RESUMEN
Impact of natural phenomena and anthropogenic activities on water quality is closely related with temperature increase and global warming. In this study, the effects of climate change scenarios on water quality forecasts were assessed through correlations, prediction algorithms, and water quality index (WQI) for tropical reservoirs. The expected trends for different water quality parameters were estimated for the 2030-2100 period in association with temperature trends to estimate water quality using historical data from a dam in Mexico. The WQI scenarios were obtained using algorithms supported by global models of representative concentration pathways (RCPs) adopted by the Intergovernmental Panel on Climate Change (IPCC). The RPCs were used to estimate water and air temperature values and extrapolate future WQI values for the water reservoir. The proposed algorithms were validated using historical information collected from 2012 to 2019 and four temperature variation intervals from 3.2 to 5.4 °C (worst forecast) to 0.9-2.3 °C (best forecast) were used for each trajectory using 0.1 °C increases to obtain the trend for each WQI parameter. Variations in the concentration (±30, ±70, and +100) of parameters related to anthropogenic activity (e.g., total suspended solids, fecal coliforms, and chemical oxygen demand) were simulated to obtain water quality scenarios for future health diagnosis of the reservoir. The results projected in the RCP models showed increasing WQI variation for lower temperature values (best forecast WQI = 74; worst forecast WQI = 71). This study offers a novel approach that integrates multiparametric statistical and WQI to help decision making on sustainable water resources management for tropical reservoirs impacted by climate change.
Asunto(s)
Cambio Climático , Calidad del Agua , Análisis de la Demanda Biológica de Oxígeno , México , Recursos HídricosRESUMEN
There is a lack of region-adapted tools to evaluate diet as a risk factor for cardiovascular disease (CVD) in adolescents. The study aim was to evaluate the reproducibility and validity of a paper-based and region-adapted food frequency questionnaire (FFQ) designed to assess CVD-related food and nutrient intakes of adolescents from Northwest México. The study design was cross-sectional. The FFQ was developed in a two-step process: prototype designing and a pilot test, with re-tested in a 3-month period, along with two administrations of 24 h-recall (24 hR). Pearson's and intra-class correlation coefficients (PCC and ICC) were assessed. Bland-Altman plots, limits of agreement and quintile classifications were carried out. Participants (n 221) were 53·8 % male, 18·5 ± 0·4 years old. Reproducibility had a median PCC = 0·66 for processed meats, ranging from 0·40 (saturated fat) to 0·74 (fish & shellfish), P = 0·001. ICC ranged from 0·53 (saturated fat) to 0·80 (sodium; and nuts, seeds and legumes), P = 0·001. Validity comparing FFQ1 v. 24 hR mean, PCCs ranged from 0·12 (P = 0·06) to 0·95 (P = 0·001), and ICC from 0·20 (P = 0·048) to 0·88 (P = 0·001); comparing FFQ2 v. 24 hR mean, PCCs ranged from 0·07 (P = 0·25) to 0·46 (P = 0·001), and ICC from 0·15 (P = 0·106) to 0·58 (P = 0·001). The FFQ overestimated the intake of all food groups and nutrients (P < 0·05), while Cohen's κ showed coefficients lower than 0·20. The proposed FFQ represents a moderately validated tool to estimate CVD-related food and nutrient intakes as a risk factor, which can be used in combination with multiple administrations of 24 hRs, as a critical mean in future interventions intended to reduce cardiometabolic risk in adolescents.
Asunto(s)
Ingestión de Alimentos , Ingestión de Energía , Animales , Estudios Transversales , Encuestas sobre Dietas , México , Reproducibilidad de los Resultados , Encuestas y Cuestionarios , VerdurasRESUMEN
Freezing of gait (FOG) can be assessed by clinical and instrumental methods. Clinical examination has the advantage of being available to most clinicians; however, it requires experience and may not reveal FOG even for cases confirmed by the medical history. Instrumental methods have an advantage in that they may be used for ambulatory monitoring. The aim of the present study was to describe and evaluate a new instrumental method based on a force sensitive resistor and Pearson's correlation coefficient (Pcc) for the assessment of FOG. Nine patients with Parkinson's disease in the "on" state walked through a corridor, passed through a doorway and made a U-turn. We analyzed 24 FOG episodes by computing the Pcc between one "regular/normal" step and the rest of the steps. The Pcc reached ±1 for "normal" locomotion, while correlation diminished due to the lack of periodicity during FOG episodes. Gait was assessed in parallel with video. FOG episodes determined from the video were all detected with the proposed method. The computed duration of the FOG episodes was compared with those estimated from the video. The method was sensitive to various types of freezing; although no differences due to different types of freezing were detected. The study showed that Pcc analysis permitted the computerized detection of FOG in a simple manner analogous to human visual judgment, and its automation may be useful in clinical practice to provide a record of the history of FOG.