Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Parasit Vectors ; 17(1): 320, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068485

RESUMEN

BACKGROUND: Biological invasions pose risks to the normal functioning of ecosystems by altering the structure and composition of several communities. Molluscs stand out as an extensively studied group given their long history of introduction by either natural or anthropogenic dispersal events. An alien population of the lymnaeid species Orientogalba viridis was first sighted in 2009 in southern Spain. In its native range (Australasian), this species is one of the main intermediate hosts of Fasciola hepatica, a major worldwide trematode parasite largely affecting humans, domestic animals and wildlife. METHODS: We collected field populations of O. viridis from its native (Malaysia) and invaded (Spain) ranges. We performed detailed morphoanatomical drawings of the species and screened for natural infection of parasites. Individuals were molecularly characterized using ITS2 for comparison with existing sequences in a fine phylogeography study. We founded experimental populations at two different conditions (tropical, 26 °C and temperate, 21 °C) to study the life-history traits of exposed and non-exposed individuals to different F. hepatica isolates. RESULTS: We found a 9% natural prevalence of trematode infection (98% similarity with a sequence of Hypoderaeum conoideum [Echinostomatidae]) in the Spanish field population. The haplotypes of O. viridis found in our study from Spain clustered with Australian haplotypes. Experimental infection with F. hepatica was successful in both experimental conditions but higher in tropical (87% prevalence) than in temperate (73%). Overall lifespan, however, was higher in temperate conditions (mean 32.5 ± 7.4 weeks versus 23.3 ± 6.5) and survivorship remained above 70% during the first 20 weeks. In parasite-exposed populations, life expectancy dropped from an overall 37.75 weeks to 11.35 weeks but still doubled the time for initial cercariae shedding. Cercariae shedding started at day 23 post-exposure and peaked between days 53 and 67 with an average of 106 metacercariae per snail. CONCLUSIONS: Whether O. viridis will succeed in Europe is unknown, but the odds are for a scenario in which a major snail host of F. hepatica occupy all available habitats of potential transmission foci, ravelling the epidemiology of fasciolosis. This research provides a comprehensive understanding of O. viridis biology, interactions with parasites and potential implications for disease transmission dynamics, offering valuable insights for further research and surveillance.


Asunto(s)
Especies Introducidas , Caracoles , Animales , Caracoles/parasitología , España/epidemiología , Fasciola hepatica/genética , Fasciola hepatica/fisiología , Agua Dulce/parasitología , Trematodos/genética , Trematodos/clasificación , Trematodos/fisiología , Filogeografía
2.
Dokl Biochem Biophys ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38955917

RESUMEN

Fundamental aspects in the evolution of nematodes parasitizing woody plants are reviewed. (1) Nematode faunal lists of natural refugia are useful to predict the risks of opportunistic pathogens becoming true pathogens in the forest and park communities. (2) Nematode composition in natural refugia gives a chance to identify nematode antagonists of insect vectors of dangerous fungal and nematode infections, which can be potentially used as the biological agents for woody plants' protection. (3) Dauers in the ancestors of wood-inhabiting nematodes played a role as a survival stage in the detritus decomposition succession, and they later acquired the functions of dispersal and adaptations for transmission using insect vectors. (4) When inspecting wilted trees, it is necessary to use dauers for diagnostics, as sexually mature nematodes may be absent in tree tissues. (5) Plant parasitic nematodes originated from members of the detritus food web and retained a detritivorous phase in the life cycle as a part of the propagative generation. (6) Vectors in the life cycles of plant parasitic nematodes are inherited from the ancestral detritivorous nematode associations, rather than inserted in the dixenic life cycle of the 'nematode-fungus-plant' association. (7) Despite the significant difference in the duration of the nematode-tree and nematode-vector phases of the life cycle, the actual parasitic nematode specificity is dual: firstly to the vector and secondly to the natural host plant (as demonstrated in phytotests excluding a vector).

3.
Int J Parasitol Parasites Wildl ; 24: 100953, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38938270

RESUMEN

Feral deer are widespread throughout Australia with the capacity to impact livestock production via transmission of parasites. Samples of Dama dama (fallow deer), Rusa unicolor (sambar deer), Cervus elaphus (red deer) and an unidentified deer were sourced from various locations in south-eastern Australia for examination for parasites. Adult nematodes were collected from the lungs of all deer species across four separate geographical locations. The nematodes were identified as species of Dictyocaulus through both morphological and molecular means. Species identification based on morphological features was difficult, with many measurements from described species overlapping. Molecular analyses targeting three markers, namely 18S rRNA, ITS2, and cox1 revealed the presence of two distinct species: Dictyocaulus cervi and Dictyocaulus skrjabini. These are the first genetically confirmed reports of species of Dictyocaulus in feral deer in Australia, and although cross-transmission of species of Dictyocaulus with livestock has not yet been reported, it cannot be completely discounted without further research.

4.
PeerJ ; 12: e17161, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38560466

RESUMEN

The life history of a parasite describes its partitioning of assimilated resources into growth, reproduction, and transmission effort, and its precise timing of developmental events. The life cycle, in contrast, charts the sequence of morphological stages from feeding to the transmission forms. Phenotypic plasticity in life history traits can reveal how parasites confront variable environments within hosts. Within the protist phylum Apicomplexa major clades include the malaria parasites, coccidians, and most diverse, the gregarines (with likely millions of species). Studies on life history variation of gregarines are rare. Therefore, life history traits were examined for the gregarine Monocystis perplexa in its host, the invasive earthworm Amynthas agrestis at three sites in northern Vermont, United States of America. An important value of this system is the short life-span of the hosts, with only seven months from hatching to mass mortality; we were thus able to examine life history variation during the entire life cycle of both host and parasite. Earthworms were collected (N = 968 over 33 sample periods during one host season), then parasites of all life stages were counted, and sexual and transmission stages measured, for each earthworm. All traits varied substantially among individual earthworm hosts and across the sites. Across sites, timing of first appearance of infected earthworms, date when transmission stage (oocysts packed within gametocysts) appeared, date when number of both feeding (trophic) cells and gametocysts were at maximum, and date when 100% of earthworms were infected differed from 2-8 weeks, surprising variation for a short season available for parasite development. The maximal size of mating cells varied among hosts and across sites and this is reflected in the number of oocysts produced by the gametocyst. A negative trade-off was observed for the number of oocysts and their size. Several patterns were striking: (1) Prevalence reached 100% at all sites by mid season, only one to three weeks after parasites first appeared in the earthworms. (2) The number of parasites per host was large, reaching 300 × 103 cells in some hosts, and such high numbers were present even when parasites first appeared in the host. (3) At one site, few infected earthworms produced any oocysts. (4) The transmission rate to reach such high density of parasites in hosts needed to be very high for a microbe, from >0.33% to >34.3% across the three sites. Monocystis was one of the first protist parasites to have its life cycle described (early 19th century), but these results suggest the long-accepted life cycle of Monocystis could be incomplete, such that the parasites may be transmitted vertically (within the earthworm's eggs) as well as horizontally (leading to 100% prevalence) and merogony (asexual replication) could be present, not recognized for Monocystis, leading to high parasitemia even very early in the host's season.


Asunto(s)
Apicomplexa , Rasgos de la Historia de Vida , Oligoquetos , Parásitos , Animales , Oligoquetos/parasitología , Reproducción , Estadios del Ciclo de Vida , Oocistos
5.
Ecology ; 105(2): e4221, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38032549

RESUMEN

Host heterogeneity can affect parasite transmission, but determining underlying traits and incorporating them into transmission models remains challenging. Body size is easily measured and affects numerous ecological interactions, including transmission. In the snail-schistosome system, larger snails have a higher exposure to parasites but lower susceptibility to infection per parasite. We quantified the effect of size-based heterogeneity on population-level transmission by conducting transmission trials in differently size-structured snail populations and competing size-dependent transmission models. Populations with greater proportions of large snails had lower prevalence, and small snails were shielded from infection by co-occurring large conspecifics. Furthermore, a fully dependent transmission model that incorporated body size in both exposure and susceptibility outperformed other candidate models considered. Incorporating traits such as body size, which are affected by and directly affect host ecology, into transmission models could yield insights into natural dynamics and disease mitigation in many systems.


Asunto(s)
Parásitos , Animales , Schistosoma , Caracoles/parasitología , Interacciones Huésped-Parásitos
6.
Int J Parasitol Parasites Wildl ; 22: 300-304, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38089779

RESUMEN

Ring-tailed Lemur (Lemur catta) is the only surviving semi-terrestrial diurnal lemur in Madagascar. Despite being the most intensively studied of lemur taxa, only a few helminths have been described in this species. In this study we describe a persistent infection due to Trichostrongylus colubriformis in a captive population of L. catta hosted in a zoological park of northern Italy. In the context of a parasitological survey on zoo animals, we investigated parasites in a captive colony of ring-tailed lemurs within a zoological park. Parasitological analysis included necropsy of a deceased lemur in 2019, subsequent fecal sample collections in 2021-2022, followed by coprological examination and coprocolture. Morphological and molecular analyses were conducted on adult helminths, larvae and eggs, involving microscopy, scanning electron microscopy (SEM), and sequencing of the ITS rDNA region. Trichostrongylidae parasites were primarily found after necropsy in the intestine of the lemur. Morphological and molecular investigations on adults and eggs/larvae recovered from feces collected at different times from lemurs of the same captive population, allowed to properly identify the parasite as T. colubriformis. To the best of our knowledge this is the first description of T. colubriformis in L. catta. Although its presence in wild populations is not necessarily implied by our finding, this parasitosis represent a cause of concern in captive lemurs, considering the possibility of interspecies transmission and the zoonotic implications.

7.
Curr Biol ; 33(20): 4524-4531.e4, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37741283

RESUMEN

Parasites have evolved a variety of astonishing strategies to survive within their hosts, yet the most challenging event in their personal chronicles is the passage from one host to another. It becomes even more complex when a parasite needs to pass through the external environment. Therefore, the free-living stages of parasites present a wide range of adaptations for transmission. Parasitic flatworms from the group Digenea (flukes) have free-living larvae, cercariae, which are remarkably diverse in structure and behavior.1,2 One of the cercariae transmission strategies is to attain a prey-like appearance for the host.3 This can be done through the formation of a swimming aggregate of several cercariae adjoined together by their tails.4 Through the use of live observations and light, electron, and confocal microscopy, we described such a supposedly prey-mimetic colony comprising cercariae of two distinct morphotypes. They are functionally specialized: larger morphotype (sailors) enable motility, and smaller morphotype (passengers) presumably facilitate infection. The analysis of local read alignments between the two samples reveals that both cercaria types have identical 18S, 28S, and 5.8S rRNA genes. Further phylogenetic analysis of these ribosomal sequences indicates that our specimen belongs to the digenean family Acanthocolpidae, likely genus Pleorchis. This discovery provides a unique example and a novel insight into how morphologically and functionally heterogeneous individuals of the same species cooperate to build colonial organisms for the purpose of infection. This strategy bears resemblance to the cooperating castes of the same species found among insects.5.


Asunto(s)
Parásitos , Trematodos , Humanos , Animales , Larva , Filogenia , Natación , Trematodos/anatomía & histología , Trematodos/genética , Cercarias/anatomía & histología , Cercarias/genética
8.
Food Waterborne Parasitol ; 32: e00202, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37719030

RESUMEN

Freshwater snails are important hosts in the life cycles of many medically important parasites, particularly for digenetic trematodes such as liver flukes and schistosomes. The current study was conducted to determine the infection of freshwater snails with parasites that can potentially be transmitted to humans within the Murrumbidgee catchment area which is an area of widespread intensive aquaculture in Australia. A total of 116 freshwater snails, belonging to three species (Isidorella hainesii, Glyptophysa novaehollandica and Bullastra lessoni), were examined for the presence of parasites in both man-made and natural environments. The analysis of sequence data, including the internal transcribed spacers (ITS) of nuclear ribosomal DNA, small subunit (18S) ribosomal DNA, and large subunit (28S) ribosomal DNA, indicated that the collected parasites belonged to two distinct genera, namely Clinostomum and Echinostoma. It is noteworthy that species of both of these digenean parasites have the potential to be zoonotic. Cercariae of both Clinostomum and Echinostoma were observed in snails collected from aquaculture settings. It is important to highlight that infectious stages of Clinostomum  has been previously detected in edible fish within Australia. This information raises concerns regarding the potential transmission of these parasites to humans through the consumption of contaminated fish. These findings emphasize the importance of monitoring and controlling the presence of Clinostomum and Echinostoma in aquaculture environments to minimise the risk of zoonotic infections and ensure food safety. Further research and surveillance are needed to better understand the prevalence, transmission dynamics, and potential public health implications associated with these parasites in the context of aquaculture in Australia.

9.
Int J Parasitol ; 53(13): 711-730, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37414208

RESUMEN

Invasive Nile tilapias negatively impact native tilapia species through hybridisation and competition. However, the co-introduction of parasites with Nile tilapia, and subsequent changes in parasite communities, are scarcely documented. Monogeneans are known pathogens of cultured Nile tilapia, although little is known about their fate once Nile tilapias establish in new ecosystems. We investigate the parasitological consequences of Nile tilapia introduction on native tilapias in basins in Cameroon, the Democratic Republic of the Congo (DRC), and Zimbabwe, focusing on ectoparasitic dactylogyrids (Monogenea). Using the mitochondrial cytochrome oxidase c subunit I (COI) and nuclear 18S-internal transcribed spacer 1 (18S-ITS1) rDNA region of 128 and 166 worms, respectively, we evaluated transmission of several dactylogyrid species. Parasite spillover from Nile tilapia was detected for Cichlidogyrus tilapiae to Coptodon guineensis in Cameroon, Cichlidogyrus thurstonae to Oreochromis macrochir in the DRC, and Cichlidogyrus halli and C. tilapiae to Coptodon rendalli in Zimbabwe. Parasite spillback to Nile tilapia was detected for Cichlidogyrus papernastrema and Scutogyrus gravivaginus from Tilapia sparrmanii and Cichlidogyrus dossoui from C. rendalli or T. sparrmanii in the DRC, and Cichlidogyrus chloeae from Oreochromis cf. mortimeri and S. gravivaginus from O. macrochir in Zimbabwe. 'Hidden' transmissions (i.e. transmission of certain parasite lineages of species that are naturally present on both alien and native hosts) were detected for C. tilapiae and Scutogyrus longicornis between Nile tilapia and Oreochromis aureus and C. tilapiae between Nile tilapia and Oreochromis mweruensis in the DRC, and Cichlidogyrus sclerosus and C. tilapiae between Nile tilapia and O. cf. mortimeri in Zimbabwe. A high density of Nile tilapia occurring together with native tilapias, and the broad host range and/or environmental tolerance of the transmitted parasites, are proposed as factors behind parasite transmission through ecological fitting. However, continuous monitoring and the inclusion of environmental variables are necessary to understand the long-term consequences of these transmissions on native tilapias and to elucidate other underlying factors influencing these transmissions.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Tilapia , Trematodos , Animales , Tilapia/parasitología , Cíclidos/parasitología , Ecosistema , Enfermedades de los Peces/parasitología , Branquias/parasitología , Trematodos/genética , Especies Introducidas , África del Sur del Sahara
10.
Malar J ; 22(1): 115, 2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37029433

RESUMEN

BACKGROUND: Control of malaria parasite transmission can be enhanced by understanding which human demographic groups serve as the infectious reservoirs. Because vector biting can be heterogeneous, some infected individuals may contribute more to human-to-mosquito transmission than others. Infection prevalence peaks in school-age children, but it is not known how often they are fed upon. Genotypic profiling of human blood permits identification of individual humans who were bitten. The present investigation used this method to estimate which human demographic groups were most responsible for transmitting malaria parasites to Anopheles mosquitoes. It was hypothesized that school-age children contribute more than other demographic groups to human-to-mosquito malaria transmission. METHODS: In a region of moderate-to-high malaria incidence in southeastern Malawi, randomly selected households were surveyed to collect human demographic information and blood samples. Blood-fed, female Anopheles mosquitoes were sampled indoors from the same houses. Genomic DNA from human blood samples and mosquito blood meals of human origin was genotyped using 24 microsatellite loci. The resultant genotypes were matched to identify which individual humans were sources of blood meals. In addition, Plasmodium falciparum DNA in mosquito abdomens was detected with polymerase chain reaction. The combined results were used to identify which humans were most frequently bitten, and the P. falciparum infection prevalence in mosquitoes that resulted from these blood meals. RESULTS: Anopheles females selected human hosts non-randomly and fed on more than one human in 9% of the blood meals. Few humans contributed most of the blood meals to the Anopheles vector population. Children ≤ 5 years old were under-represented in mosquito blood meals while older males (31-75 years old) were over-represented. However, the largest number of malaria-infected blood meals was from school age children (6-15 years old). CONCLUSIONS: The results support the hypothesis that humans aged 6-15 years are the most important demographic group contributing to the transmission of P. falciparum to the Anopheles mosquito vectors. This conclusion suggests that malaria control and prevention programmes should enhance efforts targeting school-age children and males.


Asunto(s)
Anopheles , Sangre , Conducta de Búsqueda de Hospedador , Malaria Falciparum , Adolescente , Adulto , Anciano , Animales , Niño , Preescolar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Anopheles/parasitología , ADN/sangre , Genotipo , Malaria/sangre , Malaria/parasitología , Malaria/prevención & control , Malaria/transmisión , Malaria Falciparum/sangre , Malaria Falciparum/parasitología , Malaria Falciparum/prevención & control , Malaria Falciparum/transmisión , Comidas , Mosquitos Vectores/parasitología , Plasmodium falciparum/genética , Sangre/parasitología , Malaui
11.
PeerJ ; 10: e14305, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36420133

RESUMEN

Group living is beneficial for individuals, but also comes with costs. One such cost is the increased possibility of pathogen transmission because increased numbers or frequencies of social contacts are often associated with increased parasite abundance or diversity. The social structure of a group or population is paramount to patterns of infection and transmission. Yet, for various reasons, studies investigating the links between sociality and parasitism in animals, especially in primates, have only accounted for parts of the group (e.g., only adults), which is likely to impact the interpretation of results. Here, we investigated the relationship between social network centrality and an estimate of gastrointestinal helminth infection intensity in a whole group of Japanese macaques (Macaca fuscata). We then tested the impact of omitting parts of the group on this relationship. We aimed to test: (1) whether social network centrality -in terms of the number of partners (degree), frequency of interactions (strength), and level of social integration (eigenvector) -was linked to parasite infection intensity (estimated by eggs per gram of faeces, EPG); and, (2) to what extent excluding portions of individuals within the group might influence the observed relationship. We conducted social network analysis on data collected from one group of Japanese macaques over three months on Koshima Island, Japan. We then ran a series of knock-out simulations. General linear mixed models showed that, at the whole-group level, network centrality was positively associated with geohelminth infection intensity. However, in partial networks with only adult females, only juveniles, or random subsets of the group, the strength of this relationship - albeit still generally positive - lost statistical significance. Furthermore, knock-out simulations where individuals were removed but network metrics were retained from the original whole-group network showed that these changes are partly a power issue and partly an effect of sampling the incomplete network. Our study indicates that sampling bias can thus hamper our ability to detect real network effects involving social interaction and parasitism. In addition to supporting earlier results linking geohelminth infection to Japanese macaque social networks, this work introduces important methodological considerations for research into the dynamics of social transmission, with implications for infectious disease epidemiology, population management, and health interventions.


Asunto(s)
Parásitos , Enfermedades Parasitarias , Animales , Femenino , Macaca fuscata , Sesgo de Selección , Conducta Social , Primates
12.
Exp Parasitol ; 242: 108378, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36096192

RESUMEN

Host and parasite traits that are sensitive to environmental perturbations merit special attention in the mitigation of diseases. While life table experiments allow a practical evaluation of variability of these traits with environmental change, they are cost and resource intensive. Here, we use a model snail host-trematode parasite system to test the efficacy of an expeditious alternative. Rapidly changing host traits (such as juvenile growth rate) can be used as effective predictors of parasite transmission potential across a range of environmental factors. This approach can be applied to anticipate epidemiological changes under diverse environmental scenarios.


Asunto(s)
Biomphalaria , Animales , Humanos , Biomphalaria/parasitología , Schistosoma mansoni , Interacciones Huésped-Parásitos , Caracoles , Vectores de Enfermedades
13.
Parasitol Res ; 121(1): 115-126, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34755222

RESUMEN

Host age is known to influence the risk of parasite infection, but there is very little experimental evidence on whether parasites show preference towards potential hosts of a specific age. To investigate how host age affects host choice by parasites, we used the Nile tilapia (Oreochromis niloticus) as a fish parasite model and manipulated its gill ectoparasitic monogeneans in mesocosm experiments. Our experimental setting combined three age classes (juvenile, subadult, and adult) of both infected donor hosts and uninfected potential target hosts assigned to each treatment. We predicted that adult target hosts would be more susceptible to parasites than juveniles and adults because they represent high-quality habitat patches. Contrary to our prediction, we found that subadults were more susceptible to parasites than juvenile and adult target hosts. Our models confirmed that variation in target host age influenced parasite choice, suggesting that subadults might represent the most favourable option for parasites regarding a balance between host quality and susceptibility. We provide experimental evidence that host choice by parasites is age-dependent, and that this life-history trait can play a major role in structuring parasite populations.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Parásitos , Trematodos , Animales , Branquias , Interacciones Huésped-Parásitos
14.
Virulence ; 12(1): 3095-3114, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34895084

RESUMEN

Toxoplasma gondii is a parasitic protist infecting a wide group of warm-blooded animals, ranging from birds to humans. While this infection is usually asymptomatic in healthy individuals, it can also lead to severe ocular or neurological outcomes in immunocompromised individuals or in developing fetuses. This obligate intracellular parasite has the ability to infect a considerable range of nucleated cells and can propagate in the intermediate host. Yet, under the pressure of the immune system it transforms into an encysted persistent form residing primarily in the brain and muscle tissues. Encysted parasites, which are resistant to current medication, may reactivate and give rise to an acute infection. The clinical outcome of toxoplasmosis depends on a complex balance between the host immune response and parasite virulence factors. Susceptibility to the disease is thus determined by both parasite strains and host species. Recent advances on our understanding of host cell-parasite interactions and parasite virulence have brought new insights into the pathophysiology of T. gondii infection and are summarized here.


Asunto(s)
Toxoplasma , Toxoplasmosis , Animales , Interacciones Huésped-Parásitos , Virulencia , Factores de Virulencia
15.
Curr Res Microb Sci ; 2: 100036, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34841327

RESUMEN

Globally, malaria continues to be an enormous public health burden, with concomitant parasite-induced damage to the gastrointestinal (GI) barrier resulting in bacteremia-associated morbidity and mortality in both adults and children. Infected red blood cells sequester in and can occlude the GI microvasculature, ultimately leading to disruption of the tight and adherens junctions that would normally serve as a physical barrier to translocating enteric bacteria. Mast cell (MC) activation and translocation to the GI during malaria intensifies damage to the physical barrier and weakens the immunological barrier through the release of enzymes and factors that alter the host response to escaped enteric bacteria. In this context, activated MCs release Th2 cytokines, promoting a balanced Th1/Th2 response that increases local and systemic allergic inflammation while protecting the host from overwhelming Th1-mediated immunopathology. Beyond the mammalian host, recent studies in both the lab and field have revealed an association between a Th2-skewed host response and success of parasite transmission to mosquitoes, biology that is evocative of parasite manipulation of the mammalian host. Collectively, these observations suggest that malaria-induced bacteremia may be, in part, an unintended consequence of a Th2-shifted host response that promotes parasite survival and transmission. Future directions of this work include defining the factors and mechanisms that precede the development of bacteremia, which will enable the development of biomarkers to simplify diagnostics, the identification of therapeutic targets to improve patient outcomes and better understanding of the consequences of clinical interventions to transmission blocking strategies.

16.
Epidemics ; 37: 100508, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34656838

RESUMEN

Norway produces more than one million tonnes of salmonids every year, almost exclusively in open-water net pens. In 2014, the Norwegian government announced plans to increase salmonid production. However, increasing the number of farmed salmonids can have negative effects on the marine environment that threaten the industry's sustainability. In particular, production growth can lead to an increase in density-dependent diseases, including parasitic sea lice. The aim of this study was to simulate the effects of increased salmonid production on sea lice abundance using different scenarios for increasing the number of fish and for the management of sea lice. We used a previously developed, partly stage-structured model based on Norwegian production and environmental data to simulate the different scenarios. Our results show that increasing the marine farmed salmonid population at a national level by two or five times the current production leads to an increase in the sea lice abundance by 3.5% and 7.1%, respectively. We also found that by lowering the maximum allowable level of sea lice to an average of 0.049 adult females per fish, weekly treatments can be used to control sea lice population growth with a five times increase in production. However, this increases the number of farms treating per week by as much as 281.3%, which can lead to high costs and increased mortality among farmed salmonids. Overall, the results from our study shed light on the effects of increasing salmonid production in Norway with respect to the ongoing threat of sea lice infestations.


Asunto(s)
Copépodos , Enfermedades de los Peces , Infestaciones por Piojos , Salmonidae , Animales , Femenino , Enfermedades de los Peces/epidemiología , Enfermedades de los Peces/parasitología , Noruega/epidemiología , Salmonidae/parasitología
17.
Parasitol Res ; 120(12): 3965-3977, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34694518

RESUMEN

Transitional zones, such as edge habitat, are key landscapes for investigating biodiversity. "Soft edges" are permeable corridors that hosts can cross, while "hard edges" are impermeable borders that hosts cannot pass. Although pathogen transmission in the context of edges is vital to species conservation, drivers of host-parasite relationships in ecological edges remain poorly understood. Thus, we defined a framework for testing hypotheses of host-parasite interactions in hard and soft edges by (1) characterizing hard and soft edges from both the host and parasite perspectives, (2) predicting the types of parasites that would be successful in each type of edge, and (3) applying our framework to species invasion fronts as an example of host-parasite relationships in a soft edge. Generally, we posited that parasites in soft edges are more likely to be negatively affected by habitat fragmentation than their hosts because they occupy higher trophic levels but parasite transmission would benefit from increased host connectivity. Parasites along hard edges, however, are at higher risk of local extinction due to host population perturbations with limited opportunity for parasite recolonization. We then used these characteristics to predict functional traits that would lead to parasite success along soft and hard edges. Finally, we applied our framework to invasive species fronts to highlight predictions regarding host connectivity and parasite traits in soft edges. We anticipate that our work will promote a more complete discussion of habitat connectivity using a common framework and stimulate empirical research into host-parasite relationships within ecological edges and transitional zones.


Asunto(s)
Interacciones Huésped-Parásitos , Parásitos , Animales , Biodiversidad , Ecosistema
18.
Appl Anim Behav Sci ; 243: 105462, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34602687

RESUMEN

The recent SARS-CoV-2 epidemic has highlighted the need to prevent emerging and re-emerging diseases, which means that we must approach the study of diseases from a One Health perspective. The study of pathogen transmission in wildlife is challenging, but it is unquestionably key to understand how epidemiological interactions occur at the wildlife-domestic-human interface. In this context, studying parasite avoidance behaviours may provide essential insights on parasite transmission, host-parasite coevolution, and energy flow through food-webs. However, the strategies of avoiding trophically transmitted parasites in mammalian carnivores have received little scientific attention. Here, we explore the behaviour of red foxes (Vulpes vulpes) and other mammalian carnivores at conspecific and heterospecific carnivore carcasses using videos recorded by camera traps. We aim to determine 1) the factors influencing the probability of foxes to practice cannibalism, and 2) whether the scavenging behaviour of foxes differ when facing conspecific vs. heterospecific carcasses. We found that red foxes were generally reluctant to consume mesocarnivore carrion, especially of conspecifics. When recorded, consumption by foxes was delayed several days (heterospecific carcasses) or weeks (conspecific carcasses) after carcass detection. Other mammalian scavengers showed a similar pattern. Also, meat-borne parasite transmission from wild carnivore carcasses to domestic dogs and cats was highly unlikely. Our findings challenge the widespread assumption that cannibalistic or intra-specific scavenging is a major transmission route for Trichinella spp. and other meat-borne parasites, especially for the red fox. Overall, our results suggest that the feeding decisions of scavengers are probably shaped by two main contrasting forces, namely the nutritional reward provided by carrion of phylogenetically similar species and the risk of acquiring meat-borne parasites shared with these species. This study illustrates how the detailed monitoring of carnivore behaviour is essential to assess the epidemiological role of these hosts in the maintenance and dispersion of parasites of public and animal health relevance.

19.
Funct Ecol ; 35(11): 2376-2386, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37860273

RESUMEN

1. Hosts and their parasites exist within complex ecological communities. However, the role that non-focal community members, species which cannot be infected by a focal pathogen, may play in altering parasite transmission is often only studied in the lens of the "diversity-disease" relationship by focusing on species richness. This approach largely ignores mechanistic species interactions and risks collapsing our understanding of the community ecology of disease down to defining the prominence of "amplification" vs. "dilution" effects. 2. However, non-focal species vary in their traits, densities, and types of interactions with focal hosts and parasites. Therefore, a community ecology approach based on the mechanisms underlying parasite transmission, host harm, and dynamic species interactions may better advance our understanding of parasite transmission in complex communities. 3. Using the concept of the parasite's basic reproductive ratio, R0, as a generalizable framework, we examine several critical mechanisms by which interactions among hosts, parasites, and non-focal species modulate transmission and provide examples from relevant literature. 4. By focusing on the mechanism by which non-focal species impact transmission, we can emphasize the similarities among classic paradigms in the community ecology of disease, gain new insights into parasite invasion and persistence, community traits correlated with disease dilution or amplification, and the feasibility of biocontrol for parasites of conservation, agricultural, or human health concern.

20.
J Anim Ecol ; 90(1): 45-61, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32984944

RESUMEN

Social network analysis has achieved remarkable popularity in disease ecology, and is sometimes carried out without investigating spatial heterogeneity. Many investigations into sociality and disease may nevertheless be subject to cryptic spatial variation, so ignoring spatial processes can limit inference regarding disease dynamics. Disease analyses can gain breadth, power and reliability from incorporating both spatial and social behavioural data. However, the tools for collecting and analysing these data simultaneously can be complex and unintuitive, and it is often unclear when spatial variation must be accounted for. These difficulties contribute to the scarcity of simultaneous spatial-social network analyses in disease ecology thus far. Here, we detail scenarios in disease ecology that benefit from spatial-social analysis. We describe procedures for simultaneous collection of both spatial and social data, and we outline statistical approaches that can control for and estimate spatial-social covariance in disease ecology analyses. We hope disease researchers will expand social network analyses to more often include spatial components and questions. These measures will increase the scope of such analyses, allowing more accurate model estimates, better inference of transmission modes, susceptibility effects and contact scaling patterns, and ultimately more effective disease interventions.


Asunto(s)
Modelos Biológicos , Análisis de Redes Sociales , Animales , Ecología , Reproducibilidad de los Resultados , Análisis Espacial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA