Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Parasit Vectors ; 17(1): 102, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429820

RESUMEN

BACKGROUND: The integration of molecular data from hosts, parasites, and microbiota can enhance our understanding of the complex biological interactions underlying the resistance of hosts to parasites. Haemonchus contortus, the predominant sheep gastrointestinal parasite species in the tropics, causes significant production and economic losses, which are further compounded by the diminishing efficiency of chemical control owing to anthelmintic resistance. Knowledge of how the host responds to infection and how the parasite, in combination with microbiota, modulates host immunity can guide selection decisions to breed animals with improved parasite resistance. This understanding will help refine management practices and advance the development of new therapeutics for long-term helminth control. METHODS: Eggs per gram (EPG) of feces were obtained from Morada Nova sheep subjected to two artificial infections with H. contortus and used as a proxy to select animals with high resistance or susceptibility for transcriptome sequencing (RNA-seq) of the abomasum and 50 K single-nucleotide genotyping. Additionally, RNA-seq data for H. contortus were generated, and amplicon sequence variants (ASV) were obtained using polymerase chain reaction amplification and sequencing of bacterial and archaeal 16S ribosomal RNA genes from sheep feces and rumen content. RESULTS: The heritability estimate for EPG was 0.12. GAST, GNLY, IL13, MGRN1, FGF14, and RORC genes and transcripts were differentially expressed between resistant and susceptible animals. A genome-wide association study identified regions on chromosomes 2 and 11 that harbor candidate genes for resistance, immune response, body weight, and adaptation. Trans-expression quantitative trait loci were found between significant variants and differentially expressed transcripts. Functional co-expression modules based on sheep genes and ASVs correlated with resistance to H. contortus, showing enrichment in pathways of response to bacteria, immune and inflammatory responses, and hub features of the Christensenellaceae, Bacteroides, and Methanobrevibacter genera; Prevotellaceae family; and Verrucomicrobiota phylum. In H. contortus, some mitochondrial, collagen-, and cuticle-related genes were expressed only in parasites isolated from susceptible sheep. CONCLUSIONS: The present study identified chromosome regions, genes, transcripts, and pathways involved in the elaborate interactions between the sheep host, its gastrointestinal microbiota, and the H. contortus parasite. These findings will assist in the development of animal selection strategies for parasite resistance and interdisciplinary approaches to control H. contortus infection in sheep.


Asunto(s)
Hemoncosis , Haemonchus , Microbiota , Parásitos , Enfermedades de las Ovejas , Ovinos/genética , Animales , Parásitos/genética , Estudio de Asociación del Genoma Completo , Multiómica , Heces/parasitología , Enfermedades de las Ovejas/parasitología , Hemoncosis/parasitología , Recuento de Huevos de Parásitos
2.
Animal ; 18(2): 101061, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38232660

RESUMEN

Gastrointestinal (GI) parasites cause significant production losses in grazing ruminants which can be mitigated by breeding animals resistant to disease. Lymphocyte cytokine production and parasite-specific Immunoglobulin A (IgA) are adaptive immune traits associated with immunity to GI parasites. To explore the utility of these traits for selective breeding purposes, this study estimated the genetic parameters of the immune traits in sheep and assessed their relationship with disease and productivity traits. Whole blood stimulation assays were performed on 1 040 Scottish Blackface lambs at two months of age in 2016-2017. Blood was stimulated with either pokeweed mitogen (PWM), a non-specific activator of lymphocytes, and Teladorsagia circumcincta (T-ci) larval antigen to activate parasite-specific T lymphocytes. The type of adaptive immune response was determined by quantifying production of cytokines interferon-gamma (IFN-γ), interleukin (IL)-4, and IL-10, which relate to T-helper type (Th) 1, Th2 and regulatory T cell responses, respectively. Serum T-ci specific IgA was also quantified. Heritabilities were estimated for each immune trait by univariate analyses. Genetic and phenotypic correlations were estimated between different immune traits, and between immune traits vs. disease and productivity traits that were recorded at three months of age. Disease phenotypes were expressed as faecal egg counts (FEC) of nematode parasites (Strongyles and Nematodirus), faecal oocyst counts (FOC) of coccidian parasites, and faecal soiling score; production was measured as lamb live weight. Significant genetic variation was observed in all immune response traits. Heritabilities of cytokine production varied from low (0.14 ± 0.06) to very high (0.77 ± 0.09) and were always significantly greater than zero (P < 0.05). IgA heritability was found to be moderate (0.41 ± 0.09). Negative associations previously identified between IFN-γ production and FOC, and IL-4 production and strongyle FEC, were not evident in this study, potentially due to the time-lag between immune and parasitology measures. Instead, a positive genetic correlation was found between FOC and PWM-induced IFN-γ production, while a negative genetic correlation was found between FOC and T-ci induced IL-10. Live weight was negatively genetically correlated with IFN-γ responses. Overall, IFN-γ and IL-4 responses were positively correlated, providing little evidence of cross-regulation of Th1 and Th2 immunity within individual sheep. Furthermore, T-ci specific IgA was highly positively correlated with PWM-induced IL-10, indicating a possible role for this cytokine in IgA production. Our results suggest that while genetic selection for adaptive immune response traits is possible and may be beneficial for parasite control, selection of high IFN-γ responsiveness may negatively affect productivity.


Asunto(s)
Parásitos , Enfermedades de las Ovejas , Ovinos , Animales , Interleucina-10 , Interleucina-4/genética , Perfil Genético , Oveja Doméstica/genética , Fenotipo , Citocinas/genética , Inmunoglobulina A , Escocia , Enfermedades de las Ovejas/parasitología , Recuento de Huevos de Parásitos/veterinaria , Heces/parasitología
3.
Environ Sci Pollut Res Int ; 30(58): 121558-121568, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37955728

RESUMEN

Plastic pollution is now a ubiquitous feature of freshwater systems and the majority of this is fibrous. Here, we test the effects of plastic and cellulose-based fibres (polyester, cotton, and bamboo from commercial clothing) on fish host-parasite interactions using a freshwater fish host-parasite model system (guppy Poecilia reticulata-Gyrodactylus turnbulli). For uninfected fish, polyester exposure was associated with significantly higher mortality rates compared with the other two fibre types. For infected fish, whilst polyester and cotton exposure were not associated with any significant changes to parasite burdens, fish exposed to bamboo fibres had significantly reduced maximum parasite burdens compared with fish not exposed to any fibres, indicating that the bamboo fibres and/or associated dyes conferred some degree of resistance or tolerance. Whilst unable to determine the exact nature of the chemical dyes, when testing off-host parasite survival on exposure to the fibre dyes, cotton and particularly polyester dyes were associated with higher parasite mortality compared to bamboo. Overall, we add to the growing body of evidence which shows that polyester microplastic fibres and their associated dyes can be detrimental for both fish and parasite survival, and we highlight the need for increased transparency from textile industries on the chemical identity of fabric dyes.


Asunto(s)
Parásitos , Poecilia , Trematodos , Animales , Plásticos , Celulosa , Poliésteres , Gossypium
4.
Trop Anim Health Prod ; 55(3): 197, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37160635

RESUMEN

This pilot study used an alternative and economically efficient technique, the Kompetitive Allele-Specific Polymerase Chain Reaction (KASP-PCR) to examine 48 SNPs from 11 parasite-resistance genes found on 8 chromosomes in 110 animals from five sheep breeds reared in Hungary; Hungarian Tsigai, White Dorper, Dorper, Ile de France, and Hungarian Merino. Allele and genotype frequencies, fixation index, observed heterozygosity, expected heterozygosity, F statistic, and their relationship with the Hardy-Weinberg equilibrium (WHE) and the polymorphic information content (PIC) were determined, followed by principal component analysis (PCA). As much as 32 SNPs out of the 48 initially studied were successfully genotyped. A total of 9 SNPs, 4 SNPs in TLR5, 1 SNP in TLR8, and 4 SNPs in TLR2 genes, were polymorphic. The variable genotype and allele frequency of the TLRs gene indicated genetic variability among the studied sheep breeds, with the Hungarian Merino exhibiting the most polymorphisms, while Dorper was the population with the most SNPs departing from the HWE. According to the PIC value, the rs430457884-TLR2, rs55631273-TLR2, and rs416833129-TLR5 were found to be informative in detecting polymorphisms among individuals within the populations, whereas the rs429546187-TLR5 and rs424975389-TLR5 were found to have a significant influence in clustering the population studied. This study reported a moderate level of genetic variability and that a low to moderate within-breed diversity was maintained in the studied populations.


Asunto(s)
Enfermedades Transmisibles , Enfermedades Gastrointestinales , Parasitosis Intestinales , Parásitos , Enfermedades de las Ovejas , Animales , Ovinos/genética , Alelos , Polimorfismo de Nucleótido Simple , Hungría , Proyectos Piloto , Receptor Toll-Like 2 , Receptor Toll-Like 5 , Enfermedades Transmisibles/veterinaria , Parasitosis Intestinales/veterinaria , Enfermedades Gastrointestinales/veterinaria , Oveja Doméstica , Enfermedades de las Ovejas/genética
5.
Animal ; 17(5): 100772, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37031576

RESUMEN

Due to progressing anthelmintic resistance of gastrointestinal nematodes (GIN), supportive measures are needed to control these parasites. In sheep, it has been shown that selection towards an increased nematode resistance is feasible and that faecal egg count (FEC) is the generally acknowledged trait for selection. However, a selection based on FEC would come with certain costs, therefore auxiliary, cheaper resistance traits would be most welcome. FAMACHA©, a colour classification of the eyelid, usually used to determine the manifestation of an infection with Haemonchus contortus, could serve as such. Therefore, we collected FAMACHA©, packed cell volume (PVC) and FEC phenotypes of approx. 1150 naturally infected Lacaune ewes on 15 commercial farms in Switzerland. The Haemonchus-proportion was determined on farm level. Phenotypic correlations of FEC and FAMACHA© as well as FAMACHA© and PCV were 0.25 (SE 0.03) and -0.35 (SE 0.08), respectively, and correspond well with the results of other studies. A multi-trait animal model was applied to estimate genetic parameters with FEC, FAMACHA©, PVC and milk yield as dependent variables. The heritabilities of FEC, FAMACHA©, PCV and milk yield were estimated to be moderate with values of 0.33 (SE 0.08), 0.30 (SE 0.08), 0.36 (SE 0.08) and 0.34 (SE 0.08), respectively. The genetic correlations between FEC and FAMACHA© and between FEC and PCV were estimated to be close to zero with values of 0.03 (SE 0.22) and 0.01 (SE 0.21), respectively. The average Haemonchus-proportion compared to other GIN was found to be 43%. The FAMACHA© classification of the Lacaune ewes seems to indicate a rather high worm challenge, with 38, 14 and 2% of observations classified to scores 3, 4 and 5, respectively. However, the worm challenge according to FEC was moderate. It has been suggested that the genetic correlation between FAMACHA© and FEC is more pronounced when FEC was high. It could therefore be that the lack of genetic correlation was due to an insufficient worm challenge, even though the Lacaune were grazing at least 70 days before phenotyping. The genetic correlation between FEC and milk yield was estimated to be 0.07 (SE 0.22, slightly unfavourable). We conclude that if FEC is used as trait, the Lacaune could be selected for lower susceptibility towards nematode infection. The use of FAMACHA© as an auxiliary trait for FEC is not feasible, due to an inexistent genetic correlation between these two traits.


Asunto(s)
Hemoncosis , Haemonchus , Nematodos , Infecciones por Nematodos , Enfermedades de las Ovejas , Animales , Femenino , Ovinos/genética , Enfermedades de las Ovejas/genética , Enfermedades de las Ovejas/parasitología , Infecciones por Nematodos/genética , Infecciones por Nematodos/veterinaria , Infecciones por Nematodos/parasitología , Leche , Heces/parasitología , Recuento de Huevos de Parásitos/veterinaria , Hemoncosis/genética , Hemoncosis/veterinaria , Hemoncosis/parasitología
6.
Genes (Basel) ; 13(12)2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36553445

RESUMEN

Genome-wide association studies (GWAS) have been used as an effective tool to understand the genetics of complex traits such as gastrointestinal parasite (GIP) resistance. The aim of this study was to understand the genetics of gastrointestinal parasite (nematodes, Moniezia spp., Eimeria spp.) resistance in Akkaraman sheep by performing genomic heritability estimations and conducting GWAS to uncover responsible genomic regions. This is one of the first studies to examine the genetic resistance of Akkaraman sheep to the tapeworm parasite. The samples from 475 animals were genotyped using the Axiom 50K Ovine Genotyping Array. Genomic heritability estimates ranged from 0.00 to 0.34 for parasite resistance traits. This indicates that measured phenotypes have low to moderate heritability estimates. A total of two genome-wide significant SNP associated with TNEM3 and ATRNL1 genes and 10 chromosome-wide significant SNPs related with 10 genes namely NELL1, ST6GALNAC3, HIPK1, SYT1, ALK, ZNF596, TMCO5A, PTH2R, LARGE1, and SCG2 were suggested as candidates for parasite resistance traits. The majority of these candidate genes were involved in several basic biological processes that are essential and important for immune system functions and cellular growth; specifically, inflammatory responses, cellular transport, cell apoptosis, cell differentiation, histone de-acetylation, and endocytosis. These results have implications for animal breeding program studies due to the effect that the genetic background has on parasite resistance, which underlies many productive, health, and wellness-related traits.


Asunto(s)
Nematodos , Parásitos , Ovinos/genética , Animales , Estudio de Asociación del Genoma Completo/veterinaria , Nematodos/fisiología , Genotipo , Genómica
7.
Molecules ; 27(22)2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36432016

RESUMEN

The past decade has seen most antimalarial drugs lose their clinical potency stemming from parasite resistance. Despite immense efforts by researchers to mitigate this global scourge, a breakthrough is yet to be achieved, as most current malaria chemotherapies suffer the same fate. Though the etiology of parasite resistance is not well understood, the parasite's complex life has been implicated. A drug-combination therapy with artemisinin as the central drug, artemisinin-based combination therapy (ACT), is currently the preferred malaria chemotherapy in most endemic zones. The emerging concern of parasite resistance to artemisinin, however, has compromised this treatment paradigm. Membrane-bound Ca2+-transporting ATPase and endocytosis pathway protein, Kelch13, among others, are identified as drivers in plasmodium parasite resistance to artemisinin. To mitigate parasite resistance to current chemotherapy, computer-aided drug design (CADD) techniques have been employed in the discovery of novel drug targets and the development of small molecule inhibitors to provide an intriguing alternative for malaria treatment. The evolution of plasmepsins, a class of aspartyl acid proteases, has gained tremendous attention in drug discovery, especially the non-food vacuole. They are expressed at multi-stage of the parasite's life cycle and involve in hepatocytes' egress, invasion, and dissemination of the parasite within the human host, further highlighting their essentiality. In silico exploration of non-food vacuole plasmepsin, PMIX and PMX unearthed the dual enzymatic inhibitory mechanism of the WM382 and 49c, novel plasmepsin inhibitors presently spearheading the search for potent antimalarial. These inhibitors impose structural compactness on the protease, distorting the characteristic twist motion. Pharmacophore modeling and structure activity of these compounds led to the generation of hits with better affinity and inhibitory prowess towards PMIX and PMX. Despite these headways, the major obstacle in targeting PM is the structural homogeneity among its members and to human Cathepsin D. The incorporation of CADD techniques described in the study at early stages of drug discovery could help in selective inhibition to augment malaria chemotherapy.


Asunto(s)
Antimaláricos , Artemisininas , Malaria , Parásitos , Animales , Humanos , Plasmodium falciparum , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Antimaláricos/química , Artemisininas/metabolismo , Malaria/tratamiento farmacológico
8.
Int J Parasitol ; 52(13-14): 843-853, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36244427

RESUMEN

Gastrointestinal nematodes (GINs) are damaging parasites of global sheep populations. The key weapons in fighting GINs have been anthelmintic drugs, but the emergence of drug-resistant parasites has meant that alternative control methods are needed. One of these alternatives is to breed for enhanced host resistance to GINs, and decades of research have estimated the genetic contribution to different measures of resistance to GINs and their genetic correlations with other desirable performance traits. It is clear that parasite resistance is a heritable trait that can be selected for. Despite this consensus, estimates of both heritability of resistance and genetic correlations with other traits vary widely between studies, and the reasons for this variation have not been examined. This study provides a comprehensive and quantitative meta-analysis of genetic parameters for resistance to GINs in sheep, including measures of worm burden (faecal egg counts, FECs), anti-parasite immunity (GIN-specific antibodies), and parasite-induced pathology (FAMACHA© scores). Analysis of 591 heritability estimates from 121 studies revealed a global heritability estimate for resistance to GINs of 0.25 (95% confidence interval (CI) = 0.22-0.27) that was stable across breeds, ages, geographical location and analytical methods. Meanwhile, analysis of 559 genetic correlations from 54 studies revealed that resistance to GINs overall has a positive genetic correlation of +0.10 (95% CI = 0.02-0.19) with performance traits, and that this was consistent across breeds, ages, sexes and analytical methods. Importantly, the direction of the genetic correlation varied with the resistance trait measured: while FECs and FAMACHA© scores were favourably correlated with performance traits, adaptive immune markers were unfavourably correlated, suggesting that selection for enhanced immune responses to GINs could reduce animal performance. Overall, the results suggest that breeding for resistance to GINs should continue to form part of integrated management programs to reduce the impact of parasites on health and performance, but that selection for enhanced immune responses should be avoided.


Asunto(s)
Antihelmínticos , Nematodos , Infecciones por Nematodos , Enfermedades de las Ovejas , Ovinos , Animales , Infecciones por Nematodos/parasitología , Nematodos/genética , Enfermedades de las Ovejas/parasitología , Antihelmínticos/uso terapéutico , Tracto Gastrointestinal , Heces/parasitología , Recuento de Huevos de Parásitos/veterinaria
9.
Parasite Immunol ; 44(11): e12943, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36071651

RESUMEN

Florida Native is a heritage sheep breed in the United States and expresses superior ability to regulate gastrointestinal nematodes. The objective of the present study was to investigate the importance of copy number variants (CNVs) on resistance to natural Haemonchus contortus infections. A total of 300 Florida Native sheep were evaluated. Phenotypic records included fecal egg count (FEC, eggs/gram), FAMACHA© score, percentage cell volume (PCV, %), body condition score (BCS) and average daily gain (ADG, kg). Sheep were genotyped using the GGP Ovine 50K single nucleotide polymorphism (SNP) chip. Log ratios from 45.2 k SNP markers spanning the entire genome were utilized for CNV detection. After quality control, 261 animals with CNVs and phenotypic records were used for the association testing. Association tests were carried out using correlation-trend test and principal component analysis correction to identify CNVs associated with FEC, FAMACHA©, PCV, BCS and ADG. Significant CNVs were detected when their adjusted p-value was <.05 after FDR correction. A total of 8124 CNVs were identified, which gave 246 non-overlapping CNVs. Fourteen CNVs were significantly associated with FEC and PCV. CNVs associated with FEC overlapped 14 Quantitative Trait Locus previously associated with H. contortus resistance. Our study demonstrated for the first time that CNVs could be potentially involved with parasite resistance in Florida Native sheep. Immune-related genes such as CCL1, CCL2, CCL8, CCL11, NOS2, TNF, CSF3 and STAT3 genes could play an important role for controlling H. contortus resistance. These genes could be potentially utilized as candidate markers for selection of parasite resistance in this breed.


Asunto(s)
Hemoncosis , Haemonchus , Parásitos , Enfermedades de las Ovejas , Animales , Variaciones en el Número de Copia de ADN , Heces/parasitología , Estudio de Asociación del Genoma Completo , Hemoncosis/parasitología , Hemoncosis/veterinaria , Haemonchus/genética , Recuento de Huevos de Parásitos/veterinaria , Ovinos , Enfermedades de las Ovejas/parasitología , Estados Unidos
10.
Pathogens ; 11(8)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36015059

RESUMEN

Among the gastrointestinal nematodes affecting sheep, Haemonchus contortus is the most prevalent and virulent, resulting in health problems and production losses. Therefore, selecting sheep resistant to H. contortus is a suitable and sustainable strategy for controlling endoparasites in flocks. Here, 287 lambs of the native Brazilian Morada Nova hair sheep breed were subjected to two consecutive artificial infections with H. contortus and assessed for fecal egg count (FEC), packed cell volume (PCV), and live weight (LW). Forty-four animals ranked as having extreme resistance phenotypes were genotyped using the Illumina OvineSNP50v3 chip. A case−control genome-wide association study (GWAS) detected 37 significant (p < 0.001) markers in 12 ovine chromosomes in regions harboring quantitative trait loci (QTL) for FEC, Trichostrongylus spp. adults and larvae, weight, and fat; and candidate genes for immune responses, mucins, hematological parameters, homeostasis, and growth. Four single-nucleotide polymorphisms (SNP; OAR1_rs427671974, OAR2_rs419988472, OAR5_rs424070217, and OAR17_rs401006318) genotyped by qPCR followed by high-resolution melting (HRM) were associated with FEC and LW. Therefore, molecular markers detected by GWAS for H. contortus resistance in Morada Nova sheep may support animal selection programs aimed at controlling gastrointestinal nematode infections in flocks. Furthermore, genotyping of candidate genes using HRM qPCR may provide a rapid and efficient tool for animal identification.

11.
Proc Biol Sci ; 289(1981): 20220534, 2022 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-35975444

RESUMEN

Harvesting is typically size-selective, targeting large individuals. This is expected to lead to reduced average body size and earlier maturation (i.e. faster life histories). Such changes can also affect traits seemingly unrelated to harvesting, including immunocompetence. Here we test four hypotheses on how harvesting affects immunocompetence based on the pace-of-life syndrome, habitat area limitation and energy allocation and acquisition, respectively. We empirically evaluate these hypotheses using an experimental system consisting of the ectoparasite Gyrodactylus turnbulli and lines of guppies Poecilia reticulata that had been subjected to either small, random or large size-selective harvest for over 12 years. We followed the infection progression of individually infected fish for 15 days. We found significant differences between the harvested lines: fish from the small-harvested lines had the highest parasite loads. During the early phase of the infection, parasite loads were the lowest in the large-harvested lines, whereas the terminal loads were the lowest for the random-harvested lines. These results agree with the predictions from the energetic trade-off and surface area hypotheses. To our knowledge, this is the first demonstration of the consequences of size-selective harvesting on immunocompetence.


Asunto(s)
Enfermedades de los Peces , Parásitos , Poecilia , Trematodos , Animales , Enfermedades de los Peces/parasitología , Inmunocompetencia
12.
Front Genet ; 13: 866176, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35591856

RESUMEN

Estimated breeding values (EBV) for fecal egg counts (FEC) at 42-90 days of age (WFEC) and 91-150 days of age (PFEC) for 84 progeny-tested Katahdin sires were used to identify associations of deregressed EBV with single-nucleotide polymorphisms (SNP) using 388,000 SNP with minor-allele frequencies ≥0.10 on an Illumina high-density ovine array. Associations between markers and FEC EBV were initially quantified by single-SNP linear regression. Effects of linkage disequilibrium (LD) were minimized by assigning SNP to 2,535 consecutive 1-Mb bins and focusing on the effect of the most significant SNP in each bin. Bonferroni correction was used to define bin-based (BB) genome- and chromosome-wide significance. Six bins on chromosome 5 achieved BB genome-wide significance for PFEC EBV, and three of those SNP achieved chromosome-wide significance after Bonferroni correction based on the 14,530 total SNP on chromosome 5. These bins were nested within 12 consecutive bins between 59 and 71 Mb on chromosome 5 that reached BB chromosome-wide significance. The largest SNP effects were at 63, 67, and 70 Mb, with LD among these SNP of r 2 ≤ 0.2. Regional heritability mapping (RHM) was then used to evaluate the ability of different genomic regions to account for additive variance in FEC EBV. Chromosome-level RHM indicated that one 500-SNP window between 65.9 and 69.9 Mb accounted for significant variation in PFEC EBV. Five additional 500-SNP windows between 59.3 and 71.6 Mb reached suggestive (p < 0.10) significance for PFEC EBV. Although previous studies rarely identified markers for parasite resistance on chromosome 5, the IL12B gene at 68.5 Mb codes for the p40 subunit of both interleukins 12 and 23. Other immunoregulatory genes are also located in this region of chromosome 5, providing opportunity for additive or associative effects.

13.
Evol Lett ; 6(2): 162-177, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35386836

RESUMEN

Closely related populations often differ in resistance to a given parasite, as measured by infection success or failure. Yet, the immunological mechanisms of these evolved differences are rarely specified. Does resistance evolve via changes to the host's ability to recognize that an infection exists, actuate an effective immune response, or attenuate that response? We tested whether each of these phases of the host response contributed to threespine sticklebacks' recently evolved resistance to their tapeworm Schistocephalus solidus. Although marine stickleback and some susceptible lake fish permit fast-growing tapeworms, other lake populations are resistant and suppress tapeworm growth via a fibrosis response. We subjected lab-raised fish from three populations (susceptible marine "ancestors," a susceptible lake population, and a resistant lake population) to a novel immune challenge using an injection of (1) a saline control, (2) alum, a generalized pro-inflammatory adjuvant that causes fibrosis, (3) a tapeworm protein extract, or (4) a combination of alum and tapeworm protein. With enough time, all three populations generated a robust fibrosis response to the alum treatments. Yet, only the resistant population exhibited a fibrosis response to the tapeworm protein alone. Thus, these populations differed in their ability to respond to the tapeworm protein but shared an intact fibrosis pathway. The resistant population also initiated fibrosis faster in response to alum, and was able to attenuate fibrosis, unlike the susceptible populations' slow but longer lasting response to alum. As fibrosis has pathological side effects that reduce fecundity, the faster recovery by the resistant population may reflect an adaptation to mitigate the costs of immunity. Broadly, our results confirm that parasite detection and immune initiation, activation speed, and immune attenuation simultaneously contribute to the evolution of parasite resistance and adaptations to infection in natural populations.

14.
Pathogens ; 11(2)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35215092

RESUMEN

Climate change is causing detrimental changes in living organisms, including pathogens. This review aimed to determine how climate change has impacted livestock system management, and consequently, what factors influenced the gastrointestinal nematodes epidemiology in small ruminants under tropical conditions. The latter is orientated to find out the possible solutions responding to climate change adverse effects. Climate factors that affect the patterns of transmission of gastrointestinal parasites of domesticated ruminants are reviewed. Climate change has modified the behavior of several animal species, including parasites. For this reason, new control methods are required for controlling parasitic infections in livestock animals. After a pertinent literature analysis, conclusions and perspectives of control are given.

15.
Biol Lett ; 18(1): 20210531, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35078333

RESUMEN

Behavioural immunity describes suites of behaviours hosts use to minimize the risks of infection by parasites/pathogens. Research has focused primarily on the evasion and physical removal of infectious stages, as well as behavioural fever. However, other behaviours affect infection risk while carrying ecologically significant trade-offs. Phototaxis, in particular, has host fitness implications (e.g. altering feeding and thermoregulation) that also impact infection outcomes. In this study, we hypothesized that a fly host, Drosophila nigrospiracula, employs phototaxis as a form of behavioural immunity to reduce the risk of infection. First, we determined that the risk of infection is lower for flies exposed in the light relative to the dark using micro-arena experiments. Because Drosophila vary in ectoparasite resistance based on mating status we examined parasite-mediated phototaxis in mated and unmated females. We found that female flies spent more time in the light side of phototaxis chambers when mites were present than in the absence of mites. Mating marginally decreased female photophobia independently of mite exposure. Female flies moved to lighter, i.e. less infectious, environments when threatened with mites, suggesting phototaxis is a mechanism of behavioural immunity. We discuss how parasite-mediated phototaxis potentially trades-off with host nutrition and thermoregulation.


Asunto(s)
Ácaros , Parásitos , Animales , Drosophila/fisiología , Femenino , Interacciones Huésped-Parásitos , Ácaros/fisiología , Fototaxis
16.
J Anim Sci ; 99(12)2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-34758091

RESUMEN

Fecal egg count (FEC) is an indicative measurement for parasite infection in sheep. Different FEC methods may show inconsistent results. Not accounting for inconsistencies can be problematic when integrating measurements from different FEC methods for genetic evaluation. The objectives of this study were to evaluate the difference in means and variances between two fecal egg counting methods used in sheep-the Modified McMaster (LMMR) and the Triple Chamber McMaster (LTCM); to estimate variance components for the two FEC methods, treating them as two different traits; and to integrate FEC data from the two different methods and estimate genetic parameters for FEC and other gastrointestinal parasite resistance traits. Fecal samples were collected from a commercial Rideau-Arcott sheep farm in Ontario. Fecal egg counting was performed using both LMMR and the LTCM methods. Other parasite resistance trait records were collected from the same farm including eye score (FAMACHA), body condition score (BCS), and body weight (WT). The two FEC methods were highly genetically (0.94) and phenotypically (0.88) correlated. However, the mean and variance between the two FEC methods were significantly different (P < 0.0001). Therefore, re-scaling is required prior to integrating data from the different methods. For the multiple trait analysis, data from the two fecal egg counting methods were integrated (LFEC) by using records for the LMMR when available and replacing missing records with re-standardized LTCM records converted to the same mean and variance of LMMR. Heritability estimates were 0.12 ± 0.04, 0.07 ± 0.05, 0.17 ± 0.06, and 0.24 ± 0.07 for LFEC egg count, FAMACHA, BCS, and WT, respectively. The estimated genetic correlations between FEC and the other parasite resistance traits were low and not significant (P > 0.05) for FAMACHA (r = 0.24 ± 0.32) and WT (r = 0.22 ± 0.19), and essentially zero for BCS (r = -0.03 ± 0.25), suggesting little to no benefit of using such traits as indicators for LFEC.


Asunto(s)
Parasitosis Intestinales , Parásitos , Enfermedades de las Ovejas , Animales , Heces , Parasitosis Intestinales/genética , Parasitosis Intestinales/veterinaria , Recuento de Huevos de Parásitos/veterinaria , Ovinos , Enfermedades de las Ovejas/genética
17.
Trop Anim Health Prod ; 53(5): 478, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34557989

RESUMEN

Tropical goat breeds often have at least modest resistance to gastrointestinal nematode parasites (GIN), but enhancement of GIN resistance is important for breed improvement. This study compared changes in fecal egg count (FEC), packed cell volume, and body weight in Red Sokoto (RS) and Sahelian (SH) male and female weaner kids and adult goats. The RS is found throughout Nigeria, but the SH is found only in the arid Sahel. Goats were evaluated fortnightly for 20 times (MT) under normal grazing conditions and natural GIN infection over 9.5 months, beginning in the dry season (November) and ending at the end of the subsequent wet season (August). Animals were dewormed at the start of the study and during the rainy season (MT 18). Breed differences in FEC and PCV were not observed in weaners. Weaner females had lower FEC than males but were rapidly re-infected after deworming, perhaps in association with attainment of puberty. Adult SH goats of both sexes had lower FEC than RS goats in MT 8 through 17, suggesting a stronger acquired immune response. The FEC in lactating females of both breeds increased rapidly after deworming, to ≥ 3000 eggs per gram of feces at MT 19 and 20. The optimal time to evaluate GIN resistance in weaners was during the early rainy season, but the decision to focus on the initial high FEC near MT 15 or wait until mobilization of the acquired immune response near MT 17 requires further consideration.


Asunto(s)
Enfermedades de las Cabras , Nematodos , Infecciones por Nematodos , Animales , Heces , Femenino , Enfermedades de las Cabras/genética , Cabras , Lactancia , Masculino , Infecciones por Nematodos/veterinaria , Nigeria , Óvulo , Recuento de Huevos de Parásitos/veterinaria , Maduración Sexual
18.
Physiol Behav ; 239: 113524, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34229032

RESUMEN

Reproduction is a key determinant of organismal fitness, but organisms almost always face the threat of parasite infection. Thus, potential trade-offs between mating and parasite resistance may have substantial impacts on the ecology and evolution of host species. Although trade-offs between microbial resistance and mating in arthropods are well-documented, there is a paucity of evidence that mating compromises host resistance to the ubiquitous threat posed by ectoparasites. Despite the centrality of reproduction to host fitness and the widespread risk of parasites, there is a dearth of experiments showing a trade-off between mating/reproduction and anti-parasite behaviours. In this study, we test if mating increases the susceptibility of female flies to mite infection. We also investigated a potential underlying mechanism for the trade-off: that mating reduces overall endurance and hence anti-parasitic defenses among female flies. We experimentally mated female Drosophila nigrospiracula, with or without a chance to recover from male harassment, and challenged them with a natural ectoparasite, the mite Macrocheles subbadius. Mated females, regardless of time for recovery from male harassment, acquired more infections than unmated females. Furthermore, mated females had lower endurance in negative geotaxis assays, suggesting the increased susceptibility is due to reduced endurance. Our research shows a trade-off between reproduction and parasite resistance in a host-macroparasite system and suggests that trade-off theory is a fruitful direction for understanding these associations.


Asunto(s)
Ácaros , Parásitos , Animales , Drosophila , Femenino , Masculino , Reproducción
19.
Am Nat ; 196(5): 597-608, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33064581

RESUMEN

AbstractSexually selected ornaments range from highly dynamic traits to those that are fixed during development and relatively static throughout sexual maturity. Ornaments along this continuum differ in the information they provide about the qualities of potential mates, such as their parasite resistance. Dynamic ornaments enable real-time assessment of the bearer's condition: they can reflect an individual's current infection status, or they can reflect resistance to recent infections. Static ornaments, however, are not affected by recent infection but may instead indicate an individual's genetically determined resistance, even in the absence of infection. Given the typically aggregated distribution of parasites among hosts, infection is unlikely to affect the ornaments of the vast majority of individuals in a population: static ornaments may therefore be the more reliable indicators of parasite resistance. To test this hypothesis, we quantified the ornaments of male guppies (Poecilia reticulata) before experimentally infecting them with Gyrodactylus turnbulli. Males with more left-right symmetrical black coloration and those with larger areas of orange coloration, both static ornaments, were more resistant. However, males with more saturated orange coloration, a dynamic ornament, were less resistant. Female guppies often prefer symmetrical males with larger orange ornaments, suggesting that parasite-mediated natural and sexual selection act in concert on these traits.


Asunto(s)
Color , Poecilia/anatomía & histología , Poecilia/parasitología , Animales , Masculino , Platelmintos , Caracteres Sexuales
20.
Mol Ecol ; 29(20): 3809-3811, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32860449

RESUMEN

Parasites are recognized to be some of the strongest agents of natural selection, sometimes causing major changes in the phenotypes of their hosts. Understanding the genomic determinants leading to these adaptive processes is key to understand host-parasite interactions. However, dissecting the genetic architecture of host resistance in natural systems is difficult because of the multiple factors affecting these complex traits in the wild. In this issue of Molecular Ecology, Lundregan et al. (2020) use an impressive long-term data set to analyse the genomic architecture of host resistance to gapeworm in a metapopulation of house sparrows. The authors elegantly combine different approaches (variance component analyses, genome partitioning and genome-wide associations) to reveal that resistance to gapeworm is under polygenic control and can have both a significant additive genetic and dominance variance. This study is one of the first to simultaneously determine genomic architecture and assess additive genetic and dominance genetic variance in parasite resistance in natural populations.


Asunto(s)
Parásitos , Gorriones , Animales , Genoma , Genómica , Modelos Genéticos , Fenotipo , Gorriones/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA