Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Data Brief ; 55: 110744, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39156671

RESUMEN

This data article presents details on the assessment of fracture parameters of laboratory asphalt mixtures produced using both natural and recycled concrete aggregates. The gap-graded stone matrix asphalt (SMA) is created by incorporating Trinidad Lake Asphalt (TLA) binder with carefully calibrated mixtures of recycled concrete aggregates (0 %, 10 %, 35 %, and 50 %) and natural aggregates (limestone and dust filler). The dataset variables were chosen based on the specifications of the single-edge notched beam (SENB) and semi-circular bending (SCB) tests, which are currently used for quality control and assurance (QC & QA) assessment of asphalt concrete mixtures. The data parameters provided include air void content, voids in mineral aggregates, voids filled with asphalt, density, Marshall Stability, Flow, test temperature, peak loads, RCA content, and notch depths. The fracture resistance of the mixes was studied by analysing the fracture energy, tensile strength, and fracture toughness for the collected dataset. The data shows that incorporating up to 10 % of RCA into SMA mixes, similar fracture properties can be achieved compared to traditional SMA mixtures. This presents a sustainable and environmentally advantageous option, however, it is important to exercise caution as the RCA content increases.

2.
Data Brief ; 54: 110382, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38623546

RESUMEN

This data article presents information on the measurement of Indirect Tensile Stiffness Modulus of laboratory and field asphalt mixtures. The asphalt mixes are composed of three distinct binders that were categorised by their penetration grade (40/55-TLA, 60/75-TLA, and 60/70-MB) and aggregates (limestone, sharp sand, and filler). The asphalt mixtures are called dense-graded hot mix asphalt (HMA) and gap-graded stone matrix asphalt (SMA). The variables in the dataset were selected in accordance with the specifications of the dynamic modulus models that are currently in use as well as the needs for the quality control and assurance (QC & QA) assessment of asphalt concrete mixes. The data parameters included are temperature, asphalt content, and binder viscosity, air void content, cumulative percent retained on 19, 12.5, and 4.75 mm sieves, maximum theoretical specific gravity, aggregate passing #200 sieve, effective asphalt content, density, flow, marshal stability, coarse-to-fine particle ratio and the Indirect Tensile Stiffness Modulus (ITSM). Utilising soft computing techniques, models were developed utilising the data thus eliminating the requirement for complex and time-consuming laboratory testing.

3.
Environ Sci Pollut Res Int ; 31(8): 12577-12590, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38168852

RESUMEN

Growing plastic pollution in the context of COVID-19 has caused significant challenges, exacerbating this already out-of-control issue. The pandemic has considerably boosted the demand for personal protective equipment (PPE), such as facemasks and gloves, all over the globe, and mismanaging this growing plastic pollution has harmed the environment and wildlife significantly. To mitigate negative environmental impacts, it is necessary to develop and implement effective waste management strategies. This present study estimated the daily facemask generation throughout the pandemic in Iran based on the distribution of urban and rural populations and, likewise, the daily generation of hand gloves in the COVID-19 era and the amount of medical waste generated by COVID-19 patients were calculated. In the next step, the quantities of discarded facemasks dumped into the Caspian Sea, the Persian Gulf, and the Gulf of Oman from the coastal cities were determined. Finally, the innovative alternatives for repurposing discarded facemasks in civil construction materials such as concrete, pavement, and partition wall panel were discussed.


Asunto(s)
COVID-19 , Administración de Residuos , Humanos , Máscaras , Reciclaje , Materiales de Construcción , Plásticos
4.
Polymers (Basel) ; 15(8)2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37112093

RESUMEN

Epoxy resin adhesive for pavement is often insufficient in flexibility and toughness. Therefore, a new type of toughening agent was prepared to overcome this shortcoming. To achieve the best toughening effect of a self-made toughening agent on an epoxy resin adhesive, its ratio to the epoxy resin needs to be optimally selected. A curing agent, a toughening agent, and an accelerator dosage were chosen as independent variables. The epoxy resin's adhesive tensile strength, elongation at break, flexural strength, and flexural deflection were used as response values to establish a single-objective prediction model of epoxy resin mechanical property indexes. Response surface methodology (RSM) was used to determine the single-objective optimal ratio and analyze the effect of factor interaction on epoxy resin adhesive's performance indexes. Based on principal component analysis (PCA), multi-objective optimization was performed using gray relational analysis (GRA) to construct a second-order regression prediction model between the ratio and gray relational grade (GRG) to determine the optimal ratio and to validate it. The results showed that the multi-objective optimization using response surface methodology and gray relational analysis (RSM-GRA) was more effective than the single-objective optimization model. The optimal ratio of epoxy resin adhesive was 100 parts of epoxy resin, 160.7 parts curing agent, 16.1 parts toughening agent, and 3.0 parts accelerator. The measured tensile strength was 10.75 MPa, elongation at break was 23.54%, the bending strength was 6.16 MPa, and the bending deflection was 7.15 mm. RSM-GRA has excellent accuracy for epoxy resin adhesive ratio optimization and can provide a reference for the epoxy resin system ratio optimization design of complex components.

5.
Materials (Basel) ; 14(22)2021 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-34832460

RESUMEN

This study investigates the substitution of conventional aggregate with a Florida washed shell in open-graded asphalt mixtures and evaluates the optimal substitution percentage in aggregate gradations of various nominal maximum aggregate sizes (NMASs) (i.e., 4.75, 9.5, and 12.5 mm). Laboratory experiments were performed on open-graded asphalt mixture specimens with the coarse aggregate of sizes between 2.36 and 12.5 mm being replaced by the Florida washed shell at various percentages (0, 15, 30, 45, and 100%). Specimen properties relevant to the performance of open-graded asphalt mixtures in the field were tested, evaluated, and compared. Specifically, a Marshall stability test, Cantabro test, indirect tensile strength test, air void content test, and permeability test were conducted to evaluate the strength, resistance to raveling, cracking resistance, void content, and permeability of open-graded asphalt mixtures. The results show that there is no significant difference in the Marshall stability and indirect tensile strength when the coarse aggregates are replaced with Florida washed shell. This study also found that the optimum percentages of Florida washed shell in open-graded asphalt mixture were 15, 30, and 45% for 12.5, 9.5, and 4.75 mm NMAS gradations, respectively.

6.
Materials (Basel) ; 14(19)2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34640287

RESUMEN

The mechanical behavior of asphalt mixtures at high stress levels are characterized by non-linear viscoelasticity and damage evolution. A nonlinear damage constitutive model considering the existence of creep hardening and creep damage mechanisms in the entire creep process is proposed in this study by adopting the fractional rheology theory to characterize the three-stage creep process of mixtures. A series of uniaxial compressive creep tests under various stresses were conducted at different temperatures to verify the model. The results indicated that the model predictions were in good agreement with the creep tests. The relationship between the model parameters and applied stresses was established, and the stress range in which the mixture exhibited only creep consolidation was obtained. The damage to the asphalt mixture was initiated in the steady stage; however, it developed in the tertiary stage. A two-parameter Weibull distribution function was used to describe the evolution between the damage values and damage strains at different stress levels and temperatures. The correlation coefficients were greater than 0.99 at different temperatures, indicating that a unified damage evolution model could be established. Thus, the parameters of the unified model were related to material properties and temperature, independent of the stress levels applied to the mixtures.

7.
Materials (Basel) ; 14(18)2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34576604

RESUMEN

Warm-mixed reclaimed asphalt pavement (RAP) technology has been widely studied worldwide as a recycled environmental method to reuse waste materials. However, the aggregate skeleton structure of the warm-mixed reclaimed asphalt mixture is not stable because of the existence of the recycled materials. Warm-mixed recycled semi-flexible pavement material can solve the defects of the above materials. In this study, five different types of open-graded asphalt mixtures containing different contents of RAP were designed, and relevant laboratory tests were conducted to assess the road performance of the warm-mixed recycled semi-flexible pavement material. The test results indicated that the road performance of warm-mixed reclaimed semi-flexible pavement materials has good resistance to rut deformation ability. Furthermore, the materials also had good water stability and fatigue performance. The grey correlation analysis shows that the asphalt binder content has the most significant correlation with the high-temperature stability, and the correlation between RAP content and the fatigue performance was the greatest. Furthermore, the curing age has the most remarkable with the low-temperature crack resistance of the warm-mixed reclaimed semi-flexible material.

8.
Materials (Basel) ; 13(7)2020 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-32235340

RESUMEN

This Special Issue "Sustainable Designed Pavement Materials" has been proposed and organized as a means to present recent developments in the field of environmentally-friendly designed pavement materials. For this reason, articles included in this special issue relate to different aspects of pavement materials, from industry solid waste recycling to pavement materials recycling, from pavement materials modification to asphalt performance characterization, from pavement defect detection to pavement maintenance, and from asphalt pavement to cement concrete pavement, as highlighted in this editorial.

9.
Materials (Basel) ; 12(21)2019 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-31653082

RESUMEN

Semi-flexible pavement (SFP) materials, with their characteristics of good high temperature stability, strong durability, and lower cost, are suitable for heavy-duty roads, but their cracking problem has hindered the development and popularization of this kind of pavement to a certain extent. In this study, engineered cementitious composites (ECC) were used to form ECC-SFP materials. The self-healing properties of ECC-SFP materials with three kinds of voids of matrix asphalt mixtures were studied. The test results showed that the fluidity and strength of the ECC mortars met the specification requirements when the water-cement ratio was 0.23 and the ECC fiber dosage was 1-2%. The flexural strength of ECC mortar is better than that of ordinary mortar. The higher the ECC fiber dosage, the higher the flexural strength. Increasing the void of the matrix asphalt mixture and the amount of ECC mortar increased the toughness of the ECC-SFP material, which was seen as an increase of the flow value. Curing conditions are key factor affecting the self-healing properties of ECC mortar and ECC-SFP materials. The self-healing effect of materials in 60 °C water is the best. When an ECC fiber dosage of 1% was used, the HImor of ECC mortar and HImix of ECC-SFP material were 27.5% and 24.8%, respectively. With the addition of ECC material, ECC-SFP material achieved a certain degree of self-healing, but this still needs to be further optimized. Studies of grouting process optimization and increasing the ECC fiber dosage are feasible directions to explore in order to improve the self-healing properties of ECC-SFP materials in the future.

10.
J Environ Manage ; 218: 291-299, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-29684781

RESUMEN

The low-carbon footprint of using recycled construction and demolition (C&D) aggregates in civil engineering infrastructure applications has been considered to be a significant solution for the replacement of conventional pavement aggregates. Investigations regarding the use of crumb rubber in the base and subbase layers of pavement have been well documented. However, information on the effects of crumb rubber and its size within C&D aggregates as the base/subbase layers is still very limited. In this study, crumb rubber with particle sizes ranging from 400 to 600 µm (fine) to 10-15 mm (coarse), 20 mm recycled crushed concrete (RCC), and 20 mm crushed rock (CR) were used. The crumb rubber was added to the two groups of C&D aggregates at 0.5, 1 and 2% by weight percentages of the aggregates. The effect of crumb rubber on the mechanical properties (such as California bearing ratio, unconfined compressive strength, aggregate crushing value, dynamic lightweight cone penetrometer, Clegg impact value, Los Angeles abrasion values, and resilient modulus) of the C&D aggregates was then examined. Based on the experimental test results, it was found that crumb rubber can be recycled as a waste material for the base and subbase layers in the pavement.


Asunto(s)
Reciclaje , Goma , Fuerza Compresiva , Materiales de Construcción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA