Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 393: 130066, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37984670

RESUMEN

Fermentation pharmaceutical wastewater (FPW) containing excessive ammonium and low chemical oxygen demand (COD)/nitrogen ratio (C/N ratio) brings serious environmental risks. The stepwise nitrogen removal was achieved in a full-scale anaerobic/aerobic/anoxic treatment system with well-constructed consortia, that enables simultaneous partial nitrification-denitrification coupled with sulfur autotrophic denitrification (SPND-SAD) (∼99 % (NH4+-N) and ∼98 % (TN) removals) at the rate of 0.8-1.2 kg-N/m3/d. Inoculating simultaneous nitrification-denitrification (SND) consortia in O1 tank decreased the consumed ΔCOD and ΔCOD/ΔTN of A1 + O1 tank, resulting in the occurrence of short-cut SND at low C/N ratio. In SAD process (A2 tank), bio-generated polysulfides reacted with HS- to rearrange into shorter polysulfides, enhancing sulfur bioavailability and promoting synergistic SAD removal. PICRUSt2 functional prediction indicated that bioaugmentation increased genes related to Nitrogen/Sulfur/Carbohydrate/Xenobiotics metabolism. Key functional gene analysis highlighted the enrichment of nirS and soxB critical for SPND-SAD system. This work provides new insights into the application of bioaugmentation for FPW treatment.


Asunto(s)
Nitrificación , Aguas Residuales , Desnitrificación , Nitrógeno/metabolismo , Reactores Biológicos , Azufre , Preparaciones Farmacéuticas
2.
Bioresour Technol ; 390: 129856, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37820966

RESUMEN

Two pilot-scale two-stage anoxic/oxic membrane bioreactors were operated at different dissolved oxygen (DO) levels to evaluate nitrogen removal performances for treating landfill sludge dewatering liquid. Under either high (5.0-6.0 mg/L) or conventional DO (2.0-3.0 mg/L) conditions, partial nitrification (PN)-denitrification was both achieved, and high-concentration free ammonia (FA) ensured stable PN. The high DO system exhibited higher nitrite accumulation (98.5 %) and nitrogen removal (98.0 %), and its nitrogen removal was mainly ascribed to PN-denitrification (53.8 %). Kinetic inhibition tests and microbial sequencing results demonstrated that high DO condition improved the abundance and ability of ammonia-oxidizing bacteria (AOB) rather than nitrite-oxidizing bacteria under the FA inhibition. Pseudomonas, Thauera, and Soehngenia were characteristic genus in the high DO system, and Nitrosomonas was only AOB. Metagenomic analysis confirmed the important role of PN on nitrogen removal in high DO system. This provides valuable references for the efficient and economic treatment of ammonia-rich wastewater.


Asunto(s)
Betaproteobacteria , Nitrificación , Aguas del Alcantarillado , Desnitrificación , Amoníaco , Nitritos , Nitrógeno , Reactores Biológicos/microbiología , Oxígeno , Instalaciones de Eliminación de Residuos , Oxidación-Reducción
3.
Sci Total Environ ; 899: 165656, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37474054

RESUMEN

Manganese redox-stimulated bioremediation of nitrogen wastewater is receiving increasing attention. However, the nitrogen metabolic capacity and community evolution during manganese-mediated nitrogen transformation process under continued manganese domestication conditions are ambiguous. In this study, nitrogen- metabolizing microbial consortiums were incubated with synthesized Mn-humic acid complex (Mn-HA) for one month (M1), three months (M2) and six months (M3), respectively. During the Mn-HA incubation period, Bio-MnOx accompanying with bacterial consortiums (MnOB consortiums) with high TIN removal capacities were obtained. The TIN removal rates in M1, M2 and M3 were 0.220, 1.246 and 4.237 mg·L-1·h-1, respectively, which were 15.961, 90.006 and 1550.006 times higher than CK (Control Check group, no Mn-HA added group) (0.014 mg·L-1·h-1), respectively. Functional genes (amoA, AMX and narG) were most abundant in M3, which was associated with the highest nitrogen removal rate in M3. MnOB1 (bacterial consortium in M1), including Geobactor, Geothrix, Anaeromyxobacter and Bacillus, may be responsible for the Mnammox-NDMO (MnOx reduction coupled to ammonium oxidation - nitrate/nitrite-dependent low-valent Mn oxidation) process. MnOB3 (bacterial consortium in M2) enriched nitrifying bacteria Ellin6067, and denitrifying bacteria Denitratisoma, which dominated nitrogen transformation. MnOB6 (bacterial consortium in M3) enriched denitrifiers Denitratisoma, nitrifiers Ellin6067 and potential anammox bacteria SM1A02, Candidatus_Brocadia. Combined with the reduced abundance of Nitrospirae, a short-cut partial nitrification and denitrification (PND) or partial nitrification, denitrification and anammox (PNDA) could occurred in M2 and M3. It is suggested that community may have evolved into an energetically efficient short-cut nitrification, denitrification and anammox consortium to replace the full-range nitrification and denitrification community in M1 and CK under the continued manganese domestication conditions. Enhanced metabolic pathways of hydroxylamine oxidation and the nitric oxide reduction may confirm that PND or PNDA occurred in M2 and M3.


Asunto(s)
Desnitrificación , Manganeso , Manganeso/metabolismo , Nitrógeno/metabolismo , Domesticación , Nitrificación , Bacterias/metabolismo , Oxidación-Reducción , Reactores Biológicos/microbiología , Aguas del Alcantarillado
4.
Bioresour Technol ; 380: 129087, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37094619

RESUMEN

This study developed an innovative step-feed anaerobic coupled four-stage micro-oxygen gradient aeration process to treat digested swine wastewater. An anaerobic zone was used for prepositive denitrification; four micro-oxygen reactors (zones O1-O4) were used for simultaneous partial nitrification and denitrification through low-dissolved oxygen gradient control, step-feed, and swine wastewater-digested swine wastewater distribution. The nitrogen-removal efficiency was satisfactory (93 ± 3 %; effluent total nitrogen, 53 ± 19 mg/L). Mass balance coupled with quantitative polymerase chain reaction analysis revealed that simultaneous partial nitrification and denitrification was achieved in four micro-oxygen zones. Zones O1 were the major denitrification zones for nitrogen removal; nitrification was primary happened in zones O2 and O3. Correlation analysis confirmed that low-dissolved oxygen gradient control was the key to achieving efficient nitrogen removal. This study provides a low oxygen energy consumption method to treat digested swine wastewater with a low carbon/nitrogen ratio (<3).


Asunto(s)
Desnitrificación , Aguas Residuales , Animales , Porcinos , Nitrógeno , Oxígeno , Carbono , Anaerobiosis , Reactores Biológicos , Nitrificación , Aguas del Alcantarillado
5.
J Environ Manage ; 329: 117088, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36584508

RESUMEN

The municipal solid waste (MSW) with high water content can be pre-treated by the mechanical dewatering technology to significantly decrease the leachate generation in sequential landfill treatment or to improve the efficiency for solid waste incineration, which has attracted great concerns recently. However, the generated mechanical dewatering wastewater (MDW) containing high organics and nitrogenous content has been one of the big challenges for the sustainable treatment of MSW. In this study, a pilot-scale integrated system composed of physiochemical pretreatment, anaerobic sequencing batch reactor (ASBR), partial nitrification SBR (PN-SBR), denitrification SBR (DN-SBR), and UV/O3 advanced oxidation process, with a capacity of 1.0 m3/d to treat MDW containing over 34000 mg-chemical oxygen demand (COD)/L organics pollutant and 850 mg/L NH4+-N, was successfully developed. By explorations on the start-up of this integrated system and the process conditions optimization, after a long-term system operation, the findings demonstrated that this integrated system could reach the removal efficiency in the COD, NH4+-N and total nitrogen (TN) in the MDW of 99.7%, 98.2% and 96.9%, respectively. Partial nitrification and denitrification were successfully obtained for the TN removal with the nitrite accumulation rate of over 80%. The treatment condition parameters were optimized to be 800 mg/L polyaluminum chloride (PAC) and 2 mg/L polyacrylamide (PAM) under a pH of 9 for pretreatment, 36 h hydraulic retention time (HRT) for ASBR, 24 h for PN-SBR, and 2 h for UV/O3 unit. The organic sources in the MDW were also found to be feasible for the DN-SBR. Consequently, the resulting final effluent was stably in compliance with the discharge standard with high stability and reliability.


Asunto(s)
Nitrificación , Contaminantes Químicos del Agua , Aguas Residuales , Desnitrificación , Reproducibilidad de los Resultados , Residuos Sólidos , Aguas del Alcantarillado/química , Reactores Biológicos , Contaminantes Químicos del Agua/química , Nitrógeno/química , Oxidación-Reducción
6.
Sci Total Environ ; 853: 158424, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36067854

RESUMEN

The anoxic/multi-aerobic process is widely applied for treating landfill leachate with low carbon to nitrogen ratio. In this study, the effect of two aeration modes in the aerobic phase, i.e. decreasing dissolved oxygen (DO) and increasing DO, on nitrogen removal and N2O emission in the process were systematically compared. The results demonstrate that the aerobic phase with increasing DO mode has a positive effect on improved total nitrogen removal (78 %) under the COD/N ratio as low as 3.45 and minimized N2O emission. DO concentration higher than 1.5 mg/L in the aerobic phase reduced nitrogen removal and led to a significant high N2O emission in the process. Complete nitrite denitrification in the anoxic phase correlated with minimized N2O emission. Under efficient nitrogen removal stage, N2O emission factor was 2.4 ± 1.0 % of the total incoming nitrogen. Microbial analysis revealed that increasing DO mode increased the abundance of ammonia oxidizing bacteria and denitrifiers.


Asunto(s)
Nitrificación , Contaminantes Químicos del Agua , Desnitrificación , Nitrógeno/análisis , Contaminantes Químicos del Agua/análisis , Nitritos/análisis , Amoníaco/análisis , Reactores Biológicos/microbiología , Aguas del Alcantarillado/microbiología , Óxido Nitroso/análisis , Carbono , Oxígeno/análisis
7.
Bioresour Technol ; 364: 128025, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36174894

RESUMEN

To save external carbon source dosage and simplify NH4+ to NO2- ratio control strategy, this study established a novel step-draining based partial nitrification-denitrification and Anammox (PND-AMX) system for advanced nitrogen removal from mature landfill leachate. Separation of partial nitrification and denitrification was realized based on step-draining, achieving 74.8 % nitrogen removal. 25 % was the optimal volume exchange ratio for synergistic removal of organics and nitrogen, allowing full use of carbon source. NH4+ to NO2- ratio was easily controlled by varying the volume ratio of the first and second effluent of PND reactor. Brocadia, Kuenenia and Jettenia collectively accounted for 13.61 % in AMX reactor, contributing 21.0 % of nitrogen removal. Nitrogen removal efficiency and nitrogen removal rate reached 98.3 ± 1.2 % and 3.07 ± 0.09 kgN/(m3∙d), respectively. Partial Anammox process based on step-draining was easier to realize and of practical significance for application in treatment of landfill leachate.

8.
Bioresour Technol ; 350: 126891, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35217165

RESUMEN

Saline wastewater poses a threat to biological nitrogen removal. This study investigated whether and how static magnetic field (SMF) can improve the salt-tolerance of aerobic granular sludge (AGS) in two simultaneous partial nitrification and denitrification (SPND) reactors. Results confirmed that the SMF improved the mean size and settleability of granules, stimulated secretion of extracellular polymeric substances with high protein content, in turn enhancing the aerobic granulation. Although high salt stress inhibited functional microorganisms, the SMF maintained better SPND performance with average COD removal, TN removal and nitrite accumulation ratio finally recovering to 100%, 72.9% and 91.1% respectively. High throughput sequencing revealed that functional bacteria evolved from Paracoccus to halotolerant genera Xanthomarina, Thauera, Pseudofulvimonas and Azoarcus with stepwise increasing salinity. The enhanced salt-tolerance may be because the SMF promoted the activity of these halotolerant bacteria. Therefore, this study proposes an economic, effective and environmental biotechnology for saline wastewater treatment.


Asunto(s)
Nitrificación , Aguas del Alcantarillado , Aerobiosis , Reactores Biológicos/microbiología , Desnitrificación , Campos Magnéticos , Nitrógeno/metabolismo , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos , Aguas Residuales
9.
Huan Jing Ke Xue ; 40(5): 2310-2316, 2019 May 08.
Artículo en Chino | MEDLINE | ID: mdl-31087871

RESUMEN

Poor nitrogen removal from municipal sewage is mainly due to insufficient carbon source and low C/N ratio. The A2/O pilot plant was established to investigate the accumulation rate of nitrous nitrogen and the removal of nitrogen pollutants by adjusting the ratio of anoxic/aerobic zoning and dissolved oxygen levels in the aerobic zone. The results showed that when DO is 2.0-2.5 mg·L-1, changing the ratio of anoxic to aerobic zoning had little effect on the reaction system, and it was difficult to realize partial nitrification. When DO is 0.5-0.8 mg·L-1, VAnoxic:VAerobic=1:1, this is the best working condition of the system. The accumulation rate of nitrous nitrogen at the end of aerobic zone is stable at more than 62%, and the total nitrogen of effluent is reduced to 9.0 mg·L-1, which can achieve the goal of deep denitrification. Analyzing the apparent activity of nitrifying bacteria, it was found that the SAOR and SNOR (according to N/VSS calculation) were 0.14 g·(g·d)-1 and 0.04 g·(g·d)-1, respectively, under the optimum conditions. The difference between them was more obvious than that in other stages of the experiment, that is, the higher inhibition of NOB activity was the direct reason for the increase of nitrite accumulation rate. Illumina MiSeq sequencing showed that the number of NOB in this stage was significantly lower than that in other stages. Intermittent OUR method was used to analyze the composition of carbon sources at the inlet and outlet of the anoxic zone. The results showed that short-cut nitrification and denitrification could save 27.3% of the carbon sources under the optimal operating conditions. The biodegradable COD consumption in the anoxic zone was 63.6%, which was much higher than that in other stages.

10.
Bioresour Technol ; 228: 31-38, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28056367

RESUMEN

A simultaneous nitrification, denitrification and organic matter removal (SNDOR) process in sequencing batch biofilm reactor (SBBR) was established to treat saline mustard tuber wastewater (MTWW) in this study. An average COD removal efficiency of 86.48% and total nitrogen removal efficiency of 86.48% were achieved at 30gNaClL-1 during 100days' operation. The underlying mechanisms were investigated by PacBio SMRT DNA sequencing (V1-V9) to analyze the microbial community structures and its variation from low salinity at 10gNaClL-1 to high salinity at 30gNaClL-1. Results showed elevated salinity did not affect biological performance but reduced microbial diversity in SBBR, and halophilic bacteria gradually predominated by succession. Despite of high C/N, autotrophic ammonia-oxidizing bacteria (AOB) Nitrosomonas and ammonia-oxidizing archaea (AOA) Candidatus Nitrososphaera both contributed to ammonium oxidation. As salinity increasing, nitrite-oxidizing bacteria (NOB) were significantly inhibited, partial nitrification and denitrification (PND) process gradually contributed to nitrogen removal.


Asunto(s)
Industria de Procesamiento de Alimentos , Consorcios Microbianos/genética , Eliminación de Residuos Líquidos/métodos , Amoníaco/química , Amoníaco/metabolismo , Archaea/genética , Archaea/metabolismo , Procesos Autotróficos , Bacterias/genética , Bacterias/metabolismo , Reactores Biológicos/microbiología , Desnitrificación , Planta de la Mostaza/química , Nitrificación , Nitrógeno/metabolismo , Oxidación-Reducción , ARN Ribosómico 16S , Salinidad , Eliminación de Residuos Líquidos/instrumentación , Aguas Residuales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA