Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 314
Filtrar
1.
Biosens Bioelectron ; 267: 116766, 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39265428

RESUMEN

Pectobacterium carotovorum subsp. carotovorum (PCC) is a notorious plant pathogen responsible for severe soft rot in kimchi cabbage, which results in significant economic losses. To detect PCC rapidly and accurately in kimchi cabbage, we developed a surface-enhanced Raman scattering (SERS) substrate on which silver nanospheres (AgNSs), nanowires (AgNWs), and nanoseeds are combined on a polydimethylsiloxane (PDMS) platform. The incorporation of Ag nanoseeds creates a higher density of hotspots, which ensures a low detection limit of 1.001 CFU/mL. Electron microscopy and spectroscopic analyses confirmed the successful fabrication of the substrate and its enhanced sensitivity. The SERS substrate exhibits excellent selectivity by effectively distinguishing PCC from other bacteria commonly found in kimchi cabbage. The substrate gives rise to strong Raman signals across PCC concentrations ranging from 101 to 106 CFU/mL. Additionally, a predictive model was developed for accurately detecting PCC in real kimchi cabbage samples, and the results were validated by polymerase chain reaction measurements. A sensitive, selective, and rapid approach for PCC detection in kimchi cabbage that offers a promising improvement over existing methodologies is presented.

2.
Microbiol Resour Announc ; : e0069124, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248549

RESUMEN

A phytopathogenic strain of Pectobacterium polaris (designated SRB2) was isolated for the first time in South Africa from a potato tuber affected by soft rot. The draft genome of strain SRB2 encodes various plant cell wall-degrading enzymes and genes associated with biofilm formation and virulence. Antibiotic resistance genes were not detected.

3.
BMC Genomics ; 25(1): 831, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39227779

RESUMEN

Pectobacterium carotovorum and Pectobacterium aroidearum represent the primary pathogens causing variable soft rot disease. However, the fundamental defense responses of Pinellia ternata to pathogens remain unclear. Our investigation demonstrated that the disease produced by P. carotovorum is more serious than P. aroidearum. RNA-seq analysis indicated that many cell wall-related genes, receptor-like kinase genes, and resistance-related genes were induced by P. aroidearum and P. carotovorum similarly. But many different regulatory pathways exert a crucial function in plant immunity against P. aroidearum and P. carotovorum, including hormone signaling, whereas more auxin-responsive genes were responsive to P. carotovorum, while more ethylene and gibberellin-responsive genes were responsive to P. aroidearum. 12 GDSL esterase/lipase genes and 3 fasciclin-like arabinogalactan protein genes were specifically upregulated by P. carotovorum, whereas 11 receptor-like kinase genes and 8 disease resistance genes were up-regulated only by P. aroidearum. Among them, a lectin gene (part1transcript/39001) was induced by P. carotovorum and P. aroidearum simultaneously. Transient expression in N. benthamiana demonstrated that the lectin gene improves plant resistance to P. carotovorum. This study offers a comprehensive perspective on P. ternata immunity produced by different soft rot pathogens and reveals the importance of lectin in anti-soft rot of P. ternata for the first time.


Asunto(s)
Resistencia a la Enfermedad , Perfilación de la Expresión Génica , Pectobacterium carotovorum , Pinellia , Enfermedades de las Plantas , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Pinellia/genética , Pinellia/microbiología , Pectobacterium carotovorum/fisiología , Resistencia a la Enfermedad/genética , Pectobacterium/genética , Regulación de la Expresión Génica de las Plantas , Transcriptoma
4.
FEBS Open Bio ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39123319

RESUMEN

Pectocin M1 (PM1), the bacteriocin from phytopathogenic Pectobacterium carotovorum which causes soft rot disease, has a unique ferredoxin domain that allows it to use FusA of the plant ferredoxin uptake system. To probe the structure-based mechanism of PM1 uptake, we determined the X-ray structure of full-length PM1, containing an N-terminal ferredoxin and C-terminal catalytic domain connected by helical linker, at 2.04 Å resolution. Based on published FusA structure and NMR data for PM1 ferredoxin domain titrated with FusA, we modeled docking of the ferredoxin domain with FusA. Combining the docking models with the X-ray structures of PM1 and FusA enables us to propose the mechanism by which PM1 undergoes dynamic domain rearrangement to translocate across the target cell outer membrane.

5.
Food Sci Biotechnol ; 33(12): 2789-2796, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39184994

RESUMEN

This study was conducted to propose a new strategy for preventing Pectobacterium carotovorum-mediated potato soft rot through the development of a carboxymethyl cellulose (CMC)-based antibacterial coating incorporated with green tea extract (GTE). GTE/CMC films resulted in increased water vapor permeability due to the incorporation of polar groups in GTE. In the antibacterial test against P. carotovorum, the MBC value of GTE was 2 mg/mL. The time-kill assay demonstrated that GTE/CMC (2 × MBC) completely eradicated bacteria within 0.5 h (~6.4 log CFU/mL reduction). The potential of GTE/CMC to prevent potato soft rot was evaluated by monitoring the potato appearance, maceration area, and texture properties. The GTE/CMC-coated potatoes exhibited significantly reduced maceration area and remained firm for 3 days. Moreover, there was no change in the antimicrobial efficacy for 8 weeks. The developed GTE/CMC could be used as a biological coating system for postharvest storage and soft rot prevention. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-024-01548-6.

6.
Plants (Basel) ; 13(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39124263

RESUMEN

Phytopathogenic bacteria of the genus Pectobacterium are responsible for several diseases that affect potato (Solanum tuberosum L.) production worldwide, including blackleg and tuber soft rot. These bacteria are highly diverse, with over 17 different species currently identified. However, some of the recently described species, such as Pectobacterium punjabense, are still poorly understood. In this study, we focused on P. punjabense isolates collected from diseased potato tubers in Russia in 2021. Whole-genome sequencing was used to characterise the genomic diversity of the pathogen and determine the biochemical profiles of the isolated bacteria. The ability of these isolates to cause soft rot symptoms was tested. A comparative assessment of the potential pathogenicity of the Pectobacterium isolates was conducted by infecting potato tubers and measuring the accumulation of biomass in a liquid medium during cultivation at different temperatures. A TaqMan qPCR assay was developed for the highly sensitive and specific characterisation of P. punjabense strains, which can be used in diagnostic systems. This is the first report on P. punjabense causing potato disease in the Russian Federation.

7.
Biotechnol Lett ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39083114

RESUMEN

OBJECTIVE: To introduce the Cre-loxP system for constructing marker-less multiple-gene deletion mutants in Pectobacterium, overcoming limitations of antibiotic markers and enhancing the understanding of pathogenic mechanisms. RESULTS: Firstly, a plasmid named pEX18-Cre, containing a sacB sucrose suicide gene, was constructed to express Cre recombinase in Pectobacterium. Secondly, a mutant in which the loxP-Km fragment replaced the target gene was obtained through homologous recombination double-crossover with the chromosome. Finally, pEX18-Cre was introduced into the mutant to excise the DNA between the loxP sites, thereby removing the markers and achieving multiple gene deletions. By utilizing the Cre-loxP system, we successfully constructed multiple marker-less gene deletion mutants in Pectobacterium strains. CONCLUSIONS: The Cre-loxP system efficiently creates marker-less multiple-gene deletion mutants, enhancing the study of Pectobacterium pathogenic mechanisms by overcoming antibiotic marker limitations.

8.
Front Microbiol ; 15: 1431047, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983626

RESUMEN

Bacterial soft rot caused by coinfection with Dickeya spp. and Pectobacterium spp. in hosts can cause successive changes in fields, and it is difficult to prevent the spread of and control the infection. Pectobacterium spp. are prevalent in the growing areas of tuberous crops, including taro and potato. Recently, Dickeya fangzhongdai has emerged as a virulent pathogen in taro. To determine the prevalence status of the causal agents and evaluate the potential spreading risks of D. fangzhongdai, screening and taxonomic classification were performed on phytopathogenic bacteria collected from different taro-growing areas in Guangdong Province, China, and biological and genomic characteristics were further compared among typical strains from all defined species. The causative agents were verified to be phytobacterial strains of D. fangzhongdai, Pectobacterium aroidearum and Pectobacterium colocasium. P. aroidearum and P. colocasium were found to form a complex preferring Araceae plants and show intensive genomic differentiation, indicating their ancestor had adapted to taro a long time prior. Compared with Pectobacterium spp., D. fangzhongdai was more virulent to taro corms under conditions of exogenous infection and more adaptable at elevated temperatures. D. fangzhongdai strains isolated from taro possessed genomic components of additional T4SSs, which were accompanied by additional copies of the hcp-vgrG genes of the T6SS, and these contributed to the expansion of their genomes. More gene clusters encoding secondary metabolites were found within the D. fangzhongdai strains than within the Pectobacterium complex; interestingly, distinct gene clusters encoding zeamine and arylpolyene were both most similar to those in D. solani that caused potato soft rot. These comparisons provided genomic evidences for that the newly emerging pathogen was potentially equipped to compete with other pathogens. Diagnostic qPCR verified that D. fangzhongdai was prevalent in most of the taro-growing areas and coexisted with the Pectobacterium complex, while the plants enriching D. fangzhongdai were frequently symptomatic at developing corms and adjacent pseudostems and caused severe symptoms. Thus, the emerging need for intensive monitoring on D. fangzhongdai to prevent it from spreading to other taro-growing areas and to other tuberous crops like potato; the adjustment of control strategies based on different pathopoiesis characteristics is recommended.

9.
PeerJ ; 12: e17518, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952990

RESUMEN

Potato farming is a vital component of food security and the economic stability especially in the under developing countries but it faces many challenges in production, blackleg disease caused by Pectobacterium atrosepticum (Pa) is one of the main reason for damaging crop yield of the potato. Effective management strategies are essential to control these losses and to get sustainable potato crop yield. This study was focused on characterizing the Pa and the investigating new chemical options for its management. The research was involved a systematic survey across the three district of Punjab, Pakistan (Khanewal, Okara, and Multan) to collect samples exhibiting the black leg symptoms. These samples were analyzed in the laboratory where gram-negative bacteria were isolated and identified through biochemical and pathogenicity tests for Pa. DNA sequencing further confirmed these isolates of Pa strains. Six different chemicals were tested to control blackleg problem in both vitro and vivo at different concentrations. In vitro experiment, Cordate demonstrated the highest efficacy with a maximum inhibition zones of 17.139 mm, followed by Air One (13.778 mm), Profiler (10.167 mm), Blue Copper (7.7778 mm), Spot Fix (7.6689 mm), and Strider (7.0667 mm). In vivo, Cordate maintained its effectiveness with the lowest disease incidence of 14.76%, followed by Blue Copper (17.49%), Air One (16.98%), Spot Fix (20.67%), Profiler (21.45%), Strider (24.99%), and the control group (43.00%). The results highlight Cordate's potential as a most effective chemical against Pa, offering promising role for managing blackleg disease in potato and to improve overall productivity.


Asunto(s)
Pectobacterium , Enfermedades de las Plantas , Solanum tuberosum , Solanum tuberosum/microbiología , Pectobacterium/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Pakistán
10.
Plant Dis ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39003501

RESUMEN

Soft rot Pectobacteriaceae (SRP) are a group of destructive Gram-negative phytopathogens that can infect a wide range of plant hosts, including potatoes. There are no effective control agents available against SRP, making their management challenging. We have developed a novel approach to protect potato tubers against SRP. It makes use of encapsulated predatory Bdellovibrio bacteriovorus bacteria that upon release from a polymeric carrier, prey upon SRP. We applied a carrageenan-trehalose-based formulation containing a B. bacteriovorus HD100 predator to prevent soft-rot disease development in potato tubers, under various conditions. The dried formulation exhibited very high stability over an eighteen-month period at room temperature (˜25ºC), in contrast to unencapsulated suspensions of the predator, in which viability decreased rapidly below detection level. The rehydrated formulation was as efficient as freshly grown unencapsulated predators, and provided high protection in potted potato tubers, displaying an average of 50% reduction in disease parameters (e.g. tissue decay and disease index) under controlled conditions at 7-days post-inoculation and planting. The protective effect provided by this formulation was maintained in longer-term trials (28 days) conducted in larger vessels within a net-house under natural climate conditions, highlighting its potential for practical application in the field.

11.
Plant Dis ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937930

RESUMEN

Blackleg and soft rot diseases represent a major threat to the health of potato (Solanum tuberosum) and other vegetable, ornamental and fruit crops worldwide; their main causal agents are species of Pectobacterium and Dickeya. In May 2022, 60% of potato plants (cv. Spunta) in a production field in Córdoba, Argentina (31°32'36''S 64°09'46''W) showed soft rot, blackleg and wilt. To isolate the causal agent, decayed plant tissues were disinfected in 2% NaClO, macerated in sterile water and streaked on crystal violet pectate (CVP) medium. Plates were incubated at 28°C for 48 h. Colonies that produced a pit on CVP medium were purified on nutrient agar. Two of the isolates, called 1Aia and 1B, were characterized by tests commonly employed for the identification of pectinolytic bacteria (Schaad et al. 2001). Both produced Gram-negative rods that were facultatively anaerobic, oxidase negative, nonfluorescent on King´s B, resistant to erythromycin and caused soft rot of potato slices. In addition, these isolates did not produce the blue pigment indigoidine and grew on nutrient glucose agar containing 5% NaCl. Phenotypic characteristics of the isolates 1Aia and 1B were compatible with Pectobacterium spp. Genomic DNA was extracted using the commercially available Wizard® Genomic DNA Purification Kit (Promega) according to the manufacturer's instructions for the purification of DNA from Gram-negative bacteria. The isolates were positive in a PCR assay for Pectobacterium brasiliense (Duarte et al. 2004). The purified DNA of isolate 1Aia was used to construct a pooled Illumina library, which was sequenced at the Genomics Unit from the National Institute of Agricultural Technology (INTA, Argentina), by using high-throughput Illumina sequencing technology. Average nucleotide identity (ANI) calculation performed by FastANI v0.1.3 (Jain et al. 2018) showed 96.11% identity between the genome of the type strain LMG 21371 of P. brasiliense (Acc. no. JQOE00000000) and our strain 1Aia (Acc. no. JAYGXQ000000000). For pathogenicity test, 3-weeks-old potato plants (cv. Spunta) planted in pots were infiltrated with 10 µl of a bacterial suspension (1x107 CFU/ml) 5 cm above the base of the stem using a sterile syringe. Negative controls were infiltrated with sterile water. Plants were kept under greenhouse conditions and regularly watered. The experiment was performed twice with six plants per treatment. Two days after inoculation, plants treated with P. brasiliense strain 1Aia or 1B showed necrotic lesions on the stems and tubers soft rot symptoms while control plants remained asymptomatic. To fulfill Koch´s postulates, bacteria were re-isolated from symptomatic plants. Re-isolated bacteria, called 1Aia d and 1B d, were confirmed as P. brasiliense according to biochemical and PCR results, as outlined above. Also, the % ANI value between P. brasiliense isolates 1Aia and 1Aia d was 99.99% (Acc. no. JAYGXR000000000). To our knowledge, this is the first report of the occurrence of P. brasiliense in Argentina. This pathogen has been observed causing blackleg and tuber soft rot on potato in Brazil (Duarte et al. 2004), Netherlands (Nunes Leite et al. 2014), Switzerland (de Werra et al. 2015), Russia (Voronina et al. 2019), Serbia (Loc et al. 2022) and USA (Zhang et al. 2023), among other countries worldwide. Due to the important economic and nutritional value of the crop, the distribution of P. brasiliense needs to be investigated and monitored in order to develop effective control strategies.

12.
Phytopathology ; 114(8): 1926-1939, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38749069

RESUMEN

Previous studies revealed that the type VI secretion system (T6SS) has an essential role in bacterial competition and virulence in many gram-negative bacteria. However, the role of T6SS in virulence in Pectobacterium atrosepticum remains controversial. We examined a closely related strain, PccS1, and discovered that its T6SS comprises a single-copy cluster of 17 core genes with a higher identity to homologs from P. atrosepticum. Through extensive phenotypic and functional analyses of over 220 derivatives of PccS1, we found that three of the five VgrGs could be classified into group I VgrGs. These VgrGs interacted with corresponding DUF4123 domain proteins, which were secreted outside of the membrane and were dependent on either the T6SS or type IV secretion system (T4SS). This interaction directly governed virulence and competition. Meanwhile, supernatant proteomic analyses with strains defective in the T6SS and/or T4SS confirmed that effectors, such as FhaB, were secreted redundantly to control the virulence and suppress host callose deposition in the course of infection. Notably, this redundant secretion mechanism between the T6SS and T4SS is believed to be the first of its kind in bacteria.


Asunto(s)
Proteínas Bacterianas , Pectobacterium , Enfermedades de las Plantas , Sistemas de Secreción Tipo VI , Pectobacterium/patogenicidad , Pectobacterium/genética , Virulencia , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Glucanos/metabolismo
13.
Plant Dis ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38812369

RESUMEN

Leaf mustard (Brassica juncea [L.] Czern. et Coss.) belongs to Brassicaceae and is an important leaf vegetable widely cultivated in the Yangtze River basin and various southern provinces in China. In August 2023, the rhizome decay symptoms were observed at the stem base of leaf mustard plants (cv. Huarong) in the field of Changde City (29.05 °N; 111.59 °E), Hunan Province, China. The incidence of symptomatic leaf mustard was approximately 30% in several fields (2 ha in total). Brown and water-soaked symptoms appeared at the base of the outer leaves, and hollow rot at the base of the stem, accompanied by a fishy odor. To identify the causal agent, six infected stem samples were collected and surface sterilized by soaking in 75% ethanol for 60 seconds, rinsed three times with sterile distilled water, and finally cut into pieces (5 × 5 mm) in the sterile water. The extract was streaked on nutrient agar medium. After incubation at 28°C for 24 h, 17 strains were obtained and the colonies of all strains were creamy white, roughly circular, and convex elevation. Six single bacterial strains JC23121001-JC23121006, individually isolated from six different diseased stem samples, were selected as representative strains for further study. For preliminary identification, DNA from the six strains was extracted and identified by 16S rDNA sequencing using the universal primer pair 27F/1492R (Weisburg et al. 1991), and the sequences (accession nos. PP784484 to PP784489) showed 99% query coverage and 99.65% identity to Pectobacterium brasiliense type strain IBSBF1692T (Nabhan et al. 2012). In addition, five housekeeping genes acnA, mdh, mltD, pgi, and proA of the six strains were amplified with specially designed primers (Ma et al. 2007), and the resulting sequences from all six strains were 100% identical. The sequences of the representative strain JC23121001 were deposited into GenBank with accession numbers PP108247, PP066857, PP108248, PP066858, and PP066860, respectively. The maximum-likelihood phylogenetic tree clustered JC23121001 with P. brasiliense type strain IBSBF1692T (Nabhan et al. 2012). The pathogenicity test of six strains was carried out on the six-week-old leaf mustard (cv. Huarong) plants grown in the greenhouse by inoculating 10 µl of each bacterial suspension (108 CFU/ml) on needle-like wounds on the stem base of three healthy leaf mustard plants (Singh et al. 2013). Control plants were treated with sterile distilled water. After inoculation, the plants were incubated at 28°C and 90% relative humidity in a growth chamber. This trial was repeated three times. All inoculated mustard stems were slightly water-soaked after 24 hours and eventually developed into soft rot symptoms, consistent with the original symptoms observed. The control plants remained symptom-free. The strains were re-isolated from inoculated plants and re-identified as P. brasiliense by sequencing five housekeeping genes, thus fulfilling Koch's postulates. P. brasiliense has a broad host range and has been reported on other Brassica species, such as Bok choy (Brassica rapa var. chinensis) in China (Li et al. 2023). Soft rot of leaf mustard caused by Pectobacterium aroidearum has also been reported previously (Chu et al. 2023). To our knowledge, this is the first report of P. brasiliense causing soft rot on leaf mustard in China. The soft rot poses a significant threat to the local leaf mustard industry and requires further research into epidemiology and disease management options.

14.
Front Microbiol ; 15: 1323765, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812674

RESUMEN

Introduction: Pectobacterium betavasculorum is a member of the Pectobacerium genus that inhabits a variety of niches and is found in all climates. Bacteria from the Pectobacterium genus can cause soft rot disease on various plants due to the secretion of plant cell wall degrading enzymes (PCWDEs). The species P. betavasculorum is responsible for the vascular necrosis of sugar beet and soft rot of many vegetables. It also infects sunflowers and artichokes. The main sugar present in sugar beet is sucrose while xylose is one of the main sugars in artichoke and sunflower. Methods: In our work, we applied metabolomic studies coupled with genomics to investigate the metabolism of P. betavasculorum in the presence of xylose and sucrose as the only carbon source. The ability of the strains to use various sugars as the only carbon source were confirmed by the polypyridyl complex of Ru(II) method in 96-well plates. Results: Our studies provided information on the metabolic pathways active during the degradation of those substrates. It was observed that different metabolic pathways are upregulated in the presence of xylose in comparison to sucrose. Discussion: The presence of xylose enhances extracellular metabolism of sugars and glycerol as well as stimulates EPS and IPS synthesis. In contrast, in the presence of sucrose the intensive extracellular metabolism of amines and amino acids is promoted.

16.
Microorganisms ; 12(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38792761

RESUMEN

The competitive colonization of bacteria on similar ecological niches has a significant impact during their establishment. The synthesis speeds of different chemical classes of molecules during early competitive colonization can reduce the number of competitors through metabolic effects. In this work, we demonstrate for the first time that Kosakonia cowanii Cp1 previously isolated from the seeds of Capsicum pubescens R. P. produced volatile organic compounds (VOCs) during competitive colonization against Pectobacterium aroidearum SM2, affecting soft rot symptoms in serrano chili (Capsicum annuum L.). The pathogen P. aroidearum SM2 was isolated from the fruits of C. annuum var. Serrano with soft rot symptoms. The genome of the SM2 strain carries a 5,037,920 bp chromosome with 51.46% G + C content and 4925 predicted protein-coding genes. It presents 12 genes encoding plant-cell-wall-degrading enzymes (PCDEWs), 139 genes involved in five types of secretion systems, and 16 genes related to invasion motility. Pathogenic essays showed soft rot symptoms in the fruits of C. annuum L., Solanum lycopersicum, and Physalis philadelphica and the tubers of Solanum tuberosum. During the growth phases of K. cowanii Cp1, a mix of VOCs was identified by means of HS-SPME-GC-MS. Of these compounds, 2,5-dimethyl-pyrazine showed bactericidal effects and synergy with acetoin during the competitive colonization of K. cowanii Cp1 to completely reduce soft rot symptoms. This work provides novel evidence grounding a better understanding of bacterial interactions during competitive colonization on plant tissue, where VOC synthesis is essential and has a high potential capacity to control pathogenic microorganisms in agricultural systems.

17.
Front Microbiol ; 15: 1362283, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38800750

RESUMEN

Potato soft rot caused by Pectobacterium spp. are devastating diseases of potato which cause severe economic losses worldwide. Pectobacterium brasiliense is considered as one of the most virulent species. However, the virulence mechanisms and pathogenicity factors of this strain have not been fully elucidated. Here, through pathogenicity screening, we identified two Pectobacterium brasiliense isolates, SM and DQ, with distinct pathogenicity levels. SM exhibits higher virulence compared to DQ in inducing aerial stem rot, blackleg and tuber soft rot. Our genomic and transcriptomic analyses revealed that SM encodes strain specific genes with regard to plant cell wall degradation and express higher level of genes associated with bacterial motility and secretion systems. Our plate assays verified higher pectinase, cellulase, and protease activities, as well as fast swimming and swarming motility in SM. Importantly, a unique endoglucanase S specific to SM was identified. Expression of this cellulase in DQ greatly enhances its virulence compared to wild type strain. Our study sheds light on possible determinants causing different pathogenicity of Pectobacterium brasiliense species with close evolutionary distance and provides new insight into the direction of genome evolution in response to host variation and environmental stimuli.

18.
Front Plant Sci ; 15: 1352318, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38576793

RESUMEN

Introduction: Bacteria of genus Pectobacterium, encompassing economically significant pathogens affecting various plants, includes the species P. betavasculorum, initially associated with beetroot infection. However, its host range is much broader. It causes diseases of sunflower, potato, tomato, carrots, sweet potato, radish, squash, cucumber, and chrysanthemum. To explain this phenomenon, a comprehensive pathogenomic and phenomic characterisation of P. betavasculorum species was performed. Methods: Genomes of P. betavasculorum strains isolated from potato, sunflower, and artichoke were sequenced and compared with those from sugar beet isolates. Metabolic profiling and pathogenomic analyses were conducted to assess virulence determinants and adaptation potential. Pathogenicity assays were performed on potato tubers and chicory leaves to confirm in silico predictions of disease symptoms. Phenotypic assays were also conducted to assess the strains ability to synthesise homoserine lactones and siderophores. Results: The genome size ranged from 4.675 to 4.931 kbp, and GC % was between 51.0% and 51.2%. The pangenome of P. betavasculorum is open and comprises, on average, 4,220 gene families. Of these, 83% of genes are the core genome, and 2% of the entire pangenome are unique genes. Strains isolated from sugar beet have a smaller pangenome size and a higher number of unique genes than those from other plants. Interestingly, genomes of strains from artichoke and sunflower share 391 common CDS that are not present in the genomes of other strains from sugar beet or potato. Those strains have only one unique gene. All strains could use numerous sugars as building materials and energy sources and possessed a high repertoire of virulence determinants in the genomes. P. betavasculorum strains were able to cause disease symptoms on potato tubers and chicory leaves. They were also able to synthesise homoserine lactones and siderophores. Discussion: The findings underscore the adaptability of P. betavasculorum to diverse hosts and environments. Strains adapted to plants with high sugar content in tissues have a different composition of fatty acids in membranes and a different mechanism of replenishing nitrogen in case of deficiency of this compound than strains derived from other plant species. Extensive phenomics and genomic analyses performed in this study have shown that P. betavasculorum species is an agronomically relevant pathogen.

19.
Artículo en Inglés | MEDLINE | ID: mdl-38625720

RESUMEN

Phytopathogenic bacteria (MAFF 302110T and MAFF 302107) were isolated from lesions on Japanese angelica trees affected by bacterial soft rot in Yamanashi Prefecture, Japan. The strains were Gram-reaction-negative, facultatively anaerobic, motile with peritrichous flagella, rod-shaped, and non-spore-forming. The genomic DNA G+C content was 51.1 mol % and the predominant cellular fatty acids included summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 0, summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), summed feature 2 (comprising any combination of C12 : 0 aldehyde, an unknown fatty acid with an equivalent chain length of 10.928, C16 : 1 iso I, and C14 : 0 3OH), and C12 : 0. Phylogenetic analyses based on 16S rRNA and gyrB gene sequences, along with phylogenomic analysis utilizing whole-genome sequences, consistently placed these strains within the genus Pectobacterium. However, their phylogenetic positions did not align with any known species within the genus. Comparative studies involving average nucleotide identity and digital DNA-DNA hybridization with the closely related species indicated values below the thresholds employed for the prokaryotic species delineation (95-96 % and 70 %, respectively), with the highest values observed for Pectobacterium polonicum DPMP315T (92.10 and 47.1 %, respectively). Phenotypic characteristics, cellular fatty acid composition, and a repertoire of secretion systems could differentiate the strains from their closest relatives. The phenotypic, chemotaxonomic, and genotypic data obtained in this study show that MAFF 302110T/MAFF 302107 represent a novel species of the genus Pectobacterium, for which we propose the name Pectobacterium araliae sp. nov., designating MAFF 302110T (=ICMP 25161T) as the type strain.


Asunto(s)
Angelica , Pectobacterium , Japón , Filogenia , ARN Ribosómico 16S/genética , Composición de Base , Ácidos Grasos/química , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Bacterias
20.
Plant Pathol J ; 40(2): 151-159, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38606445

RESUMEN

Bacterial soft rot caused by Pectobacterium carotovorum subsp. carotovorum (Pcc) is one of the most severe diseases in radish cultivation. To control this plant disease, the most effective method has been known to cultivate resistant cultivars. Previously, we developed an efficient bioassay method for investigating resistance levels with 21 resistant and moderately resistant cultivars of radish against a strain Pcc KACC 10421. In this study, our research expanded to investigate the resistance of radish cultivars against six Pcc strains, KACC 10225, KACC 10421, ATCC 12312, ATCC 15713, LY34, and ECC 301365. To this end, the virulence of the six Pcc strains was determined based on the development of bacterial soft rot in seedlings of four susceptible radish cultivars. The results showed that the Pcc strains exhibited different virulence in the susceptible cultivars. To explore the race differentiation of Pcc strains corresponding to the resistance in radish cultivars, we investigated the occurrence of bacterial soft rot caused by the six Pcc strains on the 21 resistant and moderate resistant cultivars. Our results showed that the average values of the area under the disease progress curve were positively correlated with the virulence of the strains and the number of resistant cultivars decreased as the virulence of Pcc strains increased. Taken together, our results suggest that the resistance to Pcc of the radish cultivars commercialized in Korea is more likely affected by the virulence of Pcc strains rather than by race differentiation of Pcc.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA