Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 29(6): 1660-1679, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36527334

RESUMEN

Atmospheric nitrogen (N) deposition is enriching soils with N across biomes. Soil N enrichment can increase plant productivity and affect microbial activity, thereby increasing soil organic carbon (SOC), but such responses vary across biomes. Drylands cover ~45% of Earth's land area and store ~33% of global SOC contained in the top 1 m of soil. Nitrogen fertilization could, therefore, disproportionately impact carbon (C) cycling, yet whether dryland SOC storage increases with N remains unclear. To understand how N enrichment may change SOC storage, we separated SOC into plant-derived, particulate organic C (POC), and largely microbially derived, mineral-associated organic C (MAOC) at four N deposition experimental sites in Southern California. Theory suggests that N enrichment increases the efficiency by which microbes build MAOC (C stabilization efficiency) if soil pH stays constant. But if soils acidify, a common response to N enrichment, then microbial biomass and enzymatic organic matter decay may decrease, increasing POC but not MAOC. We found that N enrichment had no effect on C fractions except for a decrease in MAOC at one site. Specifically, despite reported increases in plant biomass in three sites and decreases in microbial biomass and extracellular enzyme activities in two sites that acidified, POC did not increase. Furthermore, microbial C use and stabilization efficiency increased in a non-acidified site, but without increasing MAOC. Instead, MAOC decreased by 16% at one of the sites that acidified, likely because it lost 47% of the exchangeable calcium (Ca) relative to controls. Indeed, MAOC was strongly and positively affected by Ca, which directly and, through its positive effect on microbial biomass, explained 58% of variation in MAOC. Long-term effects of N fertilization on dryland SOC storage appear abiotic in nature, such that drylands where Ca-stabilization of SOC is prevalent and soils acidify, are most at risk for significant C loss.


Asunto(s)
Carbono , Suelo , Nitrógeno/análisis , Ecosistema , Biomasa , Minerales , Calcio , Microbiología del Suelo
2.
Water Res ; 227: 119321, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36368086

RESUMEN

Due to the limitations of the conventional water sample pretreatment methods, some of the colloidal uranium (U) has long been misidentified as "dissolved" phase. In this work, the U species in river water in the Ili Basin was classified into submicron-colloidal (0.1-1 µm), nano-colloidal (0.1 µm-3 kDa) and dissolved phases (< 3 kDa) by using high-speed centrifugation and ultrafiltration. The U concentration in the river water was 5.39-8.75 µg/L, which was dominated by nano-colloidal phase (55-70%). The nano-colloidal particles were mainly composed of particulate organic matter (POM) and had a very high adsorption capacity for U (accounting for 70 ± 23% of colloidal U). Sediment disturbance, low temperature, and high inorganic carbon greatly improved the release of nano-colloidal U, but high levels of Ca2+ inhibited it. The simulated river experiments indicated that the flow regime determined the release of nano-colloidal U, and large amounts of nano-colloidal U might be released during spring floods in the Ili basin. Moreover, global warming increases river flow and inorganic carbon content, which may greatly promote the release and migration of nano-colloidal U.


Asunto(s)
Ríos , Uranio , Uranio/análisis , Coloides/análisis , Carbono/análisis , Agua/análisis
3.
Front Microbiol ; 13: 812116, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814698

RESUMEN

Particulate organic matter (POM) in the ocean sustains diverse communities of bacteria that mediate the remineralization of organic complex matter. However, the variability of these particles and of the environmental conditions surrounding them present a challenge to the study of the ecological processes shaping particle-associated communities and their function. In this work, we utilize data from experiments in which coastal water communities are grown on synthetic particles to ask which are the most important ecological drivers of their assembly and associated traits. Combining 16S rRNA amplicon sequencing with shotgun metagenomics, together with an analysis of the full genomes of a subset of isolated strains, we were able to identify two-to-three distinct community classes, corresponding to early vs. late colonizers. We show that these classes are shaped by environmental selection (early colonizers) and facilitation (late colonizers) and find distinctive traits associated with each class. While early colonizers have a larger proportion of genes related to the uptake of nutrients, motility, and environmental sensing with few pathways enriched for metabolism, late colonizers devote a higher proportion of genes for metabolism, comprising a wide array of different pathways including the metabolism of carbohydrates, amino acids, and xenobiotics. Analysis of selected pathways suggests the existence of a trophic-chain topology connecting both classes for nitrogen metabolism, potential exchange of branched chain amino acids for late colonizers, and differences in bacterial doubling times throughout the succession. The interpretation of these traits suggests a distinction between early and late colonizers analogous to other classifications found in the literature, and we discuss connections with the classical distinction between r- and K-strategists.

4.
Environ Sci Pollut Res Int ; 29(44): 65904-65923, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35876994

RESUMEN

Chemical signature of airborne particulates and deposition dusts is subject of study since decades. Usually, three complementary composition markers are investigated, namely, (i) specific organic compounds; (ii) concentration ratios between congeners, and (iii) percent distributions of homologs. Due to its intrinsic limits (e.g., variability depending on decomposition and gas/particle equilibrium), the identification of pollution sources based on molecular signatures results overall restricted to qualitative purposes. Nevertheless, chemical fingerprints allow drawing preliminary information, suitable for successfully approaching multivariate analysis and valuing the relative importance of sources. Here, the state-of-the-art is presented about the molecular fingerprints of non-polar aliphatic, polyaromatic (PAHs, nitro-PAHs), and polar (fatty acids, organic halides, polysaccharides) compounds in emissions. Special concern was addressed to alkenes and alkanes with carbon numbers ranging from 12 to 23 and ≥ 24, which displayed distinct relative abundances in petrol-derived spills and exhausts, emissions from microorganisms, high vegetation, and sediments. Long-chain alkanes associated with tobacco smoke were characterized by a peculiar iso/anteiso/normal homolog fingerprint and by n-hentriacontane percentages higher than elsewhere. Several concentration ratios of PAHs were identified as diagnostic of the type of emission, and the sources of uncertainty were elucidated. Despite extensive investigations conducted so far, the origin of uncommon molecular fingerprints, e.g., alkane/alkene relationships in deposition dusts and airborne particles, remains quite unclear. Polar organics resulted scarcely investigated for pollution apportioning purposes, though they looked as indicative of the nature of sources. Finally, the role of humans and living organisms as actual emitters of chemicals seems to need concern in the future.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminación por Humo de Tabaco , Contaminantes Atmosféricos/análisis , Alcanos/análisis , Alquenos/análisis , Carbono/análisis , Polvo/análisis , Monitoreo del Ambiente/métodos , Ácidos Grasos/análisis , Humanos , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminación por Humo de Tabaco/análisis
5.
Sci Total Environ ; 806(Pt 3): 150467, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34592285

RESUMEN

Photochemical transformation of natural organic matter in aquatic environments strongly impacts the environmental behaviors of carbon, nutrients, and pollutants by affecting their solubility, toxicity, bioavailability, and mobility. However, the role of particulate organic matter (POM) in environmental photogeochemistry has received much less attention than that of dissolved organic matter (DOM). In this study, a systematic overview was conducted to summarize the photodissolution and photoflocculation of POM in aquatic systems. The photodissolution of various POM, such as resuspended sediments and algal detritus, could be a potential and important source of DOM in the overlying waters, and these photoreleased DOM were dominated by humic-like components. The photogeochemistry of POM is thought to proceed via direct photochemical reactions and reactive radical-dominated indirect processes. Photodissolution can modify the bioavailability of organic matter and influence the biogeochemical cycling of nutrients, heavy metals, and organic pollutants. In addition, the photo-induced flocculation of DOM to POM could also influence the transport and transformation of organic matter and its associated pollutants. The photochemistry of POM can be significantly influenced by several environmental factors, including irradiation wavelength and intensity, organic matter properties, and radical oxygen species. POM photogeochemistry is one of the most important components of the global cycling of natural organic matter. Further studies regarding photogeochemistry should be conducted to overcome the potential problems arising from the concurrent photodegradation of organic matter and to further develop more filed investigations and analytical methods.


Asunto(s)
Material Particulado , Fotólisis , Solubilidad , Espectrometría de Fluorescencia
6.
Microbiome ; 9(1): 44, 2021 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-33583434

RESUMEN

BACKGROUND: Sponges are increasingly recognised as key ecosystem engineers in many aquatic habitats. They play an important role in nutrient cycling due to their unrivalled capacity for processing both dissolved and particulate organic matter (DOM and POM) and the exceptional metabolic repertoire of their diverse and abundant microbial communities. Functional studies determining the role of host and microbiome in organic nutrient uptake and exchange, however, are limited. Therefore, we coupled pulse-chase isotopic tracer techniques with nanoscale secondary ion mass spectrometry (NanoSIMS) to visualise the uptake and translocation of 13C- and 15N-labelled dissolved and particulate organic food at subcellular level in the high microbial abundance sponge Plakortis angulospiculatus and the low microbial abundance sponge Halisarca caerulea. RESULTS: The two sponge species showed significant enrichment of DOM- and POM-derived 13C and 15N into their tissue over time. Microbial symbionts were actively involved in the assimilation of DOM, but host filtering cells (choanocytes) appeared to be the primary site of DOM and POM uptake in both sponge species overall, via pinocytosis and phagocytosis, respectively. Translocation of carbon and nitrogen from choanocytes to microbial symbionts occurred over time, irrespective of microbial abundance, reflecting recycling of host waste products by the microbiome. CONCLUSIONS: Here, we provide empirical evidence indicating that the prokaryotic communities of a high and a low microbial abundance sponge obtain nutritional benefits from their host-associated lifestyle. The metabolic interaction between the highly efficient filter-feeding host and its microbial symbionts likely provides a competitive advantage to the sponge holobiont in the oligotrophic environments in which they thrive, by retaining and recycling limiting nutrients. Sponges present a unique model to link nutritional symbiotic interactions to holobiont function, and, via cascading effects, ecosystem functioning, in one of the earliest metazoan-microbe symbioses. Video abstract.


Asunto(s)
Microbiota/fisiología , Nutrientes/metabolismo , Poríferos/metabolismo , Poríferos/microbiología , Simbiosis , Animales , Carbono/metabolismo , Nitrógeno/metabolismo
7.
J Hazard Mater ; 400: 123313, 2020 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-32947713

RESUMEN

Particulate organic matter (POM) includes humin and non-degradable residues, and the knowledge about its composition, evolution and environmental behavior is limited. The composition, evolution and its influence on dechlorination of the POM in landfill was studied. The results show that POM accounts for 27 %-57 % of the organic matter in landfill cell, which is mainly composed of protein-, fulvic- and humic-like components. Firmicutes and Proteobacteria were the main microorganisms driving the compositional evolution of POM during the landfilling process. The electron acceptance capacities (EAC) and electron donating capacities (EDC) of POM were in the range of 0.05-0.51 µmol/gC-1 and 0.13-0.66 µmol/gC-1, respectively, and the average EAC and EDC of POM in the intermediate and old stage of landfill were higher than those in the initial stage. The combined action of MR-1 and POM increased the degradation rate of PCP by 20 %-40 %, which was ascribed to the reduction capacities and electron transfer process of POM. POM derived from the intermediate and old stages promoted PCP dechlorination more effectively when compared with the initial stage due to its high electron transfer capacities (ETC), which are of great significance for soil in-situ bioremediation.

8.
Environ Sci Pollut Res Int ; 26(4): 4027-4040, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30554318

RESUMEN

Organic matter (OM), a complex entity with diverse functional groups and molecular sizes, has important effects on aquatic systems. We studied the optical compositions and sources of dissolved organic matter (DOM) and particulate organic matter (POM) in Lake Taihu, a large, shallow and eutrophic lake in China. Significant differences in optical compositions and sources occurred between the POM and DOM. The temporal-spatial distribution of the fluorescence indices suggested that the POM in Lake Taihu was mainly from autochthonous sources, but more exogenous characteristics were shown in POM in the river mouths compared with other regions. The chromophoric DOM in Lake Taihu mainly displayed autochthonous characteristics. The POM-DOM PARAFAC model was used to examine OM optical composition and five components were identified, which contained three protein-like components (C1, C2, and C5), a microbial humic-like component (C3), and a terrestrial humic-like component (C4). The POM was dominated by C5 in summer and autumn and C3 in winter and spring, and the DOM was dominated by protein-like components (C1, C2, and C5) through the entire year. The algae-dominated region had a relative higher contribution of tryptophan-like components of POM compared with the macrophyte-dominated region. A conceptual model based on the theory of "four phases of cyanobacteria bloom development" was proposed to fully describe the relationship between POM-DOM exchanges and cyanobacteria bloom development.


Asunto(s)
Lagos/análisis , Lagos/química , Material Particulado/análisis , China , Cianobacterias/crecimiento & desarrollo , Monitoreo del Ambiente , Eutrofización , Fluorescencia , Modelos Teóricos , Material Particulado/química , Ríos , Estaciones del Año , Análisis Espacio-Temporal , Espectrometría de Fluorescencia , Triptófano/química , Calidad del Agua
9.
Huan Jing Ke Xue ; 39(5): 1978-1986, 2018 May 08.
Artículo en Chino | MEDLINE | ID: mdl-29965495

RESUMEN

Particulate organic matter (POM) has attracted increasing attention recently due to its great contribution to fine particles (PM2.5) and complex components and sources. In the present study, 78 particulate organic compounds in PM2.5 were quantified at three sites in Shanghai during summer; these sites were located in urban (Xuhui), suburban (Qingpu), and coastal (Lin'gang) areas of the city. Accordingly, the chemical composition and spatial distribution were investigated and sources were explored based on the indicators and diagnostic ratios combined with backward trajectory. The results showed that during the period of observation, the quantified organic matter in the suburban area is about 319 ng ·m-3, close to the urban area but much higher than that of the coastal areas. Fatty acids were the largest contributors, followed by levoglucosan, polycyclic aromatic hydrocarbons (PAHs), n-alkanes, and hopanes. Source analysis based on tracer methods indicates that gasoline vehicle emissions were the main source of POM in Shanghai. Biomass burning from the northeast impacted somewhat on the urban area and western suburbs during the observation period. Terrestrial plant emissions played an important role in the source of fatty acids at Qingpu and Lin'gang, and emissions of marine phytoplankton and microorganisms were also important for fatty acids at Lin'gang. Coal combustion and motor vehicle exhaust made an important contribution to PAHs according to an analysis of diagnostic ratios. This study presented the characteristics and sources of POM in summertime Shanghai, which facilitates the development of an effective control strategy on PM2.5 pollution.

10.
Huan Jing Ke Xue ; 39(5): 2056-2066, 2018 May 08.
Artículo en Chino | MEDLINE | ID: mdl-29965505

RESUMEN

Thirty-two samples were collected from eight typical areas in Lake Taihu. Three-dimensional excitation-emission matrix fluorescence spectra (EEMs) and a parallel factor analysis (PARAFAC) were applied to investigate the fluorescence properties, the sources, and environmental significance of particulate organic matter (POM) from the overlying water in Lake Taihu in summer. Differences in fluorescence characteristics between POM and DOM (dissolved organic matter), and that in POM between the grass lake and the algal lake were further examined. There are five kinds of fluorophores in Lake Taihu:tyrosine-like fluorophores (C1 and C2), humic-like fluorophores (C3 and C4), and tryptophan-like fluorophores (C5), among which significant correlations were found between C1 and C2, C3 and C4, and C5 and two humic-like fluorophores (C4, C3). By comparing with the fluorescence characteristics of DOM from earlier studies, it is found that there are differences in compositions, sources, and correlations with water quality between POM and DOM in Lake Taihu in summer. In summer, the contribution of endogenous inputs to POM is greater than that of exogenous inputs in Lake Taihu because the ranges in the fluorescence indices, FI, BIX, and HIX, are 1.78-2.35, 0.3-2.7, and 0.8-1.1, respectively. Significant correlations have been found between humic-like fluorescent components and TN, TP, Chla, COD, POC, and SS, suggesting that fluorescence analysis can be used as an important method for a semi-quantitative analysis of nutrients. The protein-like components of the algal lake mainly consist of tryptophan and tyrosine, while that of the grass lake mainly contain tyrosine and a few tryptophan. It is worth noting that, the grass lake contains more tyrosine relative to the algal lake (t test, P < 0.01). Significant positive correlations between the protein-like and the humic-like fluorescence are found in the algal lake, while it is not significant in the grass lake. Significant positive correlations are found between the fluorescent components (protein-like and humic-like) and chlorophyll-a in the algal lake, while the correlation was only found between humic-like components and chlorophyll-a in the grass lake.


Asunto(s)
Lagos/química , Material Particulado/análisis , Calidad del Agua , China , Clorofilidas , Análisis Factorial , Espectrometría de Fluorescencia
11.
Huan Jing Ke Xue ; 39(8): 3601-3613, 2018 Aug 08.
Artículo en Chino | MEDLINE | ID: mdl-29998666

RESUMEN

Organic matter (OM), rich in carbon, nitrogen, phosphorus and other biogenic elements, has numerous geochemical and ecological functions in all kinds of water bodies, and is highly valued in ecological studies of both marine and inland environments. The formation, transformation, and fate of OM, and its accompanying nutrient regeneration process are key links in the biogeochemical cycling of nutrients in aquatic ecosystems. Furthermore OM, as a provider of nutrients, also plays a very significant role during the outbreak of algal blooms in inland lakes. Two extensive sampling campaigns were conducted at the same site (n=17) in Lake Taihu in February and May of 2015, and 34 (17×2) samples were collected. Excitation-emission matrix (EEM) fluorescence was combined with parallel factor analysis (PARAFAC) to characterize the spatial-temporal variations in the components and sources of particulate (POM) and dissolved (DOM) organic matter. Moreover, the correlations between fluorescence intensity and Chla were studied. Significant differences between the fluorescence peaks, fluorescence positions, and fluorescence intensities of POM and DOM indicated that the components of POM were more complex than those of DOM. Fluorescence intensities and fluorescence indices indicated that POM and DOM possessed endogenous characteristics and that estuaries possessed obvious exogenous characteristics. Five types of fluorophores were present in POM (C1p-C5p) and DOM (C1d-C5d):tyrosine-like fluorophores (C1 and C2), humic-like fluorophores (C3 and C4), and tryptophan-like fluorophores (C5). The fluorescent components of POM and DOM differed significantly. C3p was the dominant fluorophore in POM during spring and winter, and fluorescence intensities of C1p-C5p were higher in the Meiliang Bay and the central part of thelake than in other areas. C2d, C1d, and C5d were the dominant fluorophores in DOM during spring and winter, and fluorescence intensities of C1d-C5d were higher in the Zhushan Bay than in other areas. In spring, positive correlations were observed between C1d and C2d (P<0.01), C3d and C4d (P<0.01), C1p and C4p (P<0.05), and C2p and C5p (P<0.01). Remarkably, C3p and C3d (P<0.01) and C3p and C4d (P<0.05) were positively correlated, suggesting that these two forms of OM were correlated. Similarly, highly significant, positive correlations were observed between C1d and C2d (P<0.01), C3d and C4d (P<0.01), C1p and C2p (P<0.01), and C1d and C2p (P<0.01) during winter. Furthermore, Chla and C5d were significantly and positively correlated (P<0.01). However, both Chla/C2d and Chla/C3p were negatively correlated in spring. Furthermore, Chla and C4d were negatively correlated in winter.


Asunto(s)
Lagos/química , Compuestos Orgánicos/análisis , Estaciones del Año , China , Estuarios , Eutrofización , Sustancias Húmicas , Análisis Espacio-Temporal , Espectrometría de Fluorescencia
12.
Huan Jing Ke Xue ; 39(11): 5180-5188, 2018 Nov 08.
Artículo en Chino | MEDLINE | ID: mdl-30628243

RESUMEN

A pot experiment was carried out to investigate the effects and mechanism of particulate organic matter (POM) on cadmium uptake of rice on purple paddy soil. Organic carbon content in soil and POM and Cd content in POM and rice were analyzed. The results showed that the contents of total soil organic carbon (SOC), dissolved organic carbon (DOC), organic carbon in POM (POM-C), Cd in POM (POM-Cd), and the Cd enrichment factor in POM increased with the application of POM. When POM was applied at a rate of 2.5 g·kg-1, the proportion of POM-C and POM-Cd in soil significantly increased. Application of POM also increased rice plant biomass and enhanced the accumulation of Cd in rice. The Cd content was reduced by 24%-42% in rice roots and increased by 9%-30% in rice shoots with POM application, whereas it was reduced by 17% and 36% in rice grains when the application of POM was 0.5 g·kg-1 and 1.0 g·kg-1, respectively, but increased by 39% when the application of POM was 2.5 g·kg-1. Application of POM had no significant effect on the distribution of Cd in rice roots and shoots, but significantly affected the distribution of Cd in rice grains. The transportation of Cd from shoots to grains was inhibited at low rates of POM, but was promoted at high rates of POM, and consequently increased the Cd content in rice grains. Correlation analyses showed that the content of soil available Cd was the main factor affecting Cd accumulation in rice shoots, and the total content of POM-Cd in soil was the main factor affecting Cd accumulation in rice grains. Therefore, the addition of POM to soil could affect the Cd uptake of rice by changing the content of SOC, DOC, POM-C, POM-Cd, and available Cd in paddy soil.


Asunto(s)
Cadmio/farmacocinética , Oryza/metabolismo , Material Particulado , Contaminantes del Suelo/farmacocinética , Suelo/química , Carbono/química
13.
Huan Jing Ke Xue ; 38(5): 2146-2153, 2017 May 08.
Artículo en Chino | MEDLINE | ID: mdl-29965123

RESUMEN

Twenty purple paddy soil samples were collected from the Prefectures of Hechuan and Tongliang, Chongqing, and sieved into particulate organic matter (0.053-2 mm, POM), sand fraction (0.053-2 mm) and fine soil fraction (<0.053 mm). By comparing the concentration and distribution of soil organic carbon (SOC) and heavy metals among different components, the enrichment characteristics of POM for heavy metals (Cu, Zn, Pb and Zn) and its relationship with soil properties such as pH, CEC, clay content (<0.002 mm) and SOC were investigated. The result showed that the contents of POM fraction in purple paddy soils ranged from 7.31 to 44.76 g·kg-1, with an average level of 19.20 g·kg-1, while the carbon contents ranged from 96.61 to 263.17 g·kg-1, which were significantly higher than those of their original soils and other two fractions. The contribution rates of organic carbon by POM to the total organic carbon of soils ranged from 8.63% to 48.62%, which accounted for a large pool of organic carbon. The average enrichment factors of POM fraction to Cu, Zn, Pb and Cd were 3.35, 1.14, 2.88 and 2.14, respectively. Compared with sand fraction and fine soil fraction, POM fraction showed a significantly higher contribution rate to heavy metals, which were 6.02%, 2.22%, 5.24% and 3.21%. In addition, the enrichment ability and contribution rate of POM to Cu and Pb were obviously greater than those of Zn and Cd. There was a significant positive correlation between content of POM fraction and soil properties such as SOC, pH, CEC and clay content, in which SOC was the key factor. The POM-C content and total amount were significantly correlated with SOC and clay content. The pH value, SOC and POM-C amount had a significant or extremely significant correlation with the amount of heavy metals in POM, in which SOC was the most critical one. Comparing with other heavy metals, the amount of zinc in POM had the highest regression coefficient and the closest relationship with soil properties.


Asunto(s)
Metales Pesados/análisis , Contaminantes del Suelo/análisis , Suelo/química , China , Oryza , Material Particulado
14.
Sci Total Environ ; 551-552: 415-28, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26881732

RESUMEN

Dynamic exchanges between dissolved organic matter (DOM) and particulate organic matter (POM) plays a critical role in organic carbon cycling in coastal and inland aquatic ecosystems, interactions with aquatic organisms, mobility and bioavailability of pollutants, among many other ecological and geochemical phenomena. Although DOM-POM exchange processes have been widely studied from different aspects, little to no effort has been made to date to provide a comprehensive, mechanistic, and micro-spatial schema for understanding various exchange processes occurring in different aquatic ecosystems in a unified way. The phenomena occurring between DOM and POM were explained here with the homogeneous and heterogeneous mechanisms. In the homogeneous mechanism, the participating components are only organic matter (OM) constituents themselves with aggregation and dissolution involved, whereas OM is associated with other components such as minerals and particulate colloids in the heterogeneous counterpart. Besides the generally concerned processes of aggregation/dissolution and adsorption/desorption, other ecological factors such as sunlight and organisms can also participate in DOM-POM exchanges through altering the chemical nature of OM. Despite the limitation of current analytical technologies, many unknown and/or unquantified processes need to be identified to unravel the complicated exchanges of OM between its dissolved and particulate states. Based on the review of several previous mathematical models, we proposed a unified conceptual model to describe all major dynamic exchange mechanisms on the basis of exergy theory. More knowledge of dynamic DOM-POM exchanges is warranted to overcome the potential problems arising from a simple division of OM into dissolved versus particulate states and to further develop more sophisticated mathematic models.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA