Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Toxics ; 10(12)2022 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-36548546

RESUMEN

Recent studies have shown that the combined application of ethylenediaminetetraacetic acid (EDTA) and degradable chelating agents can enhance EDTA's affinity for heavy metals and reduce its toxicity, but the effect of this combination on the phytoremediation remains largely unknown. This study evaluated and compared the effects of EDTA, nitrilotriacetic acid (NTA), and glutamic acid-N,N-diacetic acid (GLDA) alone (E, N, G treatment), and in combination (EN and EG treatment), on the growth of dwarf bamboo (Indocalamus decorus Q. H. Dai), their phytoremediation efficiency, and the soil environment in Pb-contaminated soil. The results showed that treatment E significantly reduced the biomass, while treatments N and EN were more conducive to the distribution of aerial plant biomass. Except for treatment E, the total Pb accumulation in all treatments increased significantly, with the highest increase in treatment EN. For double chelating agents, the acid-soluble Pb concentrations in rhizosphere and non-rhizosphere soils of treatments EN and EG were lower than those of treatment E, and the soil water-soluble Pb content after 20 days of treatment EN was significantly lower than that of treatment EG. Furthermore, chelating agents generally increased soil-enzyme activity in rhizosphere soil, indicating that chelating agents may promote plant heavy-metal uptake by changing the rhizosphere environment. In conclusion, treatment EN had the highest phytoremediation efficiency and significantly lower environmental risk than treatments E and EG, highlighting its massive potential for application in phytoremediation of Pb-contaminated soil when combined with I. decorus.

2.
Ecotoxicol Environ Saf ; 238: 113603, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35551046

RESUMEN

Ethylenediaminetetraacetic acid (EDTA) is one of the most effective chelating agents for enhancing lead (Pb) accumulation in various plant organs. However, it has a higher risk of causing secondary pollution than other chelating agents. To reduce such environmental risks and increase remediation efficiency, EDTA can be combined with degradable chelating agents for use in phytoremediation, but there are few reports on the combination of EDTA and nitrilotriacetic acid (NTA). This study evaluated the effects of combined EDTA and NTA application at different concentrations (900, 1200, or 1500 mg/kg) and with different methods (1 application or 3 applications) on dwarf bamboo (Sasa argenteostriata (Regel) E.G. Camus) growth and phytoremediation efficiency and on the soil environment in pot experiments with Pb-contaminated soil. Applying EDTA and NTA together resulted in lower soil water-soluble Pb concentrations than applying EDTA alone and therefore resulted in lower environmental risk. The increased availability of soil Pb produced a stress response in the dwarf bamboo plants, which increased their biomass significantly. Moreover, under the chelating treatments, the soil Pb availability increased, which promoted Pb translocation in plants. The Pb content in the aerial parts of the dwarf bamboo increased significantly in all treatments (translocation factors increased by 300~1500% compared with that in CK). The Pb content increase in the aerial parts caused high proline accumulation in dwarf bamboo leaves, to alleviate Pb toxicity. Maximum Pb accumulation was observed in the EN1500 treatment, which was significantly higher than that in the other treatments except the EN900 treatment. This study elucidates the choice of remediation techniques and the physiological characteristics of the plants used in such studies. In conclusion, the EN900 treatment resulted in the lowest environmental risk, greatest biomass production, and highest phytoremediation efficiency of all treatments, indicating that it has great potential for application in phytoremediation with dwarf bamboo in Pb-contaminated soil.


Asunto(s)
Sasa , Contaminantes del Suelo , Biodegradación Ambiental , Quelantes/farmacología , Ácido Edético/farmacología , Plomo/toxicidad , Ácido Nitrilotriacético , Plantas , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
3.
Sci Total Environ ; 732: 139273, 2020 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-32428772

RESUMEN

Global warming may influence the bioavailability and mobility of heavy metals by stimulating or inhibiting plant growth, thereby influencing rhizosphere soil chemistry and microbial characteristics. Black locust has been widely planted in China as a promising species for afforestation programs, farmland shelterbelt projects, and soil restoration in mined areas because of its rapid growth and adaptability to environmental stressors. Here, we examined soil bacterial community structure and predicted bacterial metabolic function in the rhizosphere of black locust exposed to elevated temperature (+1.99 °C) and Pb for 4 years. Elevated temperature significantly (p < 0.05) reduced total carbon (TC), total nitrogen (TN), and total sulfur (TS) contents in above-ground parts but increased TC and TN contents in roots and seedling height under Pb exposure. Elevated temperature significantly (p < 0.05) increased Pb availability and raised pH, TC, TN, TS and water-soluble organic carbon (WSOC) contents, and the C:H ratio in rhizosphere soils under Pb exposure. The interactive effects between Pb and temperature on pH, TC, TH, TS, WSOC, and the C:H ratio were significant (p < 0.05). Elevated temperature significantly (p < 0.05) reduced the diversity and the richness of bacterial community, altered genus-level bacterial community composition, and improved (p < 0.05) the relative abundances of some bacteria involving in terpenoids and polyketides and xenobiotics biodegradation metabolism under Pb exposure. Canonical correspondence analysis indicated that pH, WSOC, C:N ratio, and soluble Pb were significant (p < 0.05) factors on the relative abundance of bacterial genera, such as Ochrobactrum and Sphingomnas. Overall, long-term elevated temperature resulted in changes in rhizosphere soil characteristics and Pb availability, thus affecting the bacterial community structure and metabolic functional groups. The conclusion helps us understand the response mechanism of soil bacteria in the rhizosphere to heavy metals under global warming scenarios.


Asunto(s)
Robinia , China , Rizosfera , Plantones , Suelo , Microbiología del Suelo , Contaminantes del Suelo , Temperatura
4.
Chemosphere ; 246: 125815, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31918108

RESUMEN

Nitrilotriacetic acid (NTA), a biodegradable chelant, has been promoted to effectively assist Pb phytoextraction, while a few researches available on the phytostabilizer of Athyrium wardii (Hook.). In this study, two incubation experiments and a subsequent column experiment were conducted to investigate the effects of application of NTA on Pb availability in soils and Pb accumulation in A. wardii and associated leaching risk. The application of NTA significantly increased the exchangeable Pb and Pb bound to carbonates along with a decreased pH, leading to enhanced Pb availability in soils. It was more effective in enhancing Pb availability in soils by adding 2 mmol kg-1 NTA into soils at once for 7 d, thus demonstrating potential for enhancing Pb uptake by A. wardii. After the addition of 2 mmol kg-1 NTA for 7 d, Pb concentrations in roots of A. wardii was enhanced by 23.8%, along with 10.6% of increase for Pb accumulation in roots. No significant changes were observed for the biomass of A. wardii. Meanwhile, the available Pb and TCLP-extractable Pb in 0-20 cm soils increased by 11.1-23.4% and 7.1-31.2%, thus promoting Pb leaching in 0-20 cm soils. However, there were no changes for Pb leaching risk levels of 20-40 cm soils. No Pb was detected in the leachates from all columns. The application of 2 mmol kg-1 NTA at once for 7 d is therefore proved to show greater potential in enhancing Pb remediation efficiency by the phytostabilizer of A. wardii without increasing Pb leaching risk into groundwater.


Asunto(s)
Biodegradación Ambiental , Plomo/metabolismo , Contaminantes del Suelo/metabolismo , Tracheophyta/fisiología , Biomasa , Plomo/análisis , Ácido Nitrilotriacético/metabolismo , Raíces de Plantas/metabolismo , Suelo , Contaminantes del Suelo/análisis , Tracheophyta/metabolismo
5.
Ecotoxicol Environ Saf ; 170: 502-512, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30557708

RESUMEN

Bamboos are considered as potential plants for phytoremediation. However, the mechanisms of EDTA-assisted bamboo for lead (Pb) control has not been described. The objective of this study was to examine the tolerance and behaviors of Pb to screen bamboos for Pb-contaminated soil and to explore the effects of EDTA on their phytoremediation. In this regard, five dwarf bamboos were treated with various doses Pb (0-1500 mg kg-1) and/or EDTA (500 or 250-1000 mg kg-1) to investigate antioxidant systems and Pb accumulation/species. Our findings showed that different doses of Pb significantly affect lipid peroxidation and antioxidant compounds in studied bamboos. EDTA increased the absorption of soil Pb2+ in all tissues with increasing Pb doses, while the Pb concentrations in all bamboo roots was higher than those in other tissues. Among these plants, Arundinaria argenteostriata (AA) and A. fortunei (AF) showed greater oxidative tolerance than other bamboos. Moreover, Pb accumulation showed the highest values in AA and AF plants relative to other bamboos. With increasing EDTA doses, levels of reducible and residual Pb decreased but the weak acid-soluble and total Pb increased in Pb-stressed AA/AF soils. Similarly, EDTA increased Pb2+ concentration in both bamboo tissues, while the Pb2+ level in leaves was higher than that in other organs at the highest EDTA dose. This study provides the first comprehensive evidence regarding EDTA enhancing the availability, absorption, and translocation of Pb in bamboo/soil, suggesting the application of EDTA may be an effective strategy for phytoremediation with two Arundinaria bamboos in Pb-contaminated soils.


Asunto(s)
Absorción Fisiológica/efectos de los fármacos , Ácido Edético/farmacología , Plomo/análisis , Poaceae/efectos de los fármacos , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Transporte Biológico , Tolerancia a Medicamentos , Plomo/metabolismo , Plomo/toxicidad , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Poaceae/metabolismo , Suelo/química , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad
6.
Int J Phytoremediation ; 20(7): 643-649, 2018 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-29039991

RESUMEN

It was found that using chelating agents increases the efficiency of heavy metal extraction, however, they may have negative effects on soil ecosystem quality. A pot experiment was conducted in a completely randomized design with three replications in order to evaluate the effect of EDTA and Olive Husk Extract (OHE) on some chemical and biological properties of the Pb-contaminated soil. The experimental treatments included EDTA (2 g Na2EDTA salt per kg soil), OHE (2 g TDS of OHE per kg soil) and control (without the chelating agent). The results revealed that the EDTA and OHE treatments increased the Pb availability by 17.7% and 5.5% in comparison to the control treatment, respectively. Although EDTA was more effective in increasing the Pb availability but decreased the soil biological quality index (SBQI). The EDTA treatment significantly decreased the dehydrogenase (DH) activity and germination index (GI). The OHE application significantly increased the available-P, available-K, total N and organic carbon content by 339.92%, 40.79%, 20.9%, and 29.7% compared with control treatment, respectively. Furthermore, OHE considerably increased SBQI from 18.96 to 53.48. Compared to the control treatment higher values of soil respiration activity, DH activity, and carbon availability index (CAI) were observed in OHE treatment.


Asunto(s)
Olea , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Quelantes/química , Ecosistema , Ácido Edético/química , Plomo , Suelo
7.
Chemosphere ; 173: 227-234, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28110012

RESUMEN

Heavy metals usually cause great damage to soil ecosystem. Lead (Pb) was chosen as a research object in the present study. Here repeated exposure of Pb was designed for the soil artificially contaminated. A laboratory study was conducted to determine the changes in the Pb availability and biological activity in the presence of earthworm, and the risk assessment code (RAC) was applied to evaluate the remediated soil. Results demonstrated that Pb gradually transformed to more stable fractions (OMB- and FeMnOX-Pb) under microbial action, indicating the risk level of Pb was declined. On the other hand, Pb also caused the inhibition of soil respiration and microbial biomass, and the higher the concentration of Pb, the stronger the inhibition; While in the presence of earthworm, it could absorb Pb and facilitate microbial activity, reflected the decrease of Pb content and the increase of respiration intensity in soil, as well as microbial biomass. Additionally, a good dose-response relationship between EXCH-Pb content and respiration intensity might provide a basis for ecological risk assessment.


Asunto(s)
Plomo/toxicidad , Oligoquetos/fisiología , Microbiología del Suelo , Contaminantes del Suelo/análisis , Suelo/química , Animales , Biomasa , Ecosistema , Contaminación Ambiental , Metales Pesados/análisis , Oligoquetos/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA