Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros











Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 549, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38872078

RESUMEN

Ginseng (Panax ginseng C. A. Mey.) is an important and valuable medicinal plant species used in traditional Chinese medicine, and its metabolite ginsenoside is the primary active ingredient. The FAR1/FHY3 gene family members play critical roles in plant growth and development as well as participate in a variety of physiological processes, including plant development and signaling of hormones. Studies have indicated that methyl jasmonate treatment of ginseng adventitious roots resulted in a significant increase in the content of protopanaxadiol ginsenosides. Therefore, it is highly significant to screen the FAR1/FHY3 gene family members in ginseng and preliminarily investigate their expression patterns in response to methyl jasmonic acid signaling. In this study, we screened and identified the FAR1/FHY3 family genes in the ginseng transcriptome databases. And then, we analyzed their gene structure and phylogeny, chromosomal localization and expression patterns, and promoter cis-acting elements, and made GO functional annotations on the members of this family. After that, we treated the ginseng adventitious roots with 200 mM methyl jasmonate and investigated the trend of the expression of four genes containing the largest number of methyl jasmonate cis-acting elements at different treatment times. All four genes were able to respond to methyl jasmonate, the most significant change was in the PgFAR40 gene. This study provides data support for subsequent studies of this family member in ginseng and provides experimental reference for subsequent validation of the function of this family member under methyl jasmonic acid signaling.


Asunto(s)
Acetatos , Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Oxilipinas , Panax , Filogenia , Proteínas de Plantas , Oxilipinas/farmacología , Ciclopentanos/farmacología , Panax/genética , Panax/metabolismo , Panax/efectos de los fármacos , Acetatos/farmacología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Perfilación de la Expresión Génica , Genes de Plantas , Ginsenósidos
2.
EFSA J ; 22(4): e8730, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38591023

RESUMEN

Following a request from the European Commission, EFSA was asked to deliver a scientific opinion on the safety and efficacy of a tincture from the roots of Panax ginseng C.A.Mey. (ginseng tincture), when used as a sensory additive in feed for horses, dogs and cats. The product is a water/ethanol (40:60 v/v) solution, with a dry matter content of no more than 6% and a content of 0.01%-0.5% (w/w) for the sum of the two triterpene saponins ginsenoside Rb1 and ginsenoside Rg1. The Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) concluded that the tincture is safe for horses, dogs and cats at the maximum proposed use level of 48.6, 228.7 and 162 mg/kg complete feed, respectively. The Panel also concluded that the additive is considered safe for consumers when used at the proposed conditions of use in feed for horses. Ginseng tincture should be considered as an irritant to skin and eyes, and as a dermal and respiratory sensitiser. The use of the ginseng tincture as a flavour in feed for horses was not expected to pose a risk for the environment. Since the roots of P. ginseng and its preparations were recognised to flavour food and their function in feed would be essentially the same, no demonstration of efficacy was considered necessary.

3.
Chin Herb Med ; 15(1): 123-131, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36875431

RESUMEN

Objective: This study aimed to identify the main medicinal active components of Panax ginseng (P. ginseng) in the compatibility environment of clinical application. For this purpose, the anti-inflammatory ingredients of P. ginseng were investigated based on its therapeutic effect in Sijunzi Decoction (SJD) which is a widely used traditional Chinese formula. Methods: The fingerprints of 10 batches of SJD consisting of different sources of P. ginseng were established by UPLC technique to investigate the chemical components. At the same time, the anti-inflammatory effects of these components were evaluated by dextran sulfate sodium-induced ulcerative colitis mouse model. Grey relational analysis was applied to explore the correlation degree between fingerprints and anti-inflammatory effects in SJD. Lipopolysaccharide-stimulated RAW264.7 murine macrophages were established to evaluate the anti-inflammatory action of the screened effective substances of P. ginseng. Results: According to grey relational analysis, notoginsenoside R1, ginsenoside Rg2 and ginsenoside Rb3 of P. ginseng were the major anti-inflammatory contributions in SJD. They had been proven to be closely associated with the anti-inflammatory process of SJD and displayed a close effect compared with SJD by LPS-stimulated RAW264.7 murine macrophages. Conclusion: Our work provides a general strategy for exploring the pharmacological ingredients of P. ginseng in traditional Chinese formulas which is beneficial for establishing the quality standards of traditional herbs in traditional Chinese medicine prescription based on their clinical therapeutic effect.

4.
Chin Herb Med ; 15(1): 69-75, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36875435

RESUMEN

Objective: Ginsenosides, polysaccharides and phenols, the main active ingredients in Panax ginseng, are not different significantly in content between 3 and 5 years old of ginsengs called Yuan ginseng and more than ten years old ones called Shizhu ginseng. The responsible chemical compounds cannot fully explain difference in efficacy between them. According to reports in Lonicerae Japonicae Flos (Jinyinhua in Chinese) and Glycyrrhizae Radix et Rhizoma (Gancao in Chinese), microRNA may play a role in efficacy, so we identified microRNAs in P. ginseng at the different growth years and analyzed their target genes. Methods: Using high-throughput sequencing, the RNA-Seq, small RNA-Seq and degradome databases of P. ginseng were constructed. The differentially expressed microRNAs was identified by qRT-PCR. Results: A total of 63,875 unigenes and 24,154,579 small RNA clean reads were obtained from the roots of P. ginseng. From these small RNAs, 71 miRNA families were identified by bioinformatics target prediction software, including 34 conserved miRNAs, 37 non-conserved miRNA families, as well as 179 target genes of 17 known miRNAs. Through degradome sequencing and computation, we finally verified 13 targets of eight miRNAs involved in transcription, energy metabolism, biological stress and disease resistance, suggesting the significance of miRNAs in the development of P. ginseng. Consistently, major miRNA targets exhibited tissue specificity and complexity in expression patterns. Conclusion: Differential expression microRNAs were found in different growth years of ginsengs (Shizhu ginseng and Yuan ginseng), and the regulatory roles and functional annotations of miRNA targets in P. ginseng need further investigation.

5.
Front Pharmacol ; 13: 995796, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36545315

RESUMEN

Background: Renshen-Fuzi herb pair (RS-FZ) is often used in the clinical treatment of heart failure (HF) and has a remarkable therapeutic effect. However, the mechanism of RS-FZ for treating HF remains unclear. In our study, we explored the mechanism of RS-FZ for treating HF. Methods: Evaluation of RS-FZ efficacy by cardiovascular pharmacology. Moreover, Global metabolomics profiling of the serum was detected by UPLC-QTOF/MS. Multivariate statistics analyzed the specific serum metabolites and corresponding metabolic pathways. Combining serum metabolomics with network pharmacology, animal experiments screened and validated the critical targets of RS-FZ intervention in HF. Results: RS-FZ significantly ameliorated myocardial fibrosis, enhanced cardiac function, and reduced the serum HF marker (brain natriuretic peptide) level in rats with HF. Through topological analysis of the "Metabolite-Target-Component" interaction network, we found that 79 compounds of RS-FZ directly regulated the downstream specific serum metabolites by acting on four critical target proteins (CYP2D6, EPHX2, MAOB, and ENPP2). The immunohistochemistry results showed that RS-FZ observably improved the expression of CYP2D6 and ENPP2 proteins while decreasing the expression of EPHX2 and MAOB proteins dramatically. Conclusion: The integrated cardiovascular pharmacological assessment with serum metabolomics revealed that RS-FZ plays a crucial role in the treatment of HF by intervening in CYP2D6, EPHX2, MAOB, and ENPP2 target proteins. It provides a theoretical basis for RS-FZ for treating HF.

6.
Front Pharmacol ; 13: 909363, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35928281

RESUMEN

Panax ginseng C.A. Mey. has a history of more than 4000 years and is widely used in Asian countries. Modern pharmacological studies have proved that ginsenosides and their compounds have a variety of significant biological activities on specific diseases, including neurodegenerative diseases, certain types of cancer, gastrointestinal disease, and metabolic diseases, in which most of the interest has focused on ginsenoside Rd. The evidentiary basis showed that ginsenoside Rd ameliorates ischemic stroke, nerve injury, cancer, and other diseases involved in apoptosis, inflammation, oxidative stress, mitochondrial damage, and autophagy. In this review, we summarized available reports on the molecular biological mechanisms of ginsenoside Rd in neurological diseases, cancer, metabolic diseases, and other diseases. We also discussed the main biotransformation pathways of ginsenoside Rd obtained by fermentation.

7.
Chin J Nat Med ; 20(5): 378-386, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35551772

RESUMEN

The dry root and rhizome of Panax ginseng C. A. Mey has garnered much interest owing to its medicinal properties against diabetes and cardiovascular diseases. In this study, an ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS)-based metabolomics approach was used to illustrate the therapeutic mechanisms of ginseng extract on the serum and urinary metabolic profiles in streptozotocin-induced type 1 diabetes mellitus (T1DM) rats. Pharmacological and renal parameters in response to the administration of ginseng were also evaluated. In total, 16 serum endogenous metabolites and 14 urine endogenous metabolites, including pyruvic acid, indoleacetic acid, and phenylacetylglycine, were identified as potential biomarkers for diabetes. Pathway enrichment and network analysis revealed that the biomarkers modulated by ginseng were primarily involved in phenylalanine and pyruvate metabolism, as well as in arginine biosynthesis. Moreover, the levels of several renal injury-related biomarkers in T1DM rats were significantly restored following treatment with ginseng. The administration of the extract helped maintain tissue structure integrity and ameliorated renal injury. The findings suggest that the regulatory effect of ginseng extract on T1DM involves metabolic management of diabetic rats, which subsequently attenuates T1DM-induced early renal dysfunction.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Panax , Animales , Biomarcadores , Cromatografía Líquida de Alta Presión/métodos , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Riñón , Metabolómica/métodos , Panax/química , Extractos Vegetales/farmacología , Ratas
8.
Arch Microbiol ; 204(4): 208, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-35275265

RESUMEN

Panax ginseng (Panax ginseng C. A. Mey.) is a perennial herb of the genus ginseng, which is used as medicine with dried roots and rhizomes. With the deepening of research on ginseng, the chemical components and pharmacological effects of ginseng have gradually been discovered. Endophytes are beneficial to host plants. However, the composition of endophytes in different organs from ginseng is poorly elucidated. The report of ginsenoside production by endophytic microbes isolated from Panax sp., motivated us to explore the endophytic microbial diversity related to the roots, stems, and leaves. In this study, the V5-V7 variable region of endophytic bacteria 16S rRNA gene and V1 variable region of endophytic fungi ITS gene in different organs were analyzed by high-throughput sequencing. The diversity and abundance of endophytic microbes in the three organs are different and are affected by the organs. For example, the most abundant endophytic bacterial genus in roots was Mycobacterium, while, the stems and leaves were Ochrobactrum. Similarly, the fungal endophytes, Coniothyrium and Cladosporium, were also found in high abundance in stems, in comparison to roots and leaves. The Shannon index shows that the diversity of endophytic bacteria in roots is the highest, and the richness of endophytic bacterial was root > stem (p < 0.05). Principal coordinate analysis showed that there were obvious microbial differences among the three groups, and the endophytic bacterial composition of the leaves was closer to that of the roots. This study provides an important reference for the study of endophytic microorganisms in ginseng.


Asunto(s)
Ascomicetos , Micobioma , Panax , Ascomicetos/genética , Bacterias , Panax/microbiología , ARN Ribosómico 16S/genética
9.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-929268

RESUMEN

The dry root and rhizome of Panax ginseng C. A. Mey has garnered much interest owing to its medicinal properties against diabetes and cardiovascular diseases. In this study, an ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF-MS)-based metabolomics approach was used to illustrate the therapeutic mechanisms of ginseng extract on the serum and urinary metabolic profiles in streptozotocin-induced type 1 diabetes mellitus (T1DM) rats. Pharmacological and renal parameters in response to the administration of ginseng were also evaluated. In total, 16 serum endogenous metabolites and 14 urine endogenous metabolites, including pyruvic acid, indoleacetic acid, and phenylacetylglycine, were identified as potential biomarkers for diabetes. Pathway enrichment and network analysis revealed that the biomarkers modulated by ginseng were primarily involved in phenylalanine and pyruvate metabolism, as well as in arginine biosynthesis. Moreover, the levels of several renal injury-related biomarkers in T1DM rats were significantly restored following treatment with ginseng. The administration of the extract helped maintain tissue structure integrity and ameliorated renal injury. The findings suggest that the regulatory effect of ginseng extract on T1DM involves metabolic management of diabetic rats, which subsequently attenuates T1DM-induced early renal dysfunction.


Asunto(s)
Animales , Ratas , Biomarcadores , Cromatografía Líquida de Alta Presión/métodos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Riñón , Metabolómica/métodos , Panax/química , Extractos Vegetales/farmacología
10.
Chin Herb Med ; 13(1): 64-77, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36117758

RESUMEN

Panax japonicus, which in the Tujia dialect is known as "Baisan Qi" and "Zhujieshen", is a classic "qi" drug of Tujia ethnomedicine and it has unique effects on disease caused by "qi" stagnation and blood stasis. This paper serves as the basis of further scientific research and development of Panax japonicus. The pharmacology effects of molecular pharmacology were discussed and summarized. P. japonicus plays an important role on several diseases, such as rheumatic arthritis, cancer, cardiovascular agents, and this review provides new insights into P. japonicus as promising agents to substitute ginseng and notoginseng.

11.
Chinese Herbal Medicines ; (4): 64-77, 2021.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-953692

RESUMEN

Panax japonicus, which in the Tujia dialect is known as “Baisan Qi” and “Zhujieshen”, is a classic “qi” drug of Tujia ethnomedicine and it has unique effects on disease caused by “qi” stagnation and blood stasis. This paper serves as the basis of further scientific research and development of Panax japonicus. The pharmacology effects of molecular pharmacology were discussed and summarized. P. japonicus plays an important role on several diseases, such as rheumatic arthritis, cancer, cardiovascular agents, and this review provides new insights into P. japonicus as promising agents to substitute ginseng and notoginseng.

12.
Int J Mol Sci ; 21(2)2020 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-31947635

RESUMEN

Hair loss is a disorder in which the hair falls out from skin areas such as the scalp and the body. Several studies suggest the use of herbal medicine to treat related disorders, including alopecia. Dermal microcirculation is essential for hair maintenance, and an insufficient blood supply can lead to hair follicles (HF) diseases. This work aims to provide an insight into the ethnohistorical records of some nutritional compounds containing flavonoids for their potential beneficial features in repairing or recovering from hair follicle disruption. We started from a query for "alopecia" OR "hair loss" AND "Panax ginseng C.A. Mey." (or other six botanicals) terms included in Pubmed and Web of Sciences articles. The activities of seven common botanicals introduced with diet (Panax ginseng C.A. Mey., Malus pumila Mill cultivar Annurca, Coffea arabica, Allium sativum L., Camellia sinensis (L.) Kuntze, Rosmarinum officinalis L., Capsicum annum L.) are discussed, which are believed to reduce the rate of hair loss or stimulate new hair growth. In this review, we pay our attention on the molecular mechanisms underlying the bioactivity of the aforementioned nutritional compounds in vivo, ex vivo and in vitro studies. There is a need for systematic evaluation of the most commonly used plants to confirm their anti-hair loss power, identify possible mechanisms of action, and recommend their best adoption.


Asunto(s)
Flavonoides/farmacología , Folículo Piloso/efectos de los fármacos , Folículo Piloso/crecimiento & desarrollo , Extractos Vegetales/farmacología , Plantas Comestibles/química , Plantas Medicinales/química , Animales , Flavonoides/química , Flavonoides/metabolismo , Humanos , Redes y Vías Metabólicas , Estructura Molecular , Extractos Vegetales/química , Plantas Comestibles/metabolismo , Plantas Medicinales/metabolismo
13.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-846497

RESUMEN

Objective: In order to study the application of DNA barcoding in the authentication of Chinese patent medicines, Sanqi Tablets were used as the object to investigate the applicability, specificity and precision of this method. Methods: Fifteen batches of commercially available Sanqi Tablet samples were collected. The conditions of DNA extraction for Sanqi Tablet had been first investigated, and the DNA was used for testing the applicability of the methods such as PCR amplification, sequence acquisition, and species authentication in the principles for molecular identification of traditional Chinese materia medica using DNA barcoding. The specificity and reproducibility of DNA barcoding in identification of Sanqi Tablets and its adulterations from the roots of Panax notoginseng, P. ginseng and P. quinquefolius were also studied. Results: The Sanqi Tablet sample with an amount of sampling to be 100 mg and a water bath at 56 ℃ for 8 h gave an average concentration of 60.7 ng/μL and then the PCR amplification, sequence acquisition and species assignment were all successful. The ITS2 sequences of P. notoginseng, P. ginseng and P. quinquefolius were all 230 bp in length, and there were seven stable SNP loci between P. notoginseng and P. ginseng, P. notoginseng and P. quinquefolius. ITS2 sequences could be successfully obtained from lab-made and the adulterated Sanqi Tablets, and the Sanger sequencing chromatograms of different ratios of P. notoginseng and P. ginseng mixtures, P. notoginseng and P. quinquefolius mixtures had heterozygous peaks with corresponding peak height ratio at SNP positions. The repeatability, intermediate precision and reproducibility were all in line with the requirements of “General Regulation 9101” in the Chinese Pharmacopoeia. Conclusion: The ITS2 sequence can stably and accurately authenticate the raw materials of Sanqi Tablets with substantial specificity and precision. The DNA barcoding identification method of Sanqi Tablets will provide a new technical tool for ensuring the safety of Sanqi Tablets in clinical medications, and provide reference for the identification of other single-herb products documented in the Chinese Pharmacopoeia.

14.
Phytochemistry ; 164: 223-227, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31181353

RESUMEN

Repositioning of plant extracts and chemical drugs can accelerate drug development. However, its success rate may depend on what the clue is for the repositioning. Recently, repositioning based on correction of unwarranted gene expression pattern has suggested the possibility of new drug development. Here, we designed a similar method for the repositioning of nutraceutical ginseng (Panax ginseng C.A.Mey.), which is one of the most validated natural therapeutic products for various diseases. We analyzed ginseng-induced gene expression profiles using the connectivity map algorithm, which is a database that connects diseases, chemical drugs, and gene expression. Ginseng was predicted to show the same effects as those of topoisomerase I inhibitors. In a subsequent in vitro assay, ginseng extract unwound coiled or supercoiled DNA, an effect comparable to that of the topoisomerase I inhibitor, camptothecin. Furthermore, ginseng extract induced synthetic lethality with suppression of the Werner syndrome gene. The collected data implicate ginseng as a candidate antitumor agent owing to its topoisomerase I inhibitory activity and further validate the usefulness of differentially expressed gene similarity-based repurposing of other natural products.


Asunto(s)
ADN-Topoisomerasas de Tipo I/metabolismo , Reposicionamiento de Medicamentos , Panax/química , Extractos Vegetales/farmacología , Inhibidores de Topoisomerasa I/farmacología , Supervivencia Celular/efectos de los fármacos , ADN-Topoisomerasas de Tipo I/genética , Perfilación de la Expresión Génica , Células HCT116 , Humanos , Estructura Molecular , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Inhibidores de Topoisomerasa I/química , Inhibidores de Topoisomerasa I/aislamiento & purificación , Células Tumorales Cultivadas
15.
Chinese Pharmaceutical Journal ; (24): 1395-1401, 2019.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-857921

RESUMEN

OBJECTIVE: To establish a method for the determination of 33 kinds of pesticide residues in Panax ginseng C.A.Mey by GC-MS/MS and LC-MS/MS. METHODS: The 53 chemical monomers of 33 pesticide residues clearly prohibited by the Chinese ministry of agriculture were selected as the detection indicators. The samples were extracted with acetonitrile by high speed homogenizer. An LC-MS/MS analysis was performed on a CORTECSTM UPLC C18(2.1 mm×150 mm, 1.6 μm) column with isocratic elution of 0.1% formic acid (containing 5 mmol•L-1 ammonium formate) is mobile phase A, 95% acetonitrile(containing 5 mmol•L-1 ammonium formate and 0.1% formic acid)is mobile phase B.Electrospray ionization(ESI)source was applied by positive ionization in multiple reaction monitoring(MRM)modes. GC-MS/MS analysis was performed on a DM17ms(30 m×0.25 mm, 0.25 μm)capillary column with electron impact(EI)source, electron impact (EI) source was applied by positive ionization in multiple reaction monitoring modes (MRM). RESULTS: The correlation coefficient r of 33 pesticide residues showed good linearity in the linear range of 2 to 20 ng•mL-1 was greater than 0.990 0. The average recoveries at spiked levels of low level and high level (0.01 and 0.04 mg•kg-1), repeat 5 times per level. The average recovery was 87.57%-120.98%, and the RSD was between 1.45%-14.03%. CONCLUSION: The method can quickly and effectively detect pesticide residues in ginseng.

16.
Chinese Herbal Medicines ; (4): 308-313, 2019.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-842060

RESUMEN

Objective: To explain the phenomenon that Panax ginseng is not compatible with Raphani Semen based on pharmacodynamics and pharmacokinetics. Methods: The forced swimming time and biochemical parameters such as blood lactate (BLA), serum urea nitrogen (SUN), and hepatic glycogen (GLU) were determined for anti-fatigue experiment. The UPLC-MS/MS was used to analyze the pharmacokinetics of Rg1, Re, Rb1, and Rd after orally administration of P. ginseng and P. ginseng combined with Raphani Semen to rats. Pharmacokinetic differences of four ginsenosides between single uses of P. ginseng and combined with Raphani Semen were investigated. Results: The results showed that Raphani Semen tended to significantly reduce the anti-fatigue activity of P. ginseng. Co-administration of P. ginseng and Raphani Semen had significant effects on the pharmacokinetics of the four ginsenosides in rats compared to that observed with P. ginseng extract alone. The AUC0–12 h values of the four ginsenosides in PG group were higher than the corresponding values in the PR group. It can be inferred that Raphani Semen decreased the blood exposure of the four ginsenosides in rats when it combined with P. ginseng. Conclusion: The anti-fatigue activity and pharmacokinetic results showed that Raphani Semen may reduce the pharmacological actions of P. ginseng.

17.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-850894

RESUMEN

Objective: Human hepatoma SMMC-7721 cells were transplanted into nude mice to study the tissue distribution of nanostructured lipid carrier modified by hyaluronic acid (HA-OUR-NLC) loaded with three components in Panax ginseng (oleanolic acid, ursolic acid, and ginsenosider Rg3, OUR). Methods: FITC and DiR were used as fluorescent probes to dynamically monitor the HA-OUR-NLC targeted behavior of various tissues and organs through fluorescence endoscopic confocal imaging and in vivo imaging studies. Results: RUE values of oleanolic acid, ursolic acid, and ginsenosider Rg3 in tumors were significantly increased in HA-OUR-NLC group, reaching 2.51 ± 1.23, 2.27 ± 1.43, and 2.77 ± 0.25, respectively, which indicated that nanoparticles modified by hyaluronic acid could enhance drug uptake in tumors. The DiR accumulation in tumors of DiR-HA-OUR-NLC was higher than that of DiR-OUR-NLC by the visualized fluorescence of in vivo imaging. Conclusion: It indicated that nanoparticles modified by hyaluronic acid loaded with three components in P. ginseng can be enriched in the tumor site of liver cancer, which is in line with the expectation and can significantly improve the tumor targeting of the drug delivery system.

18.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-850903

RESUMEN

Objective: To study the chemical constituents of ginsenosides from the flower buds of Panax ginseng. Methods: The compounds were isolated and purified by Diaion HP-20, MCI gel, silica gel, and semi-preparative HPLC. The structures were elucidated based on NMR and MS data. Results: Four compounds were isolated from the extract of P. ginseng flower buds, and identified as 6’-acetyl-ginsenoside F1 (1), 12α-hydroxyl-ginsneoside Rd (2), 20(S)-ginsenoside Rg3 (3), and 5,6-didehydro-20(S)- ginsenoside Rg3 (4). Conclusion: Compound 4 is a novel ginsenoside, compounds 1 and 2 are new natural products.

19.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-851170

RESUMEN

Objective Traditional identification methods of pharmacognosy is difficult to distinguish the seeds of Panax ginseng and Panax quinquefolius. In order to improve the efficacy and accuracy of identification and provide the scientific foundation for the establishment of Chinese herbal medicine seed quality standards, molecular identification methods of the seeds were established by DNA barcoding technology. Methods The pharmacognostical identification method was used to study the morphological identification and microscopic characters of different seeds. DNA barcodes and Chinese Pharmacopoeia species standard barcode database were employed to identify the seeds by ITS2 sequence comparison, genetic distance comparison and systematic NJ tree construction. Results Intraspecific genetic distances of individuals participating were smaller than interspecific genetic distances. Phylogenetic tree map showed that two species were repectively clustered into one. A total of 42 samples of seeds from Panax ginseng and Panax quinquefolius produced by nine areas were all top-quality and easy to distinguish. Conclusion ITS2 DNA barcodes can identify and differentiate the seeds of P. ginseng and P. quinquefolius germplasm resources quickly, accurately and efficiently.

20.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-851344

RESUMEN

Objective:To analyze and identify ginseng miRNA. Methods: The miRNA and target genes of Shizhu ginseng and Yuan ginseng were detected by the degradation sequencing technology; Functional annotation of Degradome genes was carried out using public databases of KEGG/NR/GO database; The expression of miRNA and target genes of Shizhu ginseng and Yuan ginseng was determinated by real time fluorescence quantitative PCR technique. Results: A total of 13 target genes of eight miRNA families were obtained; The target gene type of miRNA was mainly transcriptional factor, response factor, and signal transduction pathway by means of KEGG/NR/GO database analysis. The results of real time fluorescence quantitative PCR verification of aqc-miR-159, bdi-miR162, cpa-miR319, pgi-miR4376, smo-miR396 and its target genes were basically consistent with the expression of miRNA and target genes from the degradation group. Conclusion: The target genes of partial Panax ginseng miRNA is clarified, which lays the foundation for further study of the possible function of ginseng miRNA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA