Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Microbiol Methods ; 224: 106999, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39033856

RESUMEN

In this study, we describe a novel method for one-step cloning and targeted duplication of P. ananatis chromosomal fragments. According to this method, the chromosomal region of interest is subcloned in vivo via λ Red recombination into the short synthetic non-replicable DNA fragment containing the excisable antibiotic-resistance marker gene and φ80 att-P site. The resulting circular non-replicating DNA molecule was immediately inserted into an alternative chromosomal locus due to φ80-integrase activity. To this end, the specially designed helper plasmid pONI, which can provide both the λ Red recombineering and φ80-integrase-mediated insertion, was constructed. In the described method, PCR amplification of the cloning fragment is unnecessary, making it convenient for manipulation of long-length DNA. Additionally, the possibility of spontaneous mutations occurring is completely precluded. This method was effectively used for the targeted chromosomal integration of additional copies of individual genes and operons up to 16 kb in size.


Asunto(s)
Cromosomas Bacterianos , Clonación Molecular , Pantoea , Plásmidos , Pantoea/genética , Clonación Molecular/métodos , Cromosomas Bacterianos/genética , Plásmidos/genética , ADN Bacteriano/genética , Recombinación Genética , Integrasas/genética
2.
Plant Dis ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38595062

RESUMEN

Rice (Oryza sativa L.) is a crucial staple crop worldwide, and bacterial diseases are among the primary factors affecting rice yield. In late October 2022, bacterial leaf streak disease was observed on the leaves of the rice variety Meixiangzhan 2 across multiple fields (approximately 130 hm2) in Leizhou City, Guangdong Province, China. The incidence rate was up to 30% in each field. Infected rice leaves exhibited distinctive symptoms at the boundary between diseased and healthy tissue, featuring dark green to yellow-brown streaks, while most of the leaf margin exhibited symptoms of either leaf edge or sheath rot. Disease progression from the leaf tip inwards revealed gray-white or dehydrated lesions with a bluish-gray color. Some leaves exhibited wrinkling at the edges, and severe symptoms at the leaf tip resembled those of bacterial leaf blight in rice. Ten leaves were collected from 10 infected rice plants in three distinct fields, and leaf pieces at the border of diseased and healthy areas were surface disinfected with 75% anhydrous ethanol for 60 seconds, rinsed three times with sterile water, and then soaked in sterile water for 8 hours. The obtained bacterial suspension was diluted at a ratio of 1: 106, and 100 µL of the diluted samples were plated on Potato Dextrose Agar (PDA) plates. After incubation at 28°C for 48 hours, the yellow bacterial colonies that appeared, were purified on PDA plates. To confirm the bacterial species, the amplification of genes gyrB, leuS, rpoB, and 16S rDNA was performed on six randomly selected isolates from the three different fields using the primers 27F/1492R, gyrB-F/R, leuS-F/R and rpoB-F/R, as reported by Yu et al (2022), respectively. PCR products were sequenced. All six isolates had identical sequences for all genes sequenced.The gene sequences of 16S rDNA (960 bp), gyrB (953 bp), leuS (733 bp), and rpoB (877 bp) for LZ1, were deposited in the NCBI database under accession numbers PP048830 , PP068625 , PP068626, and PP068627, respectively. These sequences were subsequently compared using BLASTn tool against the NCBI nr/nt database. The 16S rDNA, gyrB, leuS, and rpoB of LZ1 showed similarities of 99.90%, 99.16%, 99.73%, and 99.89%, with the corresponding sequences of P. ananatis TZ39 (GenBank accession numbers MZ800600.1 for 16S rDNA, and CP081342.1 for gyrB, leuS and rpoB ). MLSA analysis using concatenated sequences of gyrB, leuS, and rpoB genes indicated that the isolated strain LZ1 belongs to P. ananatis. In the tillering stage of rice varieties Meixiangzhan 2 and Huahangyuzhan, P. ananatis LZ1 was inoculated at a concentration of 108 CFU/mL using the leaf-cutting method, with sterile water used as a control (Toh et al., 2019). After 14 days of bacterial inoculation, the inoculated leaves gradually became necrotic, changing from light green to brown showing identical symptoms as those in the field, while the control plants remained symptom-free. Subsequent 16S rDNA, gyrB, leuS and rpoB gene sequencing results further confirmed the identity of the pathogen as P. ananatis, thereby fulfilling Koch's postulates. Previous reports have already identified P. ananatis as the pathogen causing rice bacterial leaf streak (Kini et al., 2017; Arayaskul et al., 2019; Yu et al., 2022; Lu et al., 2022; Luna et al., 2023; Yuan et al., 2023). This is the first report of rice bacterial leaf streak caused by P. ananatis in Guangdong Province, China, laying the foundation for future research to establish strategies for the prevention and control of this disease.

3.
Mol Plant Pathol ; 25(3): e13442, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38476100

RESUMEN

The type VI secretion system (T6SS) of many gram-negative bacteria injects toxic effectors into adjacent cells to manipulate host cells during pathogenesis or to kill competing bacteria. However, the identification and function of the T6SS effectors remains only partly known. Pantoea ananatis, a gram-negative bacterium, is commonly found in various plants and natural environments, including water and soil. In the current study, genomic analysis of P. ananatis DZ-12 causing brown stalk rot on maize demonstrated that it carries three T6SS gene clusters, namely, T6SS-1, T6SS-2, and T6SS-3. Interestingly, only T6SS-1 secretion systems are involved in pathogenicity and bacterial competition. The study also investigated the T6SS-1 system in detail and identified an unknown T6SS-1-secreted effector TseG by using the upstream T6SS effector chaperone TecG containing a conserved domain of DUF2169. TseG can directly interact with the chaperone TecG for delivery and with a downstream immunity protein TsiG for protection from its toxicity. TseG, highly conserved in the Pantoea genus, is involved in virulence in maize, potato, and onion. Additionally, P. ananatis uses TseG to target Escherichia coli, gaining a competitive advantage. This study provides the first report on the T6SS-1-secreted effector from P. ananatis, thereby enriching our understanding of the various types and functions of type VI effector proteins.


Asunto(s)
Pantoea , Sistemas de Secreción Tipo VI , Sistemas de Secreción Tipo VI/metabolismo , Pantoea/genética , Sistemas de Secreción Bacterianos/genética , Virulencia/genética , Antibacterianos , Chaperonas Moleculares , Proteínas Bacterianas/metabolismo
4.
Plant Signal Behav ; 19(1): 2331894, 2024 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38516998

RESUMEN

A bacterium growing on infected leaves of Hydrocotyle umbellata, commonly known as dollarweed, was isolated and identified as Pantoea ananatis. An ethyl acetate extract of tryptic soy broth (TSB) liquid culture filtrate of the bacterium was subjected to silica gel chromatography to isolate bioactive molecules. Indole was isolated as the major compound that gave a distinct, foul odor to the extract, together with phenethyl alcohol, phenol, tryptophol, N-acyl-homoserine lactone, 3-(methylthio)-1-propanol, cyclo(L-pro-L-tyr), and cyclo(dehydroAla-L-Leu). This is the first report of the isolation of cyclo(dehydroAla-L-Leu) from a Pantoea species. Even though tryptophol is an intermediate in the indoleacetic acid (IAA) pathway, we were unable to detect or isolate IAA. We investigated the effect of P. ananatis inoculum on the growth of plants. Treatment of Lemna paucicostata Hegelm plants with 4 × 109 colony forming units of P. ananatis stimulated their growth by ca. five-fold after 13 days. After 13 days of treatment, some control plants were browning, but treated plants were greener and no plants were browning. The growth of both Cucumis sativus (cucumber) and Sorghum bicolor (sorghum) plants was increased by ca. 20 to 40%, depending on the growth parameter and species, when the rhizosphere was treated with the bacterium after germination at the same concentration. Plant growth promotion by Pantoea ananatis could be due to the provision of the IAA precursor indole.


Asunto(s)
Alcoholes , Centella , Indoles , Pantoea , Pantoea/química , Pantoea/metabolismo , Plantas/microbiología
5.
Microbiol Resour Announc ; 12(12): e0047123, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-37982615

RESUMEN

Here, we describe draft genome sequences for two bacterial isolates from the genus Pantoea. Pantoea ananatis ATCC 35400 was originally isolated from honeydew melon and was obtained from the American Type Culture Collection. Pantoea stewartii subspecies indologenes ICMP 10132 was originally isolated from sugarcane and classified as Pantoea ananatis, but average nucleotide identity and discriminatory PCR support species reclassification.

6.
Appl Environ Microbiol ; 89(12): e0092923, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-37982620

RESUMEN

IMPORTANCE: Phage-derived bacteriocins (tailocins) are ribosomally synthesized structures produced by bacteria in order to provide advantages against competing strains under natural conditions. Tailocins are highly specific in their target range and have proven to be effective for the prevention and/or treatment of bacterial diseases under clinical and agricultural settings. We describe the discovery and characterization of a new tailocin locus encoded within genomes of Pantoea ananatis and Pantoea stewartii subsp. indologenes, which may enable the development of tailocins as preventative treatments against phytopathogenic infection by these species.


Asunto(s)
Bacteriocinas , Pantoea , Pantoea/genética , Enfermedades de las Plantas/microbiología
7.
Genes (Basel) ; 14(11)2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38003004

RESUMEN

Maize white spot (MWS), caused by the bacterium Pantoea ananatis, is a serious disease that significantly impacts maize production and productivity. In recent years, outbreaks of white spot disease have resulted in substantial maize yield losses in southwest China. Researchers from various countries worldwide have conducted extensive research on this pathogen, including its isolation and identification, the localization of resistance genes, transmission pathways, as well as potential control measures. However, the information related to this disease remains fragmented, and standardized preventive and control strategies have not yet been established. In light of this, this review aims to comprehensively summarize the research findings on MWS, providing valuable insights into understanding its occurrence, prevention, and control measures in the southwestern and southern regions of China while also mitigating the detrimental impact and losses caused by MWS on maize production in China and across the world.


Asunto(s)
Zea mays , Zea mays/genética , Zea mays/microbiología , China/epidemiología
8.
J Basic Microbiol ; 63(12): 1348-1360, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37495561

RESUMEN

Indole is traditionally known as a metabolite of l-tryptophan and now as an important signaling molecule in bacteria, however, the understanding of its upstream synthesis regulation is very limited. Pantoea ananatis YJ76, a predominant diazotrophic endophyte isolated from rice (Oryza sativa), can produce indole to regulate various physiological and biochemical behaviors. We constructed a mutant library of YJ76 using the mTn5 transposon insertion mutation method, from which an indole-deficient mutant was screened out. Via high-efficiency thermal asymmetric interlaced PCR (hiTAIL-PCR), the transposon was determined to be inserted in a gene (RefSeq: WP014605468.1) of unknown function that is highly conserved at the intraspecific level. Bioinformatics analysis implied that the protein (Protein ID: WP089517194.1) encoded by the mutant gene is most likely to be a new orphan substrate-binding protein (SBP) for amino acid ABC transporters. Amino acid supplement cultivation experiments and surface plasmon resonance revealed that the protein could bind to l-serine (KD = 6.149 × 10-5 M). Therefore, the SBP was named as SerBP. This is the first case that a SBP responds to l-serine ABC transports. As a precursor of indole synthesis, the transmembrane transported l-serine was directly correlated with indole signal production and the mutation of serBP gene weakened the resistance of YJ76 to antibiotics, alkali, heavy metals, and starvation. This study provided a new paradigm for exploring the upstream regulatory pathway for indole synthesis of bacteria.


Asunto(s)
Pantoea , Mutación , Pantoea/genética , Aminoácidos/metabolismo , Indoles/metabolismo , Serina/genética , Serina/metabolismo
9.
Australas Plant Pathol ; : 1-9, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37363287

RESUMEN

Pantoea ananatis is a major pathogen that causes the new bacterial blight in rice, and its symptoms very similar to rice bacterial blight. Therefore, there is a dire need for an accurate and rapid method for detecting P. ananatis. In this study, an early and rapid visual detection method for P. ananatis was established. Using GyrB gene as the target sequence, an innovative recombinase-aided amplification detection system integrated with a lateral flow dipstick (RAA-LFD) was constructed. The optimized RAA-LFD detection method can be initiated at body temperature and does not rely on precise instruments. It does not require DNA extraction and can be used directly with plant tissue fluids. The results can be visualized after 10 minutes of amplification. The specificity and sensitivity tests showed that the RAA-LFD method could detect P. ananatis, whereas other common plant pathogens were not detected, and its detection sensitivity for P. ananatis DNA reached 100 copies/µL. The detection of diseased tissues indicated that this method could accurately detect P. ananatis in artificially inoculated rice tissues in the early stages of infection before symptoms. The RAA-LFD detection system established in this study is simple and fast, with visual results, excellent specificity, and high sensitivity. It is semi-quantitative and should be used for the early detection and rapid field diagnosis of new leaf blight, which provides technical support for the early warning and real-time detection of field samples.

10.
Access Microbiol ; 5(1): acmi000426, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36860507

RESUMEN

A toxin complex consists of a high-molecular-weight group of toxins that exhibits insecticidal activity against insect pests. These toxins are a promising alternative to Bacillus thuringiensis (Bt) toxins that have been extensively utilized in insect pest control. Herein, a codon-optimized insecticidal gene (tccZ) (381 bp) identified in Pantoea ananatis strain MHSD5 (a bacterial endophyte previously isolated from Pellaea calomelanos) was ligated into the pET SUMO expression vector and expressed in Escherichia coli BL21 (DE3). We report the success of cloning the tccZ gene into the pET SUMO vector and ultimately the transformation into E. coli BL21 (DE3) competent cells. However, despite conducting a time course of expression as well as isopropyl ß-d-1-thiogalactopyranoside (IPTG) dosage optimization to determine optimal conditions for expression, TccZ protein expression could not be detected on Stain-Free and Coomassie-stained SDS-PAGE gels.

11.
Mol Plant Microbe Interact ; 36(6): 381-391, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36797073

RESUMEN

Pantoea ananatis is an unusual bacterial pathogen that lacks typical virulence determinants yet causes extensive necrosis in onion foliage and bulb tissues. The onion necrosis phenotype is dependent on the expression of the phosphonate toxin, pantaphos, which is synthesized by putative enzymes encoded by the HiVir (high virulence) gene cluster. The genetic contributions of individual hvr genes in HiVir-mediated onion necrosis remain largely unknown, except for the first gene, hvrA (phosphoenolpyruvate mutase, pepM), whose deletion resulted in the loss of onion pathogenicity. In this study, using gene-deletion mutation and complementation, we report that, of the ten remaining genes, hvrB to hvrF are also strictly required for the HiVir-mediated onion necrosis and in-planta bacterial growth, whereas hvrG to hvrJ partially contributed to these phenotypes. As the HiVir gene cluster is a common genetic feature shared among the onion-pathogenic P. ananatis strains that could serve as a useful diagnostic marker of onion pathogenicity, we sought to understand the genetic basis of HiVir-positive yet phenotypically deviant (non-pathogenic) strains. We identified and genetically characterized inactivating single nucleotide polymorphisms in the essential hvr genes of six phenotypically deviant P. ananatis strains. Finally, inoculation of cell-free spent medium of the isopropylthio-ß-galactoside (IPTG)-inducible promoter (Ptac)-driven HiVir strain caused P. ananatis-characteristic red onion scale necrosis as well as cell death symptoms in tobacco. Co-inoculation of the spent medium with essential hvr mutant strains restored in-planta populations of the strains to the wild-type level, suggesting that necrotic tissues are important for the proliferation of P. ananatis in onion. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Cebollas , Pantoea , Cebollas/microbiología , Enfermedades de las Plantas/microbiología , Plantas , Pantoea/genética , Necrosis
12.
Plant Dis ; 2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36607325

RESUMEN

In August 2021, bacterial leaf blight-like symptoms were observed on 14 out of 570 rice genotypes (Oryza sativa) in research field plots of global rice germplasm grown in Arkansas (eXtra Figure S1. A & B). The disease was characterized by spreading lesions on leaves, panicle sterility and reduced yield in highly susceptible, mature rice germplasm. No spread of disease to nearby plants was observed. Isolations were performed at Colorado State University, where soakates from symptomatic leaves were spread onto nutrient agar. After 72 h at 28°C, uniform, distinct, yellow-colored bacterial colonies were observed. To screen for the presence of common rice bacterial pathogens, PCR amplification directly from colonies or from DNA isolated from symptomatic field-collected leaves was performed. Primers specific for Xanthomonas oryzae pvs. oryzae and oryzicola (Lang et al., 2010), Burkholderia glumae (Echeverri-Rico et al., 2021), and Pseudomonas fuscovaginae (Ash et al., 2014) did not amplify indicating these organisms were not present. Sequencing of 16S rRNA gene (Weisburg et al., 1991) amplicons suggested the bacteria belonged to the genera Pantoea and Sphingomonas (NCBI accession no. OP683332 and OP683333, respectively). Amplicons resulting from primers specific to the gyrB gene region of P. ananatis (Kini et al., 2021) were sequenced and the fragment was compared to the P. ananatis PA13 reference genome using a BLAST analysis. One candidate (AR358) showed 100% identity with the P. ananatis gyrB region. Primers specific for Sphingomonas sp. (Bangratz et al., 2020) confirmed the second candidate (AR359) as a Sphingomonas sp. The identity of P. ananatis was confirmed by the Plant Pathogen Confirmatory Diagnostics Laboratory (Beltsville, MD, USA). To determine pathogenicity, leaves from 7-day-old seedlings of rice (Oryza sativa) cultivar Kitaake were scissor-clip inoculated (Kauffman et al., 1973) with four different treatments and compared to control leaves inoculated with sterile water. Treatments for the experiment consisted of bacterial suspensions (108 CFU/ml) of the two candidate organisms, P. ananatis (strain AR358) or Sphingomonas sp. (strain AR359), individually or in a 1:1 ratio of P. ananatis:Sphingomonas sp., or soakate from infected field tissue. Lesions similar to those observed in the field were only detected on leaves inoculated with P. ananatis or infected field tissue soakate at 7-days post-inoculation (eXtra Figure S1. C). Bacteria were recovered from the leaves of the artificially inoculated seedlings from three treatments (P. ananatis, P. ananatis:Sphingomonas sp. and soakate from the infected field tissue) and were determined to be P. ananatis based on colony morphology, amplification of 16s rRNA, and gyrB sequence data. Our results confirm the pathogenicity of P. ananatis to rice and fulfill Koch's postulates. P. ananatis was also recovered from several similarly diseased rice breeding lines at the University of Arkansas System Division of Agriculture Rice Research and Extension Center. We conclude that P. ananatis is the causal pathogen for leaf blight-like symptoms observed in the global rice cultivars grown in Arkansas. P. ananatis was previously reported as a pathogen on rice in several rice growing regions, including China (Yu et al., 2021), India (Reshma et al., 2022), and Africa (Kini et al., 2017), however, this is the first report of P. ananatis as a pathogen of rice in the United States.

13.
Plant Dis ; 107(8): 2500-2505, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36691281

RESUMEN

A Pantoea ananatis strain, named LCFJ-001 (GDMCC: 1.6101), was isolated for the first time from bacterial wilt-diseased roots of mulberry (Morus atropurpurea) in the western part of the Guangxi Zhuang Autonomous Region, China. Moreover, through Koch's postulates, it was proven that LCFJ-001 can cause mulberry wilt, which is one of the pathogens of mulberry bacterial wilt. Here, we report a complete, annotated genome sequence of P. ananatis LCFJ-001. The entire genome sequence of P. ananatis strain LCFJ-001 was a 4,499,350 bp circular chromosome with 53.50% GC content. In total, 3,521 genes were annotated, of which 3,418 were assigned protein-coding genes. In addition, 22 ribosomal RNAs and 81 transfer RNAs were identified. The presented resource will help explore the pathogenetic mechanisms of mulberry wilt disease caused by the genus Pantoea.


Asunto(s)
Morus , Pantoea , Genoma Bacteriano , Pantoea/genética , Morus/microbiología , China
14.
Plant Dis ; 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36510421

RESUMEN

Strawberry (Fragaria × ananassa) is an economically important crop in Zhejiang, China. In the autumn of 2021, crown necrobiosis and angular leaf spot was observed in commercial strawberry fields (cultivar 'fenyu') in Cixi, Ningbo, Zhejiang, China (N30°9'55″, E121°21'13″). The disease incidence ranged from 5 to 8 % in the field, but could reach 50 to 60 % in some heavily affected plastic tunnels. In the affected field, this disease could reduce strawberry production by 50%. Early symptoms were water-soaked lesions around the vein of the abaxial leaves; subsequently, reddish-brown irregular spots and coalesced lesions developed. In humid conditions, a sticky bacterial ooze exuding from lesions was observed. Finally, the crown of the diseased plant was necrotized, and several pockets were observed inside the crown after dissection. To isolate the causal agent, the infected leaves and crown tissues from six different plants were surface-sterilized with 75% ethanol for 1 min, rinsed twice with sterile distilled water, cut into small pieces, and soaked in 5 ml of sterile distilled water for 20 min. The supernatant from the cut-up pieces was serially diluted and spread on nutrient agar medium. After 2 to 3 days at 28℃, several yellow colonies were grown on the medium. The colonies from five infected plants were gram-negative, anaerobic rods, yellow, viscous, and gloss, which are typical characteristics of Erwinia anana (Wells et al. 1986). To confirm the identity of the causal bacteria, PCR was conducted for six randomly selected colonies to amplify 16S rRNA (Monciardini et al. 2002), fusA, and gyrB (Stice et al. 2002). The amplicons were sequenced and blasted, and the results showed that the six colonies were identical. The 16S rRNA, fusA, gyrB sequences of the isolate CM3 were deposited in GenBank with accession number ON754076.1, OP587277, and OP587278; BLAST search showed 99.93% (1445 bp out of 1446 bp), 100% (746 bp out of 746 bp), 99.64% (1371 bp out of 1376 bp) similarity with strains of Pantoea ananatis (KT741001.1, MH015093.1 and CP066803.1 accessions, respectively). The resulting concatenated data set of 16S rRNA-fusA-gyrB was used to build a multilocus phylogenetic analysis (MLSA) by maximum likelihood criteria. The MLSA tree indicated that the isolate CM3 belonged to Pantoea ananatis. The isolate's identity was further confirmed by P. ananatis-specific primers pagyrB-F/R (Xiao et al. 2022). Thus, this isolate was designated as P. ananatis CM3. To fulfill Koch's postulates, two old leaves were broken off each of the ten 2-month-old strawberry (cultivar 'fenyu') plants to create wounds, each plants was sprayed with a cell suspension of P. ananatis (107CFU/ml, 0.5 ml) on the stem base. Ten plants were sprayed with water to serve as a control. All plants were kept at 28/25°C (day/night) under a 12-h/12-h photoperiod. All plants were covered with transparent plastic bags to maintain humidity. After 48 h, the bags were removed. After 2 weeks, water-soaked lesions on some leaves were observed similar to those in the field . Three to five weeks after inoculation, the crown of the inoculated plants was necrotized, which was similar to the symptoms in the field. No symptoms were observed in the control plants. The experiment was repeated three times. The bacteria were successfully reisolated from the inoculated crown tissues and leaves and confirmed as CM3 according to the same methodologies used for the initial identification. Bacterial leaf blight in strawberry caused by Pantoea ananatis has been reported in Nova Scotia, Canada, and Egypt (Bajpai et al. 2019; Abdel-Gaied et al. 2022). To our knowledge, this is the first report of Pantoea ananatis causing crown necrobiosis on strawberry in China. This report provides a basis for further research on this disease and its management and control.

15.
Plant Dis ; 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36548921

RESUMEN

Strawberry (Fragaria×ananassa Duch.) is an important economic fruit crop in the world. With the continuous expansion of strawberry planting area, strawberry disease is one of the most important limiting factors, which seriously affects the agronomic performance and leads to significant economic losses. In November 2020, an infected stem rot disease of strawberries was detected in the strawberry growing area of Donghai County, Jiangsu Province, China. The disease incidence ranged from 30 % to 45 %. Initially, infected plants included stunted growth of new leaves, leaflet asymmetry, and holes in the vertical section of the stem, resulting in leaf blight and death in severe cases. To isolate the pathogen, two symptomatic plants were randomly collected. And then infected plants were surface sterilized with 75 % ethanol for 1 min, followed by 2 % sodium hypochlorite for 6 minutes. After that, the infected plants were washed 4-5 times with double sterilized distilled water, cut into 3-5 mm small pieces, and soaked in 2 ml of sterile water for 15 min, after which 100 µl of liquid suspension were spread onto Luria-Bertani medium (LB) and incubated at 28 °C for 12-16 h. All isolates showed yellow, viscous, round, and smooth (Figure S1, C) and the isolates were designated as JX1 and JX2. To identify the pathogen, the genomic DNA were extracted from isolates using the Ezup Column Bacteria Genomic DNA Purification Kit (Sangon Biotech, China) and the fragments of gyrB, rpoB and leuS gene were amplified using the primer pairs UP-1S/UP-2Sr (Yamamoto and Harayama 1995), rpoB-F/rpoB-R and leuS-F/leuS-R (Yu et al. 2022), respectively. Sequence analyses showed that the nucleotide sequences of gyrB, rpoB, and leuS fragments of the isolates shared 99.72 %, 99.67 % and 98.37 % identity with the Pantoea ananatis type strain LMG 2665 (KF482590.1, EF988972.1 and KF482626.1, respectively ), which suggests that the isolate could be Pantoea ananatis. To further verify that P. ananatis was identity of these isolates, the whole genome was sequenced using PacBio sequel II technology. The Average Nucleotide Identity (ANI) calculation showed that the whole-genome sequence was 99.0% similar to that of the Pantoea ananatis type strain LMG 2665 (Jain et al. 2018). The isolates were therefore recognized as P. ananatis. To confirm pathogenicity, roots of strawberry plants were inoculated by wounding as described (Wang et al. 2017) with bacterial suspensions (108 CFU/ml) for 30 min, and transplanted into 10 cm ×8.5 cm pots filled with substrate (peat: perlite: vermiculite =3:1:1). The negative control plants were inoculated with sterile distilled water (20 individual plants per group). All infected plants were placed in a greenhouse under the following environmental conditions: 30 ℃/25 ℃ day/night, >70 % relative humidity, 16-h/8-h photoperiod. The experiment was carried out three times. After 3 to 4 weeks of inoculation, the new leaves of the plants were smaller and asymmetrical, while the negative plants remained healthy. After 8 weeks, a significant stem rot pocket developed on all inoculated plants, similar to the symptoms observed in the field. In contrast, no symptoms were observed in negative plants (Figure S2). To fulfill Koch's postulates bacteria were further isolated, purified and identified from the greenhouse inoculated plants. The results proved that the causative agent of strawberry stem rot was P. ananatis. In recent decades, P. ananatis has been found to cause bacterial leaf blight in strawberries (Bajpai et al. 2020). It has also caused other crop diseases, such as maize white spot, peach soft rot and others (Cui et al.2022; Liao et al. 2015). Although other crop diseases caused by P. ananatis, a bacterial pathogen, there has been no report of P. ananatis causing the symptoms of stem rot disease in strawberry. To our knowledge, this is the first report of P. ananatis causing stem rot in strawberry. This study provides solid evidence that strawberry stem rot disease in China can also be caused by the novel pathogen Pantoea ananatis. In conclusion, this report will provide a theoretical reference for the prevention and control measures of P. ananatis causing strawberry stem rot disease in the future.

16.
Plant Dis ; 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35678622

RESUMEN

Maize (Zea mays L.) is one of the most important crops in China. Since 2020, a new leaf spot disease has occurred in southwest China in areas such as Yunnan, Sichuan and Hubei provinces. Typical symptoms appeared after tasseling. The spots are scattered on the leaf surface, round to oval in shape with diameter range 3-20 mm. Spots are initially water-soaked, gradually turning yellow or white. In 2021, diseased leaf samples with typical white spot were collected for pathogen isolation and identification in Qujing, Yunnan province. Four small pieces of leaf tissue (about 0.25 cm2 in area) were excised from the edge of the necrotic lesion of each plant, surface sterilized with 75% ethanol for 1 min, rinsed three times with sterile distilled water, and soaked in sterile distilled water for 5 min. The solution was plated on Luria Broth medium (LB) plate (Shin et al. 2022) . After incubation at 28°C for 24 h, round, smooth-edged yellow colonies appeared in the LB plate. The bacterium isolated was gram-negative, negative for oxidase, positive for peroxidase, indole, citrate (Wells et al. 1987). Three strains (PA21QJ01, PA21QJ02 and PA21QJ03) showed identical colony morphology. PA21QJ01 was used for further molecular analyses. DNA was extracted from fresh colonies cultured in LB(Shin et al. 2022), and the fragments at the 16S rDNA, gyrB and rpoB loci were amplified using primers 27F/1492R (Galkiewicz and Kellogg 2008), UP-1/UP-2r (Yamamoto and Harayama 1995) and rpoBCM81-F/rpoBCM32b-R (Brady et al. 2008), respectively. The sequences of fragments of 16S rDNA, gyrB and rpoB from isolate PA21QJ01 were was deposited in GenBank (accession number: OM184301.1, OM302500, OM302499). A search for homologous sequences using BLAST resulted in 99.9, 99.6 and 99.8% identity of 16S rDNA, gyrB and rpoB, respectively, with sequences from the NN08200 of Pantoea ananatis (GenBank accession numbers: MK415050.1 for 16S rDNA, CP035034.1 for gyrB and CP035034.1.1 for rpoB). Above molecular results indicated that PA21QJ01 isolated from maize white spot is P. ananatis. Pathogenicity tests were performed on tasseled plants of the suscptible maize variety Wugu1790. After culture in LB medium plate at 30°C for 12 h, the bacterial solution was used for inoculation at a concentration of 1 × 108 CFU ml-1. After 7 days of inoculation, the leaves of the plants appeared water-soaked. After 10 days, white spot developed with brown margin. In contrast, the control plants remained healthy and symptomless. The same P. ananatis was reisolated in the inoculated maize plants, fulfilled Koch's law. In the last decade, P. ananatis has been reported to cause maize white spot in South Africa, Mexico, Poland, Argentina, Brazil (Sauer et al. 2015), and Ecuador (Toaza et al.2021). It has caused crop diseases with other crops, such as onion, rice, pineapple, melon, and sorghum, and others (Sauer et al. 2015). It caused leaf blight and leaf steak in rice in China (Yu et al. 2021). This is the first report of maize white spot caused by P. ananatis in China. However, to our knowledge, this is the first report of maize white spot disease in China. Attentions should be paid to screening for disease-resistant resources and breeding disease-resistant hybrids. Reference: Wells, J. M. et al. 1987. Int. J. Syst. Bacteriol. 37:136-143. Shin, G. Y. et al. 2022. Plant Dis. Doi: 10.1094/PDIS-08-21-1810-SC. Brady, C., et al. 2008. Syst. Appl. Microbiol. 31:447. Galkiewicz, J. P., and Kellogg, C. A. 2008. APPL ENVIRON MICROB, 74.24: 7828-7831. Toaza, A. et al. 2021. Plant Dis. Doi:10.1094/PDIS-02-21-0298-PDN Yamamoto, S., and Harayama, S. 1995. APPL ENVIRON MICROB, 61:1104.L. Sauer, A. V. et al. 2015. Agronomy Science and Biotechnology. Doi:10.33158/ASB.2015v1i1p21 Yu et al. 2021. Plant Dis. Doi:10.1094/PDIS-05-21-0988-PDN.

17.
Microorganisms ; 10(6)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35744651

RESUMEN

Pantoea ananatis, a gram-negative bacterium belonging to the Erwiniaceae family, is a well-known phytopathogen isolated from many ecological niches and plant hosts. However, this bacterium also provides us with various beneficial characteristics, such as the growth promotion of their host plants and increased crop yield. Some isolated non-pathogenic strains are promising for the microbial production of useful substances. P. ananatis AJ13355 was isolated as an acidophilic bacterium and was used as an excellent host to produce L-glutamic acid under acidic conditions. The genome sequence of P. ananatis AJ13355 was determined, and specific genome-engineering technologies were developed. As a result, P. ananatis was successfully used to construct a bacterial strain that produces cysteine, a sulfur-containing amino acid that has been difficult to produce through fermentation because of complex regulation. Furthermore, by heterologous expression including plant-derived genes, construction of a strain that produces isoprenoids such as isoprene and linalool as secondary metabolites was achieved. P. ananatis is shown to be a useful host for the production of secondary metabolites, as well as amino acids, and is expected to be used as a platform for microbial production of bioactive substances, aromatic substances, and other high-value-added substances of plant origin in the future.

18.
Int J Mol Sci ; 23(12)2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35742879

RESUMEN

The rhizospheric bacterium Pseudomonas protegens Pf-5 can colonize the seed and root surfaces of plants, and can protect them from pathogen infection. Secondary metabolites, including lipopeptides and polyketides produced by Pf-5, are involved in its biocontrol activity. We isolated a crude extract from Pf-5. It exhibited significant surface activity and strong antibacterial activity against Pantoea ananatis DZ-12, which causes maize brown rot on leaves. HPLC analysis combined with activity tests showed that the polyketide pyoluteorin in the crude extract participated in the suppression of DZ-12 growth, and that the lipopeptide orfamide A was the major biosurfactant in the crude extract. Further studies indicated that the pyoluteorin in the crude extract significantly suppressed the biofilm formation of DZ-12, and it induced the accumulation of reactive oxygen species in DZ-12 cells. Scanning electron microscopy and transmission electron microscopy observation revealed that the crude extract severely damaged the pathogen cells and caused cytoplasmic extravasations and hollowing of the cells. The pathogenicity of DZ-12 on maize leaves was significantly reduced by the crude extract from Pf-5 in a dose-dependent manner. The polyketide pyoluteorin had strong antibacterial activity against DZ-12, and it has the potential for development as an antimicrobial agent.


Asunto(s)
Pantoea , Policétidos , Antibacterianos/metabolismo , Antibacterianos/farmacología , Mezclas Complejas , Lipopéptidos , Fenoles , Pseudomonas , Pirroles , Virulencia , Zea mays/metabolismo
19.
J Zhejiang Univ Sci B ; 23(4): 328-338, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35403387

RESUMEN

The aquatic grass Zizania latifolia grows symbiotically with the fungus Ustilago esculenta producing swollen structures called Jiaobai, widely cultivated in China. A new disease of Z. latifolia was found in Zhejiang Province, China. Initial lesions appeared on the leaf sheaths or sometimes on the leaves near the leaf sheaths. The lesions extended along the axis of the leaf shoots and formed long brown to dark brown streaks from the leaf sheath to the leaf, causing sheath rot and death of entire leaves on young plants. The pathogen was isolated and identified as the bacterium Pantoea ananatis, based on 16S ribosomal RNA (rRNA) gene sequencing, multilocus sequence analysis (atpD (ß-subunit of ATP synthase F1), gyrB (DNA gyrase subunit B), infB (translation initiation factor 2), and rpoB (ß|-subunit of RNA polymerase) genes), and pathogenicity tests. Ultrastructural observations using scanning electron microscopy revealed that the bacterial cells colonized the vascular tissues in leaf sheaths, forming biofilms on the inner surface of vessel walls, and extended between vessel elements via the perforated plates. To achieve efficient detection and diagnosis of P. ananatis, species-specific primer pairs were designed and validated by testing closely related and unrelated species and diseased tissues of Z. latifolia. This is the first report of bacterial sheath rot disease of Z. latifolia caused by P. ananatis in China.


Asunto(s)
Pantoea , Enfermedades de las Plantas , Pantoea/genética , Enfermedades de las Plantas/microbiología , Poaceae/genética , Poaceae/microbiología , Virulencia
20.
Appl Environ Microbiol ; 88(6): e0240521, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35108090

RESUMEN

Pantoea ananatis is an emerging plant pathogen that causes disease in economically important crops such as rice, corn, onion, melon, and pineapple, and it also infects humans and insects. In this study, we identified biosynthetic gene clusters of aerobactin and desferrioxamine E (DFO-E) siderophores by using the complete genome of P. ananatis PA13 isolated from rice sheath rot. P. ananatis PA13 exhibited the strongest antibacterial activity against Erwinia amylovora and Yersinia enterocolitica (Enterobacterales). Mutants of aerobactin or DFO-E maintained antibacterial activity against E. amylovora and Y. enterocolitica, as well as in a siderophore activity assay. However, double aerobactin and DFO-E gene deletion mutants completely lost siderophore and antibacterial activity. These results reveal that both siderophore biosynthetic gene clusters are essential for siderophore production and antibacterial activity in P. ananatis PA13. A ferric uptake regulator protein (Fur) mutant exhibited a significant increase in siderophore production, and a Fur-overexpressing strain completely lost antibacterial activity. Expression of the iucA, dfoJ, and foxA genes was significantly increased in the Δfur mutant background, and expression of these genes returned to wild-type levels after fur compensation. These results indicate that Fur negatively regulates aerobactin and DFO-E siderophores. However, siderophore production was not required for P. ananatis virulence in plants, but it appears to be involved in the microbial ecology surrounding the plant environment. This study is the first to report the regulation and functional characteristics of siderophore biosynthetic genes in P. ananatis. IMPORTANCE Pantoea ananatis is a bacterium that causes diseases in several economically important crops, as well as in insects and humans. This bacterium has been studied extensively as a potentially dangerous pathogen due to its saprophytic ability. Recently, the types, biosynthetic gene clusters, and origin of the siderophores in the Pantoea genus were determined by using genome comparative analyses. However, few genetic studies have investigated the characteristics and functions of siderophores in P. ananatis. The results of this study revealed that the production of aerobactin and desferrioxamine E in the rice pathogen P. ananatis PA13 is negatively regulated by Fur and that these siderophores are essential for antibacterial activity against Erwinia amylovora and Yersinia enterocolitica (Enterobacterales). However, siderophore production was not required for P. ananatis virulence in plants, but it appears to be involved in the microbial ecology surrounding the plant environment.


Asunto(s)
Pantoea , Sideróforos , Antibacterianos/metabolismo , Antibacterianos/farmacología , Humanos , Ácidos Hidroxámicos , Lactamas , Pantoea/genética , Pantoea/metabolismo , Sideróforos/metabolismo , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA