Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Harmful Algae ; 138: 102704, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39244239

RESUMEN

The production of allelochemicals by the toxigenic dinoflagellate Alexandrium catenella is one of the suggested mechanisms to facilitate its bloom formation and persistence by outcompeting other phototrophic protists and reducing grazing pressure. In Southern California, toxic events caused by A. catenella and paralytic shellfish toxins (PSTs) regularly impact coastal ecosystems; however, the trophic interactions and mechanisms promoting this species in a food web context are still not fully understood. In the present study, we combined a dynamical mathematical model with laboratory experiments to investigate potential toxic and allelochemical effects of an A. catenella strain isolated off the coast of Los Angeles, Southern California, on competitors and a common zooplankton consumer. Experiments were conducted using three toxigenic strains of A. catenella, comparing the new Californian isolate (Alex Cal) to two strains previously described from the North Sea, a lytic (Alex2) and non-lytic (Alex5) strain, testing for donor density-dependent effects on two phytoplankton species (Rhodomonas salina, Tetraselmis sp.) and on the rotifer Brachionus plicatilis. Bioassays revealed a steep decline in competitor and consumer populations with increasing Alex Cal concentrations, indicating an intermediate lytic activity compared to the North Sea strains (lytic Alex2 and non-lytic Alex5). The rotifer fed and grew well on the PST- toxic, but non-lytic Alex5 strain, while its survival significantly decreased with increasing concentrations of the two lytic strains Alex Cal and Alex 2, indicating that negative effects on the rotifer were mediated by allelochemicals rather than PST-toxins. Mixed culture experiments including both competitors and consumers demonstrated that the intensity of allelochemical effects not only depended on the A. catenella density but also on the target density. Negative effects on grazers were alleviated by co-occurring competitors with a lower sensitivity to allelochemicals, thus reducing harmful compounds and allowing grazing control on the dinoflagellate to come into effect again. Results from mixed culture experiments were supported by the mathematical approach used in this study which was calibrated with data from simple monoculture growth, pairwise competition and predator-prey experiments, demonstrating the applicability of this model approach to predict the outcome of more complex food web dynamics at the community level.


Asunto(s)
Dinoflagelados , Feromonas , Dinoflagelados/fisiología , Dinoflagelados/metabolismo , Feromonas/metabolismo , Animales , Cadena Alimentaria , California , Toxinas Marinas/metabolismo , Zooplancton/fisiología
2.
Sci Total Environ ; : 175578, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39270871

RESUMEN

Harmful algal blooms have been documented in the Moroccan Western Mediterranean region since 1993, primarily associated with the presence of paralytic shellfish toxins (PSTs) produced by the dinoflagellate Gymnodinium catenatum. The proliferation of this neurotoxic species has led to recurring bans on the harvesting of molluscs, resulting in significant socio-economic repercussions and threats to human health. In the present study, we examine the dynamics of G. catenatum and mollusc PST contamination patterns over a 20-year period (2002-2021) in two distinct marine ecosystems: M'diq Bay and the Oued Laou Estuary. For the PST contamination, we considered two commercially important shellfish species: the smooth clam, Callista Chione, and the cockle, Acanthocardia tuberculata. The highest G. catenatum abundances were consistently observed from November to February in both sites. Our data revealed inter-annual variations in G. catenatum abundance, peaking at 91,840 cells.L-1 in November 2011. PST contamination levels in A. tuberculata were significantly higher than those observed in C. chione. Furthermore, we identified a significant correlation (Pearson, P-value <0.05) between PST contamination of smooth clams and the abundance of G. catenatum. The contamination of A. tuberculata by PSTs reached very high levels, with up to 13,500 µg STX di-HCl eq. kg-1 of shellfish meat, exceeding the established safety thresholds by 16-fold. Additionally, there has been an increase in the prevalence and incidence of PSTs over the years. Notably, we observed a substantial increase in G. catenatum blooms and PST events in the Western Mediterranean during the last decade (2010-2021). The examined data suggest that rainfall could play a pivotal role in G. catenatum bloom dynamics by enriching marine waters with nutrients. The statistical model selection approaches indicated that nutrient concentrations (i.e., nitrate and phosphorus) were the most significant parameters for G. catenatum blooms in the studied area.

3.
Water Res X ; 23: 100229, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-39099803

RESUMEN

Research on interactions between grazers and toxigenic algae is fundamental for understanding toxin dynamics within aquatic ecosystems and developing biotic approaches to mitigate harmful algal blooms. The dinoflagellate Alexandrium minutum is a well-known microalga responsible for paralytic shellfish toxins (PSTs) contamination in many coastal regions worldwide. This study investigated the impact of the ciliate Euplotes balteatus on cell density and PSTs transfer in simulated A. minutum blooms under controlled conditions. E. balteatus exhibited resistance to the PSTs produced by A. minutum with a density of up to 10,000 cells/mL, sustaining growth and reproduction while eliminating algal cells within a few days. The cellular PSTs content of A. minutum increased in response to the grazing pressure from E. balteatus. However, due to the substantial reduction in density, the overall toxicity of the algal population decreased to a negligible level. Most PSTs contained within algal cells were temporarily accumulated in E. balteatus before being released into the water column, suggesting unclear mechanisms for PSTs excretion in unicellular grazers. In principle, the grazing of E. balteatus on A. minutum promotes the transfer of the majority of intracellular PSTs into extracellular portions, thereby mitigating the risk of their accumulation and contamination through marine trophic pathways. However, this process also introduces an increase in the potential environmental hazards posed by extracellular PSTs to some extent.

4.
Toxins (Basel) ; 16(8)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39195748

RESUMEN

Paralytic shellfish toxins (PSTs) are potent neurotoxins produced by certain microalgae, particularly dinoflagellates, and they can accumulate in shellfish in coastal seawater and thus pose significant health risks to humans. To explore the relationship between toxicity and PST profiles in seawater and mussels, the spatiotemporal variations in PST concentrations and profiles were investigated along the southern coast of Korea under peak PST levels during spring. Seawater and mussel samples were collected biweekly from multiple stations, and the toxin concentrations in the samples were measured. Moreover, the dinoflagellate community composition was analyzed using next-generation sequencing to identify potential PST-producing species. The PST concentrations and toxin profiles showed substantial spatiotemporal variability, with GTX1 and GTX4 representing the dominant toxins in both samples, and C1/2 tending to be higher in seawater. Alexandrium species were identified as the primary sources of PSTs. Environmental factors such as water temperature and salinity influenced PST production. This study demonstrates that variability in the amount and composition of PSTs is due to intricate ecological interactions. To mitigate shellfish poisoning, continuous monitoring must be conducted to gain a deeper understanding of these interactions.


Asunto(s)
Dinoflagelados , Toxinas Marinas , Estaciones del Año , Agua de Mar , Animales , Agua de Mar/química , República de Corea , Toxinas Marinas/análisis , Intoxicación por Mariscos , Biodiversidad , Monitoreo del Ambiente , Bivalvos/química
5.
Fitoterapia ; 178: 106193, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39187028

RESUMEN

Marine algal toxins are usually produced by some toxic algae during toxic algal blooms which can be accumulated in marine organisms through food chains, leading to contamination of aquatic products. Consumption of the contaminated seafood often results in poisoning in human being. Although algal toxins are harmful for human health, their unique structures and broad spectrum of biological activities have attracted widespread attention of chemists and pharmacologists. Marine algal toxins are not only a reservoir of biological active compound discovery, but also powerful tools for exploring life science. This review first provides a comprehensive overview of the chemistry and biological activities of marine algal toxins, with the aim of providing references for biological active compound discovery. Additionally, typical shellfish poisoning incidents occurred in China in the past 15 years and the geographical distribution of the marine algal toxins in China Sea are discussed, for the purpose of enhancing public awareness of the possible dangers of algal toxins.


Asunto(s)
Floraciones de Algas Nocivas , Toxinas Marinas , China , Toxinas Marinas/química , Toxinas Marinas/toxicidad , Humanos , Intoxicación por Mariscos , Animales
6.
Harmful Algae ; 137: 102655, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-39003021

RESUMEN

Microseira wollei, a globally distributed freshwater bloom-forming benthic cyanobacterium, is known for its production of cyanotoxins and taste and odor (T&O). While CYN (Cylindrospermopsin)-producing populations of M. wollei are confined to Australia, PST (Paralytic shellfish toxins)-producing populations have been exclusively documented in North America. In this study, four benthic cyanobacterial strains, isolated from West Lake in China, were identified as M. wollei based on morphological and phylogenetic analyses. Detection of sxtA gene and UPLC-MS/MS analysis conclusively confirmed the PST-producing capability of M. wollei CHAB5998. In the phylogenetic tree of 16S rDNA, M. wollei strains formed a monophyletic group with two subclades. Notably, non-PST-producing Chinese strains clustered with Australian strains in Clade II, while all other strains, including PST-producing ones, clustered in Clade I. Additionally, CHAB5998 contains ten PST variants, of which STX, NEO, GTX2, GTX3, GTX5 and C1 were identified for the first time in M. wollei. Sequence analysis of PST biosynthetic gene cluster (sxt) genes indicated potential base variations, gene rearrangements, insertions, and deletions in the strain CHAB5998. Also, sxt gene has a longer evolutionary history in M. wollei than that in cyanobacteria from Nostocales. Multiple recombination breakpoints detected in sxt genes and the inconsistency in the topology of the phylogenetic trees between sxt and 16S rDNA suggested that multiple horizontal gene transfers (HGT) have occurred. Overall, the present study marks the first documented occurrence of PST-producing M. wollei outside of North America and identifies it as the first toxic freshwater benthic cyanobacterium in China. This revelation implies that benthic cyanobacteria may pose a higher environmental risk in China than previously acknowledged.


Asunto(s)
Toxinas Bacterianas , Cianobacterias , Filogenia , Cianobacterias/metabolismo , Cianobacterias/genética , Cianobacterias/clasificación , China , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas de Cianobacterias , ARN Ribosómico 16S/genética , Toxinas Marinas/metabolismo
7.
Mar Environ Res ; 199: 106630, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38964247

RESUMEN

Harmful algal blooms (HABs) of Alexandrium pacificum have affected the Marlborough Sounds in New Zealand since 2010, posing a threat to green-lipped mussel (GLM, Perna canaliculus) farming. Previous studies have shown A. pacificum has negative effects GLM embryos and larvae. To further investigate these toxic mechanisms, in vitro bioassays were conducted on GLM spermatozoa, hemocytes, and the diatom, Chaetoceros muelleri. The three cell types were exposed to several treatments of A. pacificum for 2 h and responses were measured using flow cytometry and pulse amplitude-modulated fluorometry. Significant spermatozoa mortality was recorded in treatments containing A. pacificum cells or fragments, while hemocyte and C. muelleri mortality was recorded in cell-free treatments of A. pacificum which contained paralytic shellfish toxins (PSTs). Variation in sensitivity between cell types as well as the sublethal effects observed, emphasise the diverse toxic mechanisms of A. pacificum on co-occurring species in the environment.


Asunto(s)
Diatomeas , Dinoflagelados , Hemocitos , Espermatozoides , Animales , Dinoflagelados/fisiología , Diatomeas/fisiología , Diatomeas/efectos de los fármacos , Hemocitos/efectos de los fármacos , Masculino , Espermatozoides/efectos de los fármacos , Espermatozoides/fisiología , Perna/fisiología , Perna/efectos de los fármacos , Floraciones de Algas Nocivas , Nueva Zelanda , Toxinas Marinas/toxicidad
8.
Harmful Algae ; 136: 102653, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38876527

RESUMEN

Harmful algal bloom (HAB) toxins consumed by marine predators through fish prey can be lethal but studies on the resulting population consequences are lacking. Over the past approximately 20 years there have been large regional declines in some harbour seal populations around Scotland. Analyses of excreta (faeces and urine from live and dead seals and faecal samples from seal haulout sites) suggest widespread exposure to toxins through the ingestion of contaminated prey. A risk assessment model, incorporating concentrations of the two major HAB toxins found in seal prey around Scotland (domoic acid (DA), and saxitoxins (STX)), the seasonal persistence of the toxins in the fish and the foraging patterns of harbour seals were used to estimate the proportion of adults and juveniles likely to have ingested doses above various estimated toxicity thresholds. The results were highly dependent on toxin type, persistence, and foraging regime as well as age class, all of which affected the proportion of exposed animals exceeding toxicity thresholds. In this preliminary model STX exposure was unlikely to result in mortalities. Modelled DA exposure resulted in doses above an estimated lethal threshold of 1900 µg/kg body mass affecting up to 3.8 % of exposed juveniles and 5.3 % of exposed adults. Given the uncertainty in the model parameters and the limitations of the data these conclusions should be treated with caution, but they indicate that DA remains a potential factor involved in the regional declines of harbour seals. Similar risks may be experienced by other top predators, including small cetaceans and seabirds that feed on similar prey in Scottish waters.


Asunto(s)
Floraciones de Algas Nocivas , Animales , Escocia , Medición de Riesgo , Phoca , Toxinas Marinas/análisis , Ácido Kaínico/análogos & derivados , Saxitoxina/análisis , Exposición a Riesgos Ambientales
9.
Mar Pollut Bull ; 205: 116546, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38870575

RESUMEN

Paralytic shellfish toxins (PSTs) can pose a serious threat to human health. Among them, saxitoxin (STX) is one of the most potent natural neurotoxins. Here, the copepod Tigriopus japonicus, was exposed to environmentally relevant concentrations (2.5 and 25 µg/L) STX for 48 h. Although no lethal effects were observed at both concentrations, the transcriptome was significantly altered, and displayed a concentration-dependent response. STX exposure decreased the copepod's metabolism and compromised immune defense and detoxification. Additionally, STX disturbed signal transduction, which might affect other cellular processes. STX exposure could inhibit the copepod's chitin metabolism, disrupting its molting process. Also, the processes related to damage repair and protection were up-regulated to fight against high concentration exposure. Collectively, this study has provided an early warning of PSTs for coastal ecosystem not only because of their potent toxicity effect but also their bioaccumulation that can transfer up the food chain after ingestion by copepods.


Asunto(s)
Copépodos , Saxitoxina , Transcriptoma , Contaminantes Químicos del Agua , Copépodos/efectos de los fármacos , Animales , Saxitoxina/toxicidad , Transcriptoma/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad
10.
Sci Total Environ ; 945: 174094, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38906288

RESUMEN

The dinoflagellate Gymnodinium catenatum is considered the primary cause of recurrent paralytic shellfish toxins (PSTs) in shellfish on the Moroccan Mediterranean coasts. The impacts of key environmental factors on the growth, cell yield, cell size and PST content of G. catenatum were determined. Results indicated that increasing salinity from 32 to 39 and nitrate concentrations from 441 µM to 1764 µM did not significantly (ANOVA, P-value >0.63) modify the growth rate of the studied species. Gymnodinium catenatum exhibited the highest growth rate at 24 °C. Cells arrested their division at 15 °C and at ammonium concentration above 441 µM, suggesting that this nitrogen form is toxic for G. catenatum. Furthermore, G. catenatum was unable to assimilate urea as a nitrogen source. In G. catenatum cells, eight analogues of saxitoxin were detected, belonging to the N-sulfocarbamoyl (C1-4, B1 and B2) and decarbamoyl (dc-GTX2/3) toxins. C-toxins contributed 92 % to 98 % of the molar composition of the PSTs. During the exponential growth, C2 tended to dominate, while C3 prevailed during the stationary phase. Toxin content per cell (ranging from 5.5 pg STXeq.cell-1 to 22.4 pg STXeq.cell-1) increased during the stationary growth phase. Cell toxin content increased with the concentrations of nitrate, ranging from 12.1 pg STXeq.cell-1 at 441 µM to 22.4 pg STXeq.cell-1 at 1764 µM during the stationary growth phase. The toxin content of G. catenatum showed the highest values measured at the highest tested temperatures, especially during the stationary phase, where toxicity reached 17.8 pg STXeq.cell-1 and 16.4 pg STXeq.cell-1 at 24 °C and 29 °C, respectively. The results can help understand the fluctuations in the growth and PST content of G. catenatum in its habitat in response to changing environmental variables in the Mediterranean Sea when exposed to increases in warming pressure and eutrophication.


Asunto(s)
Dinoflagelados , Toxinas Marinas , Salinidad , Temperatura , Toxinas Marinas/análisis , Mar Mediterráneo , Saxitoxina/análisis , Marruecos , Nutrientes/análisis
11.
Toxicon ; 243: 107710, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38579982

RESUMEN

For food safety, the concentrations and profiles of paralytic shellfish toxins (PSTs) and tetrodotoxin were examined in economically important scallops and bloody clams collected from the coast of the Miyagi Prefecture, Japan. PSTs were the major toxins in both species. The tetrodotoxin concentration in scallops increased in summer, although the highest value (18.7 µg/kg) was lower than the European Food Safety Authority guideline threshold (44 µg/kg). This confirmed the safety for tetrodotoxin in this area.


Asunto(s)
Bivalvos , Pectinidae , Tetrodotoxina , Animales , Tetrodotoxina/análisis , Pectinidae/química , Japón , Bivalvos/química , Toxinas Marinas/análisis , Saxitoxina/análisis , Saxitoxina/análogos & derivados , Intoxicación por Mariscos , Estaciones del Año , Contaminación de Alimentos/análisis
12.
Environ Sci Technol ; 58(16): 6924-6933, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38608723

RESUMEN

Paralytic shellfish toxins (PSTs) produced by marine dinoflagellates significantly impact shellfish industries worldwide. Early detection on-farm and with minimal training would allow additional time for management decisions to minimize economic losses. Here, we describe and test a standardized workflow based on the detection of sxtA4, an initial gene in the biosynthesis of PSTs. The workflow is simple and inexpensive and does not require a specialized laboratory. It consists of (1) water collection and filtration using a custom gravity sampler, (2) buffer selection for sample preservation and cell lysis for DNA, and (3) an assay based on a region of sxtA, DinoDtec lyophilized quantitative polymerase chain reaction (qPCR) assay. Water samples spiked with Alexandrium catenella showed a cell recovery of >90% when compared to light microscopy counts. The performance of the lysis method (90.3% efficient), Longmire's buffer, and the DinoDtec qPCR assay (tested across a range of Alexandrium species (90.7-106.9% efficiency; r2 > 0.99)) was found to be specific, sensitive, and efficient. We tested the application of this workflow weekly from May 2016 to 30th October 2017 to compare the relationship between sxtA4 copies L-1 in seawater and PSTs in mussel tissue (Mytilus galloprovincialis) on-farm and spatially (across multiple sites), effectively demonstrating an ∼2 week early warning of two A. catenella HABs (r = 0.95). Our tool provides an early, accurate, and efficient method for the identification of PST risk in shellfish aquaculture.


Asunto(s)
Acuicultura , Dinoflagelados , Floraciones de Algas Nocivas , Toxinas Marinas , Flujo de Trabajo , Animales , Mariscos , Granjas , Intoxicación por Mariscos
13.
Mar Drugs ; 22(2)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38393035

RESUMEN

Paralytic shellfish toxins (PSTs) are widely distributed in shellfish along the coast of China, causing a serious threat to consumer health; however, there is still a lack of large-scale systematic investigations and risk assessments. Herein, 641 shellfish samples were collected from March to November 2020, and the PSTs' toxicity was detected via liquid chromatography-tandem mass spectrometry. Furthermore, the contamination status and potential dietary risks of PSTs were discussed. PSTs were detected in 241 shellfish samples with a detection rate of 37.60%. The average PST toxicities in mussels and ark shells were considerably higher than those in other shellfish. The PSTs mainly included N-sulfonylcarbamoyl toxins (class C) and carbamoyl toxins (class GTX), and the highest PST toxicity was 546.09 µg STX eq. kg-1. The PST toxicity in spring was significantly higher than those in summer and autumn (p < 0.05). Hebei Province had the highest average PST toxicity in spring. An acute exposure assessment showed that consumers in Hebei Province had a higher dietary risk, with mussels posing a significantly higher dietary risk to consumers. This research provides reference for the green and sustainable development of the shellfish industry and the establishment of a shellfish toxin prevention and control system.


Asunto(s)
Bivalvos , Intoxicación por Mariscos , Animales , Toxinas Marinas/química , Intoxicación por Mariscos/etiología , Intoxicación por Mariscos/prevención & control , Intoxicación por Mariscos/diagnóstico , Espectrometría de Masas en Tándem/métodos , Mariscos/análisis , Bivalvos/química , Medición de Riesgo , China
14.
Anal Bioanal Chem ; 416(8): 1983-1995, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38358533

RESUMEN

Phytotoxins produced by marine microalgae, such as paralytic shellfish toxins (PSTs), can accumulate in bivalve molluscs, representing a human health concern due to the life-threatening symptoms they cause. To avoid the commercialization of contaminated bivalves, monitoring programs were established in the EU. The purpose of this work is the implementation of a PST transforming enzyme-carbamoylase-in an impedimetric test for rapid simultaneous detection of several carbamate and N-sulfocarbamoyl PSTs. Carbamoylase hydrolyses carbamate and sulfocarbamoyl toxins, which may account for up to 90% of bivalve toxicity related to PSTs. Conformational changes of carbamoylase accompanying enzymatic reactions were probed by Fourier transform mid-infrared spectroscopy (FT-MIR) and electrochemical impedance spectroscopy (EIS). Furthermore, a combination of EIS with a metal electrode and a carbamoylase-based assay was employed to harness changes in the enzyme conformation and adsorption on the electrode surface during the enzymatic reaction as an analytical signal. After optimization of the working conditions, the developed impedimetric e-tongue could quantify N-sulfocarbamoyl toxins with a detection limit of 0.1 µM. The developed e-tongue allows the detection of these toxins at concentration levels observed in bivalves with PST toxicity close to the regulatory limit. The quantification of a sum of N-sulfocarbamoyl PSTs in naturally contaminated mussel extracts using the developed impedimetric e-tongue has been demonstrated.


Asunto(s)
Bivalvos , Intoxicación por Mariscos , Animales , Humanos , Toxinas Marinas/química , Nariz Electrónica , Bivalvos/química , Mariscos/análisis , Carbamatos , Intoxicación por Mariscos/etiología
15.
Foods ; 13(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338497

RESUMEN

The Yellow-Bohai Sea is an important semi-enclosed continental shelf marginal seas with an intensive aquaculture industry in China. The current study analyzed the contamination status and the time variations of paralytic shellfish toxins (PSTs) in shellfish between 2019 and 2020 from the Yellow-Bohai Sea in the Dalian area and estimated the acute health risks to consumers in China. A total of 199 shellfish samples (including 34 Pacific oysters, 25 Mediterranean blue mussels, 34 Manila clams, 36 bay scallops, 34 veined rapa whelks and 36 bloody clams) were analyzed from four representative aquaculture zones around the Yellow-Bohai Sea in Dalian. Among the samples, scallops and blood clams were the shellfish species with the highest detection rate of PSTs (94.4%), and the highest level of PSTs was detected in scallops with 3953.5 µg STX.2HCl eq./kg (µg STX.2HCL equivalents per kg shellfish tissue), followed by blood clams with 993.4 µg STX.2HCl eq./kg. The contents of PSTs in shellfish showed a time variation trend, and autumn was the season of concern for PST contamination in Dalian. For general Chinese consumers, the probability of acute health risks to shellfish consumers from dietary exposure to PSTs was around 13%. For typical consumers in coastal areas of China, especially those with higher shellfish intake, there was an acute health risk associated with exposure to PSTs through shellfish consumption during the occurrence of harmful algal blooms. It is suggested that the government continue to strengthen the monitoring of the source of PSTs and the monitoring of harmful algal blooms and give reasonable advice on shellfish consumption for consumers in coastal areas, such as not eating scallop viscera.

16.
Toxins (Basel) ; 16(2)2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38393148

RESUMEN

Harmful cyanobacterial blooms (HCBs) are of growing global concern due to their production of toxic compounds, which threaten ecosystems and human health. Saxitoxins (STXs), commonly known as paralytic shellfish poison, are a neurotoxic alkaloid produced by some cyanobacteria. Although many field studies indicate a widespread distribution of STX, it is understudied relative to other cyanotoxins such as microcystins (MCs). In this study, we assessed eleven U.S. urban lakes using qPCR, sxtA gene-targeting sequencing, and 16S rRNA gene sequencing to understand the spatio-temporal variations in cyanobacteria and their potential role in STX production. During the blooms, qPCR analysis confirmed the presence of the STX-encoding gene sxtA at all lakes. In particular, the abundance of the sxtA gene had a strong positive correlation with STX concentrations in Big 11 Lake in Kansas City, which was also the site with the highest quantified STX concentration. Sequencing analysis revealed that potential STX producers, such as Aphanizomenon, Dolichospermum, and Raphidiopsis, were present. Further analysis targeting amplicons of the sxtA gene identified that Aphanizomenon and/or Dolichospermum are the primary STX producer, showing a significant correlation with sxtA gene abundances and STX concentrations. In addition, Aphanizomenon was associated with environmental factors, such as conductivity, sulfate, and orthophosphate, whereas Dolichospermum was correlated with temperature and pH. Overall, the results herein enhance our understanding of the STX-producing cyanobacteria and aid in developing strategies to control HCBs.


Asunto(s)
Aphanizomenon , Cianobacterias , Humanos , Saxitoxina/análisis , Lagos/análisis , ARN Ribosómico 16S/genética , Ecosistema , Cianobacterias/genética , Aphanizomenon/genética
17.
Chemistry ; 30(18): e202304238, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38270276

RESUMEN

Saxitoxin (STX, 1) is a representative compound of paralytic shellfish toxins (PSTs) that are produced by marine dinoflagellates and freshwater cyanobacteria. Although several pathways have been proposed for the biosynthesis of STX, the order of ring and side chain hydroxylation, and formation of the tricyclic skeleton have not been well established. In this study, 12,12-dideoxy-decarbamoyloxySTX (dd-doSTX, 2), the most reduced STX analogue having the tricyclic skeleton, and its analogues, 12ß-deoxy-doSTX (12ß-d-doSTX, 3), 12α-deoxy-doSTX (12α-d-doSTX, 4), and doSTX (5), were synthesized, and these compounds were screened in the toxic microalgae using high-resolution LCMSMS. dd-doSTX (2) and 12ß-d-doSTX (3) were identified in the PSTs-producing dinoflagellates (Alexandrium catenella, A. pacificum, and/or Gymnodinium catenatum) and in the cyanobacterium Dolichospermum circinale (TA04). doSTX (5), previously isolated from the dinoflagellate G. catenatum, was also identified in D. circinale (TA04). Furthermore, the conversion of 2 to 3, and 4 to 5, by SxtT with VanB, a reported Rieske oxygenase and its redox partner in STX biosynthesis, was confirmed. These results support that 2 is a possible biosynthetic precursor of STX, and that ring and side-chain hydroxylations proceed after cyclization.


Asunto(s)
Dinoflagelados , Microalgas , Saxitoxina/análogos & derivados , Saxitoxina/química , Oxigenasas
18.
Harmful Algae ; 131: 102560, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38212084

RESUMEN

Along the Italian coasts, toxins of algal origin in wild and cultivated shellfish have been reported since the 1970s. In this study, we used data gathered by the Veterinary Public Health Institutes (IZS) and the Italian Environmental Health Protection Agencies (ARPA) from 2006 to 2019 to investigate toxicity events along the Italian coasts and relate them to the distribution of potentially toxic species. Among the detected toxins (OA and analogs, YTXs, PTXs, STXs, DAs, AZAs), OA and YTX were those most frequently reported. Levels exceeding regulatory limits in the case of OA (≤2,448 µg equivalent kg-1) were associated with high abundances of Dinophysis spp., and in the case of YTXs (≤22 mg equivalent kg-1) with blooms of Gonyaulax spinifera, Lingulodinium polyedra, and Protoceratium reticulatum. Seasonal blooms of Pseudo-nitzschia spp. occur all along the Italian coast, but DA has only occasionally been detected in shellfish at concentrations always below the regulatory limit (≤18 mg kg-1). Alexandrium spp. were recorded in several areas, although STXs (≤13,782 µg equivalent kg-1) rarely and only in few sites exceeded the regulatory limit in shellfish. Azadinium spp. have been sporadically recorded, and AZAs have been sometimes detected but always in low concentrations (≤7 µg equivalent kg-1). Among the emerging toxins, PLTX-like toxins (≤971 µg kg-1 OVTX-a) have often been detected mainly in wild mussels and sea urchins from rocky shores due to the presence of Ostreopsis cf. ovata. Overall, Italian coastal waters harbour a high number of potentially toxic species, with a few HAB hotspots mainly related to DSP toxins. Nevertheless, rare cases of intoxications have occurred so far, reflecting the whole Mediterranean Sea conditions.


Asunto(s)
Bivalvos , Dinoflagelados , Animales , Toxinas Marinas , Mariscos/análisis , Alimentos Marinos/análisis , Saxitoxina , Italia
19.
J Sci Food Agric ; 104(4): 1984-1991, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37899531

RESUMEN

BACKGROUND: Paralytic shellfish poisoning caused by human consumption of shellfish fed on toxic algae is a public health hazard. It is essential to implement shellfish monitoring programs to minimize the possibility of shellfish contaminated by paralytic shellfish toxins (PST) reaching the marketplace. RESULTS: This paper proposes a rapid detection method for PST in mussels using near-infrared spectroscopy (NIRS) technology. Spectral data in the wavelength range of 950-1700 nm for PST-contaminated and non-contaminated mussel samples were used to build the detection model. Near-Bayesian support vector machines (NBSVM) with unequal misclassification costs (u-NBSVM) were applied to solve a classification problem arising from the fact that the quantity of non-contaminated mussels was far less than that of PST-contaminated mussels in practice. The u-NBSVM model performed adequately on imbalanced datasets by combining unequal misclassification costs and decision boundary shifts. The detection performance of the u-NBSVM did not decline as the number of PST samples decreased due to adjustments to the misclassification costs. When the number of PST samples was 20, the G-mean and accuracy reached 0.9898 and 0.9944, respectively. CONCLUSION: Compared with the traditional support vector machines (SVMs) and the NBSVM, the u-NBSVM model achieved better detection performance. The results of this study indicate that NIRS technology combined with the u-NBSVM model can be used for rapid and non-destructive PST detection in mussels. © 2023 Society of Chemical Industry.


Asunto(s)
Bivalvos , Máquina de Vectores de Soporte , Animales , Humanos , Teorema de Bayes , Espectroscopía Infrarroja Corta , Bivalvos/química , Mariscos/análisis
20.
Water Res ; 250: 120987, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38113594

RESUMEN

Diuron (N-(3,4-dichlorophenyl)-N,N­dimethylurea, DCMU), a ureic herbicide, is extensively used in agriculture to boost crop productivity; however, its extensive application culminates in notable environmental pollution, especially in aquatic habitats. Therefore, the present study investigated the effect of diuron on the dinoflagellate Alexandrium pacificum, which is known to induce harmful algal blooms (HAB), and its potential to biodegrade DCMU. Following a four-day DCMU exposure, our results revealed that A. pacificum proficiently assimilated DCMU at concentrations of 0.05 mg/L and 0.1 mg/L in seawater, attaining a complete reduction (100 % efficiency) after 96 h for both concentrations. Moreover, evaluations of paralytic shellfish toxins content indicated that cells subjected to higher DCMU concentrations (0.1 mg/L) exhibited reductions of 73.4 %, 86.7 %, and 75 % in GTX1, GTX4, and NEO, respectively. Exposure to DCMU led to a notable decrease in A. pacificum's photosynthetic efficacy, accompanied by increased levels of reactive oxygen species (ROS) and suppressed cell growth, with a growth inhibition rate of 41.1 % at 72 h. Proteomic investigations pinpointed the diminished expression levels of specific proteins like SxtV and SxtW, linked to paralytic shellfish toxins (PSTs) synthesis, as well as key proteins associated with Photosystem II, namely PsbA, PsbD, PsbO, and PsbU. Conversely, proteins central to the cysteine biosynthesis pathways exhibited enhanced expression. In summary, our results preliminarily resolved the molecular mechanisms underlying the response of A. pacificum to DCMU and revealed that DCMU affected the synthesis of PSTs. Meanwhile, our data suggested that A. pacificum has great potential in scavenging DCMU.


Asunto(s)
Dinoflagelados , Intoxicación por Mariscos , Humanos , Diurona/toxicidad , Proteómica , Dinoflagelados/fisiología , Floraciones de Algas Nocivas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA