Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
BMC Biol ; 20(1): 56, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35227266

RESUMEN

BACKGROUND: Mitochondria and peroxisomes are the two organelles that are most affected during adaptation to microoxic or anoxic environments. Mitochondria are known to transform into anaerobic mitochondria, hydrogenosomes, mitosomes, and various transition stages in between, collectively called mitochondrion-related organelles (MROs), which vary in enzymatic capacity. Anaerobic peroxisomes were identified only recently, and their putatively most conserved function seems to be the metabolism of inositol. The group Archamoebae includes anaerobes bearing both anaerobic peroxisomes and MROs, specifically hydrogenosomes in free-living Mastigamoeba balamuthi and mitosomes in the human pathogen Entamoeba histolytica, while the organelles within the third lineage represented by Pelomyxa remain uncharacterized. RESULTS: We generated high-quality genome and transcriptome drafts from Pelomyxa schiedti using single-cell omics. These data provided clear evidence for anaerobic derivates of mitochondria and peroxisomes in this species, and corresponding vesicles were tentatively identified in electron micrographs. In silico reconstructed MRO metabolism harbors respiratory complex II, electron-transferring flavoprotein, a partial TCA cycle running presumably in the reductive direction, pyruvate:ferredoxin oxidoreductase, [FeFe]-hydrogenases, a glycine cleavage system, a sulfate activation pathway, and an expanded set of NIF enzymes for iron-sulfur cluster assembly. When expressed in the heterologous system of yeast, some of these candidates localized into mitochondria, supporting their involvement in the MRO metabolism. The putative functions of P. schiedti peroxisomes could be pyridoxal 5'-phosphate biosynthesis, amino acid and carbohydrate metabolism, and hydrolase activities. Unexpectedly, out of 67 predicted peroxisomal enzymes, only four were also reported in M. balamuthi, namely peroxisomal processing peptidase, nudix hydrolase, inositol 2-dehydrogenase, and D-lactate dehydrogenase. Localizations in yeast corroborated peroxisomal functions of the latter two. CONCLUSIONS: This study revealed the presence and partially annotated the function of anaerobic derivates of mitochondria and peroxisomes in P. schiedti using single-cell genomics, localizations in yeast heterologous systems, and transmission electron microscopy. The MRO metabolism resembles that of M. balamuthi and most likely reflects the state in the common ancestor of Archamoebae. The peroxisomal metabolism is strikingly richer in P. schiedti. The presence of myo-inositol 2-dehydrogenase in the predicted peroxisomal proteome corroborates the situation in other Archamoebae, but future experimental evidence is needed to verify additional functions of this organelle.


Asunto(s)
Amoeba , Archamoebae , Amoeba/genética , Amoeba/metabolismo , Anaerobiosis , Archamoebae/genética , Archamoebae/metabolismo , Genómica , Humanos , Mitocondrias/metabolismo , Peroxisomas/metabolismo , Saccharomyces cerevisiae
2.
Protoplasma ; 259(6): 1409-1415, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35103866

RESUMEN

The nucleus of some representatives of the genus Pelomyxa (Amoebozoa, Archamoebae, Pelobiontida) contains specific bodies (membrane-less organelles). They may be either embedded in the nucleolar mass or detached from the nucleolus. We termed these nuclear bodies the glomerulosomes for their characteristic ultrastructural appearance. The glomerulosomes are distinct nuclear bodies, about 1 µm in diameter. The morphological and diagnostic unit of a glomerulosome is an electron-dense thread/string, about 30-40 nm in thickness. These threads are not direct continuation of the nucleolar material. The threads create the unique geometric appearance of the glomerulosome by being organized into precisely parallel rows/cords. Each cord of the threads can curve at different angles within the glomerulosome body, but the threads themselves are not coiled. Nowadays, the glomerulosomes have been discovered in P. palustris, P. stagnalis, P. paradoxa, and Pelomyxa sp. Despite the unique appearance of glomerulosomes, their existence may be a more common phenomenon in eukaryotic cells than just a specific feature of the nucleus of elected pelomyxes.


Asunto(s)
Archamoebae , Nucléolo Celular , Núcleo Celular/ultraestructura , Orgánulos
3.
J Eukaryot Microbiol ; 69(3): e12889, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35029005

RESUMEN

We described Pelomyxa doughnuta sp. nov. and examined it with the use of light, electron, and immunofluorescence microscopy as well as cytochemical methods. The cells of P. doughnuta sp. nov. are usually binuclear, although cells with one, three, or four nuclei are sometimes found in the population. A unique feature of the new species is a dense capsule around the nucleus. It consists of a continuous layer of glycogen 5-20 µm thick. The tubulin cytoskeleton is mainly represented by perinuclear microtubules. P. doughnuta sp. nov. has a filamentous glycocalyx and strongly reduced components of flagellar apparatus. Obligate prokaryotic endocytobionts of two morphotypes are present in the cytoplasm.


Asunto(s)
Archamoebae , Glucógeno , Núcleo Celular , Citoplasma , Microtúbulos
4.
Protoplasma ; 257(6): 1701-1708, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32829470

RESUMEN

The nature and features of organization of reserve polysaccharides in three species of the genus Pelomyxa-P. palustris, P. belevskii, and P. stagnalis-were studied using light and transmission electron microscopy. We applied the periodic acid-Schiff reaction that is a highly selective method for detecting glycogen. The fluorescent dye auramine-SO2 (Au-SO2) was used as a Schiff-type reagent. The densely packed aggregates of glycogen that form the morphologically differentiated organelle-like bodies are revealed in the cytoplasm in all studied species. The organization of these bodies is characterized by the species-specific features, while in most cases, their size and number in the cells vary depending on the season of the year. Although in all the cases we studied, these bodies do not have their own boundary membrane, in fact, they are surrounded by membranous structures. These structures differ in a variety of Pelomyxa species. We concluded that there are two groups of species in the genus Pelomyxa. The first one includes organisms containing glycogen structures in the cytoplasm (P. palustris, P. belevskii, P. stagnalis, P. binucleata, P. corona, P. secunda). No inclusions resembling glycogen bodies were found in P. flava, P. paradoxa, P. gruberi, and P. prima that form the second group.


Asunto(s)
Archamoebae/química , Microscopía Electrónica de Transmisión/métodos , Polisacáridos/metabolismo
5.
Protist ; 166(1): 14-41, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25553396

RESUMEN

Members of the archamoebae comprise free-living and endobiotic amoeboid flagellates and amoebae that live in anoxic/microoxic habitats. Recently, the group has been divided into four separate families, Mastigamoebidae, Entamoebidae, Pelomyxidae, and Rhizomastixidae, whose interrelationships have not been completely resolved. There still are several key members of the archamoebae, notably the genus Mastigella, from which sequence data are missing. We established 12 strains of 5 species of Mastigella and Pelomyxa in culture, examined their morphology and determined their actin gene sequences. In addition, we examined the ultrastructure of three strains and determined and analyzed SSU rDNA sequences of two strains. Our data strongly suggest that Mastigella is specifically related to Pelomyxa, and it is transferred into the family Pelomyxidae. Surprisingly, Mastigella is likely paraphyletic with Pelomyxa forming its internal branch. The two genera share several morphological features that point to their common evolutionary history. Three new species of Mastigella are described: M. erinacea sp. nov., M. rubiformis sp. nov. and M. ineffigiata sp. nov.


Asunto(s)
Archamoebae/genética , Archamoebae/ultraestructura , Actinas/genética , Archamoebae/clasificación , Análisis por Conglomerados , ADN Protozoario/química , ADN Protozoario/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Datos de Secuencia Molecular , Filogenia , Proteínas Protozoarias/genética , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA