degron pathway is known as the Leu/N-degron pathway. Proteins degraded by this pathway contain an Nt degradation signal (N-degron) composed of an Nt primary destabilizing (Nd1) residue (Leu, Phe, Trp or Tyr). All Leu/N-degron substrates are recognized by the adaptor protein, ClpS and delivered to the ClpAP protease for degradation. Although many components of the pathway are well defined, the physiological role of this pathway remains poorly understood. To address this gap in knowledge we developed a biospecific affinity chromatography technique to isolate physiological substrates of the Leu/N-degron pathway. In this chapter we describe the use of peptide arrays to determine the binding specificity of ClpS. We demonstrate how the information obtained from the peptide array, when coupled with ClpS affinity chromatography, can be used to specifically elute physiological Leu/N-degron ligands from a bacterial lysate. These techniques are illustrated using E. coli ClpS (EcClpS), but both are broadly suitable for application to related N-recognins and systems, not only for the determination of N-recognin specificity, but also for the identification of natural Leu/N-degron ligands from various bacterial and plant species that contain ClpS homologs.


Asunto(s)
Escherichia coli , Péptidos , Escherichia coli/genética , Escherichia coli/metabolismo , Ligandos , Unión Proteica , Péptidos/química , Proteolisis , Péptido Hidrolasas/metabolismo , Especificidad por Sustrato
13.
Methods Mol Biol ; 2690: 269-280, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37450154

RESUMEN

Protein-protein interactions (PPI) are essential to understanding the cellular function and key mechanisms necessary for life. Although understanding of the interactome and proteome has exploded due to high-throughput methods in the past decade, often limitations in technical methods result in a partial understanding of all PPI. Here we present a protocol dedicated to the Protein Interaction Screen on a peptide Matrix (PrISMa). PrISMa functions as a high-throughput screen unique to targeting weak and transient interactions often missed in other PPI methods. In addition, PrISMa also excels at the mapping of interactions across linear sequences of proteins that are commonly enriched in intrinsically disordered regions (IDRs) which cover 35-40% of the mammalian proteome. This protocol aims to expand the understanding of the targeted proteins by identifying transient interactors.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteoma , Animales , Proteínas Intrínsecamente Desordenadas/metabolismo , Mamíferos/metabolismo , Péptidos , Mapeo de Interacción de Proteínas/métodos , Proteoma/metabolismo
14.
Immunol Lett ; 259: 30-36, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37247788

RESUMEN

BACKGROUND: Systemic lupus erythematosus (SLE) is one of the most common autoimmune diseases in China. At present, there are hundreds of autoantibodies in SLE patients; however, only a dozen of the autoantibodies can be routinely detected, and the available diagnostic antibodies are not sufficient for diagnosis or differential diagnosis of SLE patients with atypical clinical manifestations or other autoimmune diseases. Therefore, it is necessary to find new diagnostic markers to improve the diagnostic effect of SLE. METHODS: The displayed random peptide library and peptide microarray were combined to identify SLE-related epitope peptides. A case-control design was used. The IgG antibodies in the sera from SLE patients, healthy controls, and other autoimmune disease controls underwent a reaction with the phage-display random peptide library, respectively. Selected epitope peptides were used to construct a peptide chip. A total of 644 serum samples (including 296 SLE patients, 168 disease controls, and 180 healthy controls) were used for further screening and verification. Peptides with an area under the curve (AUC) > 0.650 were further verified by ELISA. Finally, 500 serum samples (including 200 SLE patients, 150 disease controls, and 150 healthy controls) were used to verify and evaluate the diagnostic and differential diagnostic efficacy of the selected peptides. RESULTS: After the previous screening, five epitope peptides (SLE_P19, SLE_P20, SLE_P27, SLE_P28, and SLE_P29) may have potential as SLE diagnostic markers. Additionally, SLE_P27 was superior to the other four peptides in the diagnosis and differential diagnosis of SLE and rheumatoid arthritis (RA). The AUC of SLE_P27 was 0.938, the sensitivity was 76.00%, the specificity was 92.70%, the positive likelihood ratio was 10.411, the negative likelihood ratio was 0.259, and the accuracy was 84.40%. The diagnostic efficacy of SLE can be increased by combining the five selected peptides with the anti-double stranded DNA antibody (anti-dsDNA) and anti-Smith antibodies (anti-Sm). CONCLUSIONS: In this study, we identified five peptides that may serve as potential biomarkers for SLE diagnosis using the strategy of combining the displayed random peptide library with the peptide microarray. The combination of selected peptides and existing autoantibodies can significantly improve the diagnostic efficiency. These specific peptides are expected to be new diagnostic markers for SLE.


Asunto(s)
Enfermedades Autoinmunes , Lupus Eritematoso Sistémico , Humanos , Epítopos , Biblioteca de Péptidos , Péptidos , Autoanticuerpos
15.
Braz J Microbiol ; 54(3): 1751-1759, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37198420

RESUMEN

Non-sputum-based biomarker assay is urgently required as per WHO's target product pipeline for diagnosis of tuberculosis. Therefore, the current study was designed to evaluate the utility of previously identified proteins, encoded by in vivo expressed mycobacterial transcripts in pulmonary tuberculosis, as diagnostic targets for a serodiagnostic assay. A total of 300 subjects were recruited including smear+, smear- pulmonary tuberculosis (PTB) patients, sarcoidosis patients, lung cancer patients and healthy controls. Proteins encoded by eight in vivo expressed transcripts selected from previous study including those encoded by two topmost expressed and six RD transcripts (Rv0986, Rv0971, Rv1965, Rv1971, Rv2351c, Rv2657c, Rv2674, Rv3121) were analyzed for B-cell epitopes by peptide arrays/bioinformatics. Enzyme-linked immunosorbent assay was used to evaluate the antibody response against the selected peptides in sera from PTB and controls. Overall 12 peptides were selected for serodiagnosis. All the peptides were initially screened for their antibody response. The peptide with highest sensitivity and specificity was further assessed for its serodiagnostic ability in all the study subjects. The mean absorbance values for antibody response to selected peptide were significantly higher (p<0.001) in PTB patients as compared to healthy controls; however, the sensitivity for diagnosis of PTB was 31% for smear+ and 20% for smear- PTB patients. Thus, the peptides encoded by in vivo expressed transcripts elicited a significant antibody response, but are not suitable candidates for serodiagnosis of PTB.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Pulmonar , Humanos , Mycobacterium tuberculosis/genética , Antígenos Bacterianos/genética , Anticuerpos Antibacterianos , Tuberculosis Pulmonar/microbiología , Ensayo de Inmunoadsorción Enzimática , Sensibilidad y Especificidad , Péptidos
16.
bioRxiv ; 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-36896021

RESUMEN

Hoefges et al. utilized a whole-proteome peptide array approach to show that C57BL/6 mice develop a large repertoire of antibodies against linear peptide sequences of their melanoma after receiving a curative immunotherapy regimen consisting of radiation and an immunocytokine. Antibodies can play an important role in innate and adaptive immune responses against cancer, and in preventing infectious disease. Flow cytometry analysis of sera of immune mice that were previously cured of their melanoma through a combined immunotherapy regimen with long-term memory showed strong antibody-binding against melanoma tumor cell lines. Using a high-density whole-proteome peptide array, we assessed potential protein-targets for antibodies found in immune sera. Sera from 6 of these cured mice were analyzed with this high-density, whole-proteome peptide array to determine specific antibody-binding sites and their linear peptide sequence. We identified thousands of peptides that were targeted by 2 or more of these 6 mice and exhibited strong antibody binding only by immune, not naive sera. Confirmatory studies were done to validate these results using 2 separate ELISA-based systems. To the best of our knowledge, this is the first study of the "immunome" of protein-based epitopes that are recognized by immune sera from mice cured of cancer via immunotherapy.

17.
Methods Mol Biol ; 2578: 63-81, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36152281

RESUMEN

Understanding antibody specificity and defining response profiles to antigens continue to be essential to both vaccine research and therapeutic antibody development. Peptide scanning assays enable mapping of continuous epitopes in order to delineate antibody-antigen interactions beyond traditional immunoassay formats. We have developed a relatively low-cost method to generate peptide microarray slides for antibody binding studies that allow for interrogation of up to 1536 overlapping peptides derived from the target antigens on a single microslide. Using an IntavisAG MultiPep RS peptide synthesizer and a Digilab MicroGrid II 600 microarray printer robot, each peptide is tagged with a polyethylene glycol aminooxy terminus to improve peptide solubility, orientation, and conjugation efficiency to the slide surface. Interrogation of the surface can then be performed using polyclonal immune sera or monoclonal antibodies, and sensitive detection using an InnoScan 1100 AL scanner with fluorescent-conjugated secondary reagents maximizes conservation of reagents.


Asunto(s)
Análisis por Matrices de Proteínas , Vacunas , Anticuerpos Monoclonales , Mapeo Epitopo/métodos , Epítopos , Sueros Inmunes , Péptidos , Polietilenglicoles , Análisis por Matrices de Proteínas/métodos
18.
Methods Mol Biol ; 2578: 103-120, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36152283

RESUMEN

This chapter describes the principles for selection of antigenic peptides for the development of anti-peptide antibodies suitable for microarray-based multiplex affinity assays and optional mass spectrometry detection. The methods described here are mostly applicable to small- and medium-scale multiplex affinity assay and microarrays. Although the same principles of peptide selection may also be applied to larger-scale arrays (with 100+ features), informatics software and printing methods may well differ. Due to the sheer number of proteins/peptides to be processed and analyzed, dedicated software with high processing capacity and enterprise-level array robotics may be required for larger-scale efforts. This report aims to provide practical advice to those seeking to develop or use arrays with up to ~100 different peptide or protein features.


Asunto(s)
Péptidos , Análisis por Matrices de Proteínas , Antígenos , Espectrometría de Masas/métodos , Péptidos/química , Análisis por Matrices de Proteínas/métodos , Proteínas
19.
Methods Mol Biol ; 2578: 177-189, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36152287

RESUMEN

Peptide array-based in situ fluorescence assay is a reliable and efficient technique for high-throughput profiling and localization of enzyme activity. Here, peptide array is fabricated by spotting five specific MMPs (MMP-2, MMP-3, MMP-7, MMP-9, and MMP-14) peptide substrates containing FAM/Dabcyl fluorescent resonance energy transfer (FRET) pair on the surface of cell monolayers or tissue sections. MMP activities are determined in situ by the fluorescence intensity of stained cells/tissues due to the cellular internalization of hydrolyzed peptide fragments with FAM moieties. Identification of MMP expression patterns of cells, highly sensitive determination of MMP activities in cell monolayer (as low as hundreds of cells per square centimeter), and evaluation of inhibition potencies of six compounds toward five MMPs are achieved by this method. Five MMP activities in the localized parts of 32 thyroid tissues are also well profiled without separation or extraction procedures.


Asunto(s)
Metaloproteinasa 2 de la Matriz , Metaloproteinasa 9 de la Matriz , Metaloproteinasa 13 de la Matriz , Metaloproteinasa 14 de la Matriz , Metaloproteinasa 3 de la Matriz , Metaloproteinasa 7 de la Matriz , Fragmentos de Péptidos/metabolismo , Péptidos/química
20.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-969296

RESUMEN

This article introduces a high-throughput molecular screening chip: peptide arrays. As a kind of biochip, the peptide arrays are easy to synthesis, stable in probe chemistry, high-throughput in screening and highly specific compared with other biochips. To analyze the new high-throughput data, researchers have recently proposed a series of deep learning and bioinformatics methods to study the binding characteristics of peptide probes and target molecules. Those algorithms could be used to predict the binding affinity of protein targets against peptides. Moreover, peptide arrays could also play important roles in analyzing protein-protein interactions,screening novel drug peptides, disease diagnosis and general health assessment based on recent reports. The application of this new technology could provide novel insights into public health research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA