RESUMEN
OBJECTIVES: To evaluate in vivo 1) the bioavailability of trans-resveratrol when administered through sublingual capsules; 2) the effect of resveratrol on the protein composition of the acquired enamel pellicle (AEP). DESIGN: Ten volunteers received a sublingual capsule containing 50 mg of trans-resveratrol. Unstimulated saliva was then collected after 0, 30, 60, and 120 min and AEP was collected after 120 min following administration of the capsule. In the next week, the volunteers received a placebo sublingual capsule, and saliva and AEP were collected again. Saliva samples were analyzed for free trans-resveratrol using high-performance liquid chromatopgraphy (HPLC), and AEP samples were subjected to proteomic analysis (nLC-ESI-MS/MS). RESULTS: Trans-resveratrol was detected in saliva at all the time points evaluated, with the peak at 30 min. A total of 242 proteins were identified in both groups. Ninety-six proteins were increased and 23 proteins were decreased in the Resveratrol group. Among the up-regulated proteins, isoforms of cystatins, PRPs, Mucin-7, Histatin-1, Lactotrasnferrin and Lysozyme-C were increased and the isoforms of Protein S100, Neutrophil defensins, Albumin, PRPs, and, Statherin were decreased in Resveratrol group. CONCLUSION: The sublingual capsule is effective at increasing the bioavailability of trans-resveratrol in saliva. Several proteins involved in important processes to maintain systemic and oral health homeostasis were identified. These proteins differently expressed due to the presence of trans-resveratrol deserve attention for future studies, since they have important functions, mainly related to antimicrobial action.
Asunto(s)
Cápsulas , Película Dental , Resveratrol , Saliva , Humanos , Resveratrol/farmacología , Resveratrol/farmacocinética , Resveratrol/administración & dosificación , Saliva/metabolismo , Saliva/química , Masculino , Adulto , Película Dental/metabolismo , Película Dental/química , Cromatografía Líquida de Alta Presión , Femenino , Disponibilidad Biológica , Estilbenos/farmacocinética , Estilbenos/farmacología , Estilbenos/administración & dosificación , Proteómica , Espectrometría de Masas en Tándem , Proteínas y Péptidos Salivales/metabolismoRESUMEN
OBJECTIVE: This study was designed in two-legs. In the in vivo, we explored the potential of a rinse solution containing a combination (Comb) of 0.1 mg/mL CaneCPI-5 (sugarcane-derive cystatin), 1.88 × 10- 5M StN15 (statherin-derived peptide) and 1.0 mg/mL hemoglobin (Hb) to change the protein profile of the acquired enamel pellicle(AEP) and the microbiome of the enamel biofilm. The in vitro, was designed to reveal the effects of Comb on the viability and bacterial composition of the microcosm biofilm, as well as on enamel demineralization. MATERIALS AND METHODS: In vivo study, 10 participants rinsed (10mL,1 min) with either deionized water (H2O-control) or Comb. AEP and biofilm were collected after 2 and 3 h, respectively, after rinsing. AEP samples underwent proteomics analysis, while biofilm microbiome was assessed via 16 S-rRNA Next Generation Sequencing(NGS). In vitro study, a microcosm biofilm protocol was employed. Ninety-six enamel specimens were treated with: 1)Phosphate-Buffered Solution-PBS(negative-control), 2)0.12%Chlorhexidine, 3)500ppmNaF and 4)Comb. Resazurin, colony-forming-units(CFU) and Transversal Microradiography(TMR) were performed. RESULTS: The proteomic results revealed higher quantity of proteins in the Comb compared to control associated with immune system response and oral microbial adhesion. Microbiome showed a significant increase in bacteria linked to a healthy microbiota, in the Comb group. In the in vitro study, Comb group was only efficient in reducing mineral-loss and lesion-depth compared to the PBS. CONCLUSIONS: The AEP modification altered the subsequent layers, affecting the initial process of bacterial adhesion of pathogenic and commensal bacteria, as well as enamel demineralization. CLINICAL RELEVANCE: Comb group shows promise in shaping oral health by potentially introducing innovative approaches to prevent enamel demineralization and deter tooth decay.
Asunto(s)
Caries Dental , Desmineralización Dental , Humanos , Película Dental/química , Película Dental/microbiología , Caries Dental/prevención & control , Proteómica , Biopelículas , Hemoglobinas/análisis , Desmineralización Dental/prevención & controlRESUMEN
INTRODUCTION: The identification of acid-resistant proteins, including hemoglobin (Hb), within the acquired enamel pellicle (AEP) led to the proposition of the "acquired pellicle engineering" concept, which involves the modification of the AEP by incorporating specific proteins, presenting a novel strategy to prevent dental demineralization. OBJECTIVE: Combining in vivo and in vitro proof-of-concept protocols, we sought to reveal the impact of AEP engineering with Hb protein on the biofilm microbiome and enamel demineralization. METHODS: In the in vivo studies, 10 volunteers, in 2 independent experiments, rinsed (10 mL,1 min) with deionized water-negative control or 1.0 mg/mL Hb. The AEP and biofilm formed along 2 or 3 h, respectively, were collected. AEP was analyzed by quantitative shotgun-label-free proteomics and biofilm by 16S-rRNA next-generation sequencing (NGS). In in vitro study, a microcosm biofilm protocol was employed. Seventy-two bovine enamel specimens were treated with (1) phosphate-buffered solution (PBS), (2) 0.12% chlorhexidine, (3) 500 ppm NaF, (4) 1.0 mg/mL Hb, (5) 2.0 mg/mL Hb, and (6) 4.0 mg/mL Hb. The biofilm was cultivated for 5 days. Resazurin, colony forming units (CFU), and transversal microradiography were performed. RESULTS: Proteomics and NGS analysis revealed that Hb increased proteins with antioxidant, antimicrobial, acid-resistance, hydroxyapatite-affinity, calcium-binding properties and showed a reduction in oral pathogenic bacteria. In vitro experiments demonstrated that the lowest Hb concentration was the most effective in reducing bacterial activity, CFU, and enamel demineralization compared to PBS. CONCLUSION: These findings suggest that Hb could be incorporated into anticaries dental products to modify the oral microbiome and control caries, highlighting its potential for AEP and biofilm microbiome engineering.
Asunto(s)
Biopelículas , Película Dental , Hemoglobinas , Antisépticos Bucales , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Hemoglobinas/análisis , Película Dental/microbiología , Humanos , Animales , Bovinos , Antisépticos Bucales/farmacología , Desmineralización Dental/prevención & control , Desmineralización Dental/microbiología , Adulto , Esmalte Dental/microbiología , Esmalte Dental/efectos de los fármacos , Masculino , ARN Ribosómico 16S , Femenino , Adulto Joven , Clorhexidina/farmacologíaRESUMEN
OBJECTIVE: This study evaluated the effect of administration of trans-resveratrol-containing orodispersible tablets on the protein composition of the AEP and on blood plasma trans-resveratrol concentrations. METHODS: Ten volunteers participated in two crossover double-blind phases. In each phase, after dental prophylaxis, they received a trans-resveratrol (15 mg) orodispersible tablet, or a placebo tablet (without actives). The AEP formed after 120 min was collected with electrode filter papers soaked in 3 % citric acid. Blood samples were collected 30, 45, 60 and 120 min after the use of the tablet. After protein extraction, AEP samples were analyzed by shotgun labelfree quantitative proteomics and plasma samples were analyzed by high-performance liquid chromatography (HPLC). RESULTS: Eight hundred and two proteins were identified in the AEP. Among them, 336 and 213 were unique to the trans-resveratrol and control groups, respectively, while 253 were common to both groups. Proteins with important functions in the AEP had increased expression in the trans-resveratroltreated group, such as neutrophil defensins, S100 protein isoforms, lysozyme C, cystatin-D, mucin-7, alphaamylase, albumin, haptoglobin and statherin. Trans-resveratrol was detected in the plasma at all the times evaluated, with the peak at 30 min. CONCLUSIONS: The administration of trans-resveratrol in sublingual orodispersible tablets was effective both to increase the bioavailability of the polyphenol and the expression of antibacterial and acid-resistant proteins in the AEP, which might benefit oral and general health.
Asunto(s)
Proteínas , Humanos , Película Dental , Proteínas/análisis , Proteínas/metabolismo , Proteínas/farmacología , Resveratrol/farmacología , Resveratrol/análisis , Resveratrol/metabolismo , Estudios Cruzados , Método Doble CiegoRESUMEN
INTRODUCTION: This study investigated the changes in the acquired enamel pellicle (AEP) proteome when this integument is formed in vivo after treatment with sugarcane-derived cystatin (CaneCPI-5), hemoglobin (HB), and a statherin-derived peptide (StN15), or their combination and then exposed to an intrinsic acid challenge. The effectiveness of these treatments in preventing intrinsic erosion was also evaluated. METHODS: Ten volunteers, after prophylaxis, in 5 crossover phases, rinsed with the following solutions (10 mL, 1 min): control (deionized water-H2O) - group 1, 0.1 mg/mL CaneCPI-5 - group 2, 1.0 mg/mL HB - group 3, 1.88 × 10-5
Asunto(s)
Calcio , Erosión de los Dientes , Humanos , Calcio/metabolismo , Película Dental , Péptidos , Proteoma , Erosión de los Dientes/prevención & control , Hemoglobinas/metabolismoRESUMEN
OBJECTIVE: The aim of this study was to determine the effect of different concentrations of resveratrol in protecting enamel against initial dental erosion in vitro. METHODS: Ninety bovine enamel samples (4 × 4 mm) were divided into six groups: Phosphate buffered saline (negative control; PBS), Commercial solution (Elmex Erosion Protection™; positive control) and resveratrol at 4 different concentrations (1, 10, 100 or 400 µg/mL). Initially, the samples were incubated in saliva for the formation of the acquired pellicle (250 µL, 1 h, 37 °C, 250 rpm). Afterward, the samples were incubated in the respective treatments (250 µL, 1 min, 37 °C, 250 rpm) and then reincubated in saliva (250 µL, 1 h, 37 °C, 250 rpm). Finally, the samples were subjected to an erosive challenge by incubating in 1 % citric acid (1 mL, pH 3.5, 1 min, 25 °C, 250 rpm). The percentage surface microhardness change (% SMC) was assessed using a microhardness tester. Data were analyzed by Kruskal-Wallis and Dunn's tests (p < 0.05). RESULTS: The treatments with Elmex™ and resveratrol (1, 10 and 100 µg/mL) significantly protected enamel compared to the negative control, without significant differences among them. However, the group treated with the highest resveratrol concentration (400 µg/mL) did not show a significant difference from the negative control. CONCLUSIONS: Resveratrol at concentrations ranging from 1 to 100 µg/ml was effective in preventing loss of enamel surface microhardness. CLINICAL SIGNIFICANCE: This result suggests a potential new direction for the development of dental products based on resveratrol for the prevention of dental erosion.
Asunto(s)
Erosión de los Dientes , Animales , Bovinos , Resveratrol/farmacología , Erosión de los Dientes/prevención & control , Esmalte Dental , Película Dental , SalivaRESUMEN
Abstract Objectives This study aimed to assess the effect of proanthocyanidin, palm oil and vitamin E against erosive and erosive+abrasive challenges in vitro after enamel pellicle formation in situ. Methodology Bovine enamel blocks (n=84) were obtained and divided into the following treatment groups: negative control (NC) - deionized water; positive control (PC) - SnCl2/NaF/AmF-containing solution; palm oil (PO); 2% proanthocyanidin (P2); vitamin E (VitE); 2% proanthocyanidin+palm oil (P2PO); and 2% proanthocyanidin+vitamin E (P2VitE). For 5 days, one half of the sample from each group was subjected to erosion and the other half was subjected to erosion+abrasion. The acquired enamel pellicle (AEP) was pre-formed in situ for 30 minutes. The specimens were then treated in vitro with solutions (500 µl, 30s for each group). Subsequently, the blocks were left in the oral cavity for another hour to obtain the modified AEP. The blocks were immersed in 0.5% citric acid (pH=2.5) for 90s, 4×/day. AEP formation and treatment were carried out before the first and third erosive challenges, and after these challenges, abrasive cycles (15s) were performed on half of the samples. Enamel wear was quantified by profilometry and data were analyzed by two-way ANOVA and Tukey's test (p<0.05). Results All groups showed higher wear when exposed to erosion+abrasion than when exposed to erosion alone (p=0.0001). PO, P2VitE, P2, and P2PO showed enamel wear similar to the PC group, but only PC, PO and P2VitE differed from the NC group. The other groups behaved similarly to NC. Conclusion It was concluded that the combination of proanthocyanidin and vitamin E was effective in reducing wear in the face of in vitro erosive and erosive+abrasive challenges.
RESUMEN
The aim of this study was to evaluate the effect of film-forming polymer solutions of different concentrations and pH values, either associated or not with sodium fluoride (F; 225 ppm F-), when applied during the initial stage of salivary pellicle formation, to prevent the dissolution of hydroxyapatite (HA), which was determined by the pH-stat method. Polyacrylic acid (PA), chitosan, sodium linear polyphosphate (LPP), polyvinyl methyl ether/maleic anhydride (PVM/MA), and propylene glycol alginate (PGA) were tested in three concentrations (lower, medium, and higher), two pH values (native or adjusted), and either associated or not with F. Distilled water, F, and stannous ion+fluoride (Sn/F; 225 ppm F- and 800 ppm Sn2+, as SnCl2) solutions were the controls, totalizing 63 groups. HA crystals were pretreated with human saliva for 1 min to allow pellicle formation, then immersed in the experimental solutions (1 min), and exposed to saliva for another 28 min. Subsequently, they were added to a 0.3% citric acid solution (pH = 3.8), connected to a pH-stat system that added aliquots of 28 µL 0.1 N HCl for a total reaction time of 5 min. Data were analyzed with one-way ANOVA and Tukey's tests (α = 0.05). For PA alone, the concentrations of 0.1% (native pH), 0.06%, and 0.08% (both pH adjusted) showed significantly lower HA dissolution than the negative control. PA concentrations of 0.1% and 0.08%, of both pH values, improved the effect of F against HA dissolution to a near-identical value as Sn/F. All solutions containing chitosan and LPP significantly reduced HA dissolution in comparison with the control. For chitosan, the concentration of 0.5% (in both pH values) improved the effect of F. LPP at 0.5% (native pH) and all associations of LPP with F outperformed the effect of F. Some PVM/MA solutions significantly reduced HA dissolution but PVM/MA could not improve the protection of F. PGA was incapable of reducing HA dissolution or improving F effect. It was concluded that chitosan, LPP, and some PA and PVM/MA solutions used alone were capable of reducing HA dissolution. Only PA, chitosan, and LPP were able to enhance fluoride protection, but for PA and chitosan, this was influenced by the polymer concentration.
Asunto(s)
Quitosano , Erosión de los Dientes , Humanos , Fluoruros/farmacología , Durapatita/química , Polímeros , Quitosano/farmacología , Erosión de los Dientes/prevención & control , Fluoruro de Sodio/farmacología , Fluoruro de Sodio/química , Fluoruros de Estaño , Polifosfatos/farmacología , PolivinilosRESUMEN
OBJECTIVES: The present study aimed to evaluate the potential of the salivary pellicle (SP) formed on titanium (Ti) surfaces to modulate the formation of a biofilm composed of Streptococcus gordonii, Actinomyces naeslundii, Fusobacterium nucleatum, and Porphyromonas gingivalis. MATERIALS AND METHODS: Ti substrates were incubated for 2 h with a pool of saliva samples obtained from 10 systemically and periodontally healthy subjects. Enamel substrates were included as a biological reference. Scanning electron microscopy (SEM) and Raman spectroscopy analysis were used to analyze the formation of the salivary pellicle. After the SP formation, the surfaces were incubated for 12 h with a mix of Streptococcus gordonii, Actinomyces naeslundii, Fusobacterium nucleatum, and Porphyromonas gingivalis. The number of bacterial cells attached to each surface was determined by the XTT assay while bacterial viability was analyzed by fluorescence microscopy using the LIVE/DEAD® BacLightTM kit. RESULTS: The SEM and Raman spectroscopy analysis confirmed the presence of a salivary pellicle formed on the tested surfaces. Regarding the biofilm formation, the presence of the SP decreases the number of the bacterial cells detected in the test surfaces, compared with the uncover substrates. Even more, the SP-covered substrates showed similar bacterial counts in both Ti and enamel surfaces, meaning that the physicochemical differences of the substrates were less determinant than the presence of the SP. While on the SP-uncover substrates, differences in the bacterial adhesion patterns were directly related to the physicochemical nature of the substrates. CONCLUSIONS: The salivary pellicle was the main modulator in the development of the biofilm consisting of representative oral bacteria on the Ti substrates. CLINICAL RELEVANCE: The results of this study provide valuable information on the modulatory effect of the salivary pellicle on biofilm formation; such information allows us to understand better the events involved in the formation of oral biofilms on Ti dental implants.
Asunto(s)
Biopelículas , Titanio , Humanos , Película Dental/química , Película Dental/microbiología , Titanio/química , Adhesión Bacteriana , Streptococcus gordonii , Fusobacterium nucleatum , Propiedades de SuperficieRESUMEN
OBJECTIVE: Evaluate CaneCPI-5 associated with Vitamin E in acquired enamel pellicle (AEP) engineering to prevent dental erosion. METHODS: 180 human enamel specimens were divided into 12 groups and treated with the following solutions: Cane+VitT and Cane+VitS- CaneCPI-5 + Vit E; Vit+CaneT and Vit+CaneS- Vit E + CaneCPI-5; VitT and VitS- Vit E; CaneT and CaneS- CaneCPI-5; ControlT and ControlS - AmF/NaF/SnCl2; WaterT and WaterS- Deionized water. Groups' name followed by "T" were first treated (200 µl; 2 min) and then incubated in human saliva (200 µl; 1 h) to form the AEP. For groups followed by "S", the AEP was formed and then treatment was applied. The erosive challenge consisted of immersion in 1% citric acid (1 min, 1x/day, for 3 days). The percentage of superficial hardness loss (%SHL) and the relative surface reflection intensity (%SRI) were subjected to normality and homogeneity tests, Shapiro-Wilk and Levene tests, respectively. Subsequently, the data were analyzed using two-way ANOVA, Tukey's test and Pearson's correlation (p < 0.005). RESULTS: For%SHL and%SRI, water controls showed significantly lower protective capacity. Cane+VitT, Cane+VitS, and Vit+CaneS presented the lowest%SHL, and VitT and VitS did not differ from Vit+CaneT, but they were different from the other groups (p = 0.002). The greatest%SRI was found for the Cane+VitT, Vit+CaneT, VitT, Cane+VitS, Vit+CaneS, and VitS groups, which did not significantly differ. CaneT and ControlT, showed similar reflections compared to CaneS and ControlS. CONCLUSION: CaneCPI-5 and Vitamin E demonstrated a synergistic protective effect against initial erosion. CLINICAL SIGNIFICANCE: The results open up new possibilities for preventive approaches against erosion through the acquired pellicle engineering, with the combination of CaneCPI-5 and Vitamin E, which demonstrated to be more effective than commercial stannous mouthwash. Further research is warranted to explore the potential of this combination in diverse clinical settings.
Asunto(s)
Cistatinas , Enfermedades Dentales , Erosión de los Dientes , Humanos , Película Dental , Erosión de los Dientes/prevención & control , Esmalte Dental , AguaRESUMEN
OBJECTIVES: The objective of this study was to assess the effects of in situ saliva compared to in vitro human saliva, with or without mucin, on inhibiting erosion and promoting enamel rehardening. DESIGN: Bovine enamel blocks were randomly distributed into groups (n = 23): Gsitu (human saliva in situ), Gvitro (collected human saliva) and GvitroM (collected human saliva with mucin). The enamel blocks underwent a 2-hour period for the formation of salivary pellicle, based on the assigned groups. Subsequently, they were subjected to three erosive cycles, each of them consisting of an erosive challenge (immersion in 0.65 % citric acid, pH 3.5, 1 min) and saliva exposure (immersion in situ or in vitro saliva for 2 h). Microhardness measurements were performed at each cycle, after each experimental step (erosive challenge and exposure to saliva). RESULTS: After the first demineralization, in vitro saliva groups presented greater hardness loss, with no statistical difference between GVitroM and GVitro. After the third erosive demineralization the in situ saliva resulted in less hardness loss compared to the first demineralization. In relation to surface hardness recovery, there was no difference among types of saliva but there was a decrease in hardness as the cycles progressed. CONCLUSION: Saliva groups had different behaviors between the first and third demineralization, being similar after the third cycle in terms of hardness loss. Regarding hardness recovery, all saliva promoted enamel gain, but there was a gradual decrease with the progression of the cycles.
Asunto(s)
Saliva , Erosión de los Dientes , Animales , Bovinos , Humanos , Erosión de los Dientes/prevención & control , Esmalte Dental , Película Dental , Dureza , MucinasRESUMEN
OBJECTIVE: This study evaluated the protective capacity of a sugarcane-derived cystatin (CaneCPI-5) in different vehicles (1-solution and 2-chitosan gel) against erosive dentin wear in situ. METHODS: In part-1, 15 volunteers participated in a crossover protocol (solutions): Water; Elmex™ and CaneCPI-5. The volunteers wore an appliance with 4 dentin samples for 5 days. These samples were treated with a drop of the solutions for 1 min (4X/d), then the acquired pellicle (AP) was formed and the samples were subjected to erosive challenges (EROSION: citric acid, for 90 s, 4X/day). 2X/day, half of the samples were also abraded for 15 s (ABRASION). In part-2, 16 volunteers participated in a crossover protocol (gel): No gel, Chitosan gel, Chitosan gel + NaF and Chitosan gel + CaneCPI-5. The volunteers also wore an appliance. The samples were treated once/day with the gel or not for 4 min, then the AP was formed and the samples were subjected to erosive and abrasive challenges, as reported in part-1. Dentin wear was measured by profilometry. Data were analyzed by two-way RM-ANOVA and Sidak's tests (p < 0.05). RESULTS: Part-1: Elmex™ and CaneCPI-5 significantly reduced dentin loss in comparison with Water for the EROSION/ABRASION conditions (p < 0.05). Part-2, all the treated groups significantly reduced the dentin loss in comparison to the No gel. The greatest reduction was found for the gel + CaneCPI-5 group for the EROSION/ABRASION (p < 0.05). CONCLUSION: The solution and chitosan gel containing CaneCPI-5 protected against erosive dentin wear in situ. CLINICAL RELEVANCE: These different vehicles are probably sufficient for protecting people with high risk of developing erosive dentin wear.
Asunto(s)
Quitosano , Erosión de los Dientes , Humanos , Ácido Cítrico , Erosión de los Dientes/prevención & control , Agua , DentinaRESUMEN
The biological sealing (BS) around implants is a dominant factor to determine the long-term success of peri-implant health. There are several features of the BS around implants in common with the soft tissue attached to teeth, such as the presence of crevicular fluid, acquired pellicle, epithelium; otherwise, the quality of the BS around implants is weaker compared with the junctional epithelium of natural teeth. Then, this article aimed to describe three cases report showing the presence of a BS (cuticle-crevice fluid-acquired pellicle) around the fixed crowns on dental implants in the anterior zone, through photographic analysis. It was used a Nikon 8100 camera with a 105 mm macro lens and a Macro Ring circular flash. A photographic profile examination was made always showing the clinical case and, specifically, the focal point in the crown-gingival tissue (prosthesis boundary and peri-implant tissue), highlighting the anatomical gingiva on the ceramic prosthetic crown at an angle between 140 to 160 degrees. Although cases 1 and 2 had 1-year follow-up and case 3 around 4 years, the common findings for all treatments done were: (i) oral rehabilitation with crowns on dental implants; (ii) patients satisfied with the esthetic and functional result; (iii) stability of the soft tissue around the crowns; (iv) all the patients had a good oral hygiene; (v) presence of a thin membrane associated with the acquire pellicle, similar to an annular cuticle, which we named cuticle-acquired pellicle complex or tertiary cuticle or prosthetic-implant cuticle. This complex (cuticle-crevicular fluid-acquired pellicle) is suggested to be the responsible by the BS on dental implants. Moreover, the cuticle (epithelial part in the peri-implant sulcus), although similar to teeth, may be considered a tertiary pellicle due to be found on ceramic crowns on dental implants, differently of the primary and secondary pellicle. Whitin the limitation of these three cases reports, the BS was reported and can be introduced the new concept of the "cuticle-crevicular fluid-acquired pellicle complex" or "prosthetic-implant cuticle".
Asunto(s)
Humanos , Masculino , Femenino , Adolescente , Adulto , Implantes Dentales , Líquido del Surco Gingival , Biopelículas , Coronas , Película DentalRESUMEN
PURPOSE: This study evaluated whether the presence of the salivary acquired pellicle (AP) had any effect on the dentin's darkening and on the caries arresting effect after the use of SDF + KI, in a cariogenic challenge. METHODS: Human dentin specimens were standardised, submitted to artificial caries lesion formation, and divided into five groups (n = 20): C: control group-no treatment, SDF: 38% SDF, APSDF: SDF 38% and AP, KISDF: 38% SDF and KI, and APKISDF: 38% SDF, KI and AP, that were submitted to pH cycling. Colour evaluation (CIE L*a*b* system) and surface hardness were performed before and after the treatments/pH cycling. RESULTS: SDF and APSDF groups showed no difference in colour. KISDF and APKISDF groups showed significantly different colours than the groups without KI. SDF, APSDF, and APKISDF groups had less mineral loss than C and KISDF. SDF, APSDF, and APKISDF revealed significantly greater mineral recovery, compared to KISDF and C. CONCLUSION: The AP did not influence the dentin´s colour after SDF + KI, but had a protective role in modulating the dentin´s mineral gain/loss. KI used after SDF decreased the dentin´s darkening, and did not interfere with the dentin de/remineralization process.
Asunto(s)
Caries Dental , Yoduro de Potasio , Humanos , Película Dental/patología , Color , Dentina , Fluoruros Tópicos/farmacología , Caries Dental/prevención & control , MineralesRESUMEN
The effect of solutions containing a statherin-derived peptide (Stn15pSpS) on the protection against enamel erosion in vitro was evaluated. Bovine enamel specimens were divided into 4 groups (n = 15/group): (1) deionized water (negative control), (2) Elmex Erosion Protection™ (positive control), (3) 1.88 × 10-5 M Stn15pSpS, and (4) 3.76 × 10-5 M Stn15pSpS. The solutions were applied on the specimens for 1 min. Stimulated saliva was collected from 3 donors and used to form a 2-h acquired pellicle on the specimens. Then, the specimens were submitted to an erosive pH-cycling protocol 4 times/day, for 7 days (0.01 M HCl pH 2.0/45 s, artificial saliva/2 h, and artificial saliva overnight). The solutions were applied again during pH-cycling, 2 times/day for 1 min after the first and last erosive challenges. Enamel loss (µm) was assessed by contact profilometry. Data were analyzed by Kruskal-Wallis and Dunn's test (p < 0.05). The best protection against erosion was conferred by Elmex Erosion Protection that significantly differed from all the other treatments, followed by the solutions containing Stn15pSpS, regardless of the concentration. However, 3.76 × 10-5 M Stn15pSpS did not differ from the negative control. The solution containing the lower concentration of Stn15pSpS protected against erosion in vitro, which should be confirmed using protocols that more closely resemble the clinical condition.
Asunto(s)
Erosión de los Dientes , Animales , Bovinos , Humanos , Esmalte Dental , Fluoruros/farmacología , Saliva Artificial/farmacología , Erosión de los Dientes/prevención & control , Proteínas y Péptidos Salivales/farmacologíaRESUMEN
Abstract The objective of this study was to compare the protein profile of the acquired enamel pellicle (AEP) formed in vivo in patients with or without gastroesophageal reflux disease (GERD), and with or without erosive tooth wear (ETW). Twenty-four volunteers were divided into 3 groups: 1) GERD and ETW; 2) GERD without ETW; and 3) control (without GERD). The AEP formed 120 min after prophylaxis was collected from the lingual/palatal surfaces. The samples were subjected to mass spectrometry (nLC-ESI-MS/MS) and label-free quantification by Protein Lynx Global Service software. A total of 213 proteins were identified, or 119, 92 and 106 from each group, respectively. Group 2 showed a high number of phosphorylated and calcium-binding proteins. Twenty-three proteins were found in all the groups, including 14-3-3 protein zeta/delta and 1-phosphatidylinositol. Several intracellular proteins that join saliva after the exfoliation of oral mucosa cells might have the potential to bind hydroxyapatite, or participate in forming supramolecular aggregates that bind to precursor proteins in the AEP. Proteins might play a central role in protecting the dental surface against acid dissolution.
RESUMEN
Abstract Polyphenols interact with salivary proteins and thus can improve the pellicle's erosion protective properties. This effect could be exploited to create rinsing solutions with polyphenols as active ingredients for erosion prevention. Different from the current gold standard for erosion protective rinsing solutions, these rinses would not rely on stannous ions. This would offer alternatives for patients with concerns regarding the composition of rinsing solutions and preferring bio-products. Objective To develop an erosion-preventive rinsing solution containing natural polyphenol-rich extracts. Methodology Solutions were prepared with polyphenols from either grapeseed extract or cranberry extract, 500 ppm fluoride added, and additionally flavors and sweeteners. Controls were deionized water, 500 ppm fluoride solution, and the gold standard rinse in the field (Sn2+/F-). In total, 135 enamel specimens (n=15/group) were subjected to five cycles of salivary pellicle formation (30 min, 37°C), modification with the solutions (2 min, 25°C), further salivary pellicle formation (60 min, 37°C), and erosive challenge (1 min, 1% citric acid, pH 3.6). Relative surface microhardness (rSMH), surface reflection intensity (rSRI), and amount of calcium release (CaR) were investigated. Data were analyzed with Kruskal-Wallis and Wilcoxon rank sum tests (α=0.05). Results The polyphenol solutions containing fluoride, as well as additional flavors, protected enamel better than fluoride alone, and similar to the Sn2+/F- solution, when investigating both rSMH and CaR. When measuring rSRI, Sn2+/F- showed the best protection, while the polyphenol solutions were similar to fluoride. Conclusion For two of the three assessed parameters (rSMH and CaR), both developed polyphenol-rich rinsing solutions were able to protect enamel from erosion, improving/potentializing the effect of fluoride and matching the protection offered by the current gold standard rinsing solution.
RESUMEN
OBJECTIVE: This study evaluated the preventive effect of a chitosan gel containing CaneCPI-5 against enamel erosion and erosion + abrasion in situ. METHODS: Sixteen volunteers participated in a crossover, double-blind protocol, comprising 4 phases: (1) no treatment (Nt); (2) chitosan gel (Cg); (3) chitosan gel + 12,300 ppm NaF (Cg + NaF); and (4) chitosan gel + 0.1 mg/mL CaneCPI-5 (Cg + Cane). Volunteers wore an appliance containing 4 specimens. Once/day, they applied the gel (except for Nt) (4 min/specimen). Erosive challenges were performed extra-orally (0.1% citric acid, 90 s, 4 × /day; ERO). Specimens were also abraded (toothbrush, 15 s/specimen, 2 × /day; ERO + ABR). Enamel wear was assessed by profilometry and relative surface reflection intensity (%SRI). Two-way RM-ANOVA/Sidak's tests and Spearman's correlation were used (p < 0.05). RESULTS: For profilometry, ERO + ABR promoted significantly greater wear when compared with ERO. There was a significant difference among all treatments. The lowest enamel loss occurred for Cg + Cane, followed by Cg + NaF, Cg, and Nt (p < 0.05). The %SRI was significantly lower for ERO + ABR when compared to ERO, only for the Nt group. The greatest %SRI was found for the Cg + NaF and Cg + Cane groups, which did not differ significantly, regardless of the conditions. The lowest %SRI was found for the Nt and Cg groups, which did not differ from each other, regardless of the conditions. The Nt group did not differ significantly from the Cg + NaF (ERO). There was a significant correlation between both analyses. CONCLUSION: The incorporation of CaneCPI-5 in the chitosan gel prevented erosive wear in situ. CLINICAL RELEVANCE: These results open a new perspective for the use of CaneCPI-5 in other application vehicles, such as chitosan gel.
Asunto(s)
Quitosano , Abrasión de los Dientes , Erosión de los Dientes , Humanos , Quitosano/farmacología , Esmalte Dental , Fluoruro de Sodio/farmacología , Abrasión de los Dientes/prevención & control , Erosión de los Dientes/prevención & control , Erosión de los Dientes/tratamiento farmacológico , Cepillado Dental/métodos , Estudios Cruzados , Método Doble CiegoRESUMEN
Thermophilic bacteria able to survive extreme temperature stress are of great biotechnological interest due to their extracellular production of bioactive molecules as a part of a survival strategy, or by intracellular modifications. In the present study, thermophilic Bacillus haynesii CamB6, isolated from a Chilean hot spring, was studied for the formation of different stress response molecules. The polymeric pigment produced by the bacterial strain was characterized by different physicochemical techniques. On exposure to ranges of temperature (50-60 °C), pH (5.0-7.0), and sources of nitrogen and carbon (1-5 g·L-1), the bacteria responded with a biofilm network formation in a hydrophobic polystyrene surface. Biofilm formation under fed-batch conditions was also statistically validated. The bacteria showed a planktonic pellicle network formation in the presence of induced hypoxia and salinity stress (19.45 g·L-1) under static conditions. Salinity stress also resulted in the intracellular response of brown pigment production. The pigment was structurally and functionally characterized by UV-Vis absorbance and the presence of different characteristic peaks via FTIR analysis (bacterial pyomelanin fingerprints) were assessed. A high thermal stability and TGA profile indicated the brown pigment was a probable pyomelanin candidate. Micropyrolysis (Py-GC/MS) showed that isoprene, pyrrole, benzene, pyridine, and their derivatives were the major components detected. In addition, acetic acid, indole, phenol, and its derivatives were observed. The absence of sulfocompounds in the pyrolyzed products agreed with those reported in the literature for pyomelanin. The pigment surface morphology was analyzed via SEM, and the elemental composition via EDS also demonstrated the similarity of the brown pigment to that of the melanin family. The pyomelanin pigment was observed to be bioactive with promising antioxidant capacity (H2O2, Fe2+) compared to the standard antioxidant molecules. In conclusion, B. haynesii CamB6 demonstrated the formation of several biomolecules as a stress response mechanism that is bioactive, showing its probable biotechnological applications in future.
RESUMEN
OBJECTIVE: To study the proteomic alterations in the initial AEP after rinsing with CaneCPI-5, StN15 or Hb or their combination. MATERIALS AND METHODS: In five crossover phases, after prophylaxis, 10 volunteers in 5 consecutive days, rinsed (10 mL, 1 min) with the following solutions: deionized water (H2O- negative control- 1), 0.1 mg/mL CaneCPI-5 (2), 1.88×10-5 M StN15 (3), 1.0 mg/mL Hb (4) or their combination (5). The AEP formed after 3 min was collected with electrode filter papers soaked in 3% citric acid. After protein extraction, samples were analyzed by quantitative shotgun label-free proteomics. RESULTS: Rinsing with the proteins/peptide increased the amounts of proteins in the AEP. The total numbers of proteins identified after rinsing with CaneCPI-5, StN15, Hb or their combination versus water, were 131, 167, 148 and 142, respectively. The treatment with the proteins/peptide or their combination increased proteins that bind calcium, phosphate and interact with distinct proteins, as well as proteins with antimicrobial and acid-resistant properties, such as, Cornifin-B (7.7, 12.6, and 4.3-fold for CaneCPI-5, StN15 and Hb, respectively), isoforms of Cystatin (2.2-2.4-fold for CaneCPI-5 and StN15), Proline-rich-protein 4 (4.3-fold; StN15), Histatin-1 (2.8-fold; StN15) and Hemoglobin (7.7-25-fold for Hb and Combination). Immunoglobulin, Keratin and Histone were exclusively identified upon treatment with the proteins/peptide, alone or combined. CONCLUSION: Rinsing with proteins/peptide, alone or combined, increased protective proteins in the initial AEP. CLINICAL RELEVANCE: Our results suggest that rinsing with the proteins/peptide or their combination increases the proteins capable of enhancing the protective function of the basal layer of AEP.