Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Theranostics ; 14(9): 3423-3438, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38948056

RESUMEN

PRL1 and PRL3, members of the protein tyrosine phosphatase family, have been associated with cancer metastasis and poor prognosis. Despite extensive research on their protein phosphatase activity, their potential role as lipid phosphatases remains elusive. Methods: We conducted comprehensive investigations to elucidate the lipid phosphatase activity of PRL1 and PRL3 using a combination of cellular assays, biochemical analyses, and protein interactome profiling. Functional studies were performed to delineate the impact of PRL1/3 on macropinocytosis and its implications in cancer biology. Results: Our study has identified PRL1 and PRL3 as lipid phosphatases that interact with phosphoinositide (PIP) lipids, converting PI(3,4)P2 and PI(3,5)P2 into PI(3)P on the cellular membranes. These enzymatic activities of PRLs promote the formation of membrane ruffles, membrane blebbing and subsequent macropinocytosis, facilitating nutrient extraction, cell migration, and invasion, thereby contributing to tumor development. These enzymatic activities of PRLs promote the formation of membrane ruffles, membrane blebbing and subsequent macropinocytosis. Additionally, we found a correlation between PRL1/3 expression and glioma development, suggesting their involvement in glioma progression. Conclusions: Combining with the knowledge that PRLs have been identified to be involved in mTOR, EGFR and autophagy, here we concluded the physiological role of PRL1/3 in orchestrating the nutrient sensing, absorbing and recycling via regulating macropinocytosis through its lipid phosphatase activity. This mechanism could be exploited by tumor cells facing a nutrient-depleted microenvironment, highlighting the potential therapeutic significance of targeting PRL1/3-mediated macropinocytosis in cancer treatment.


Asunto(s)
Pinocitosis , Proteínas Tirosina Fosfatasas , Proteínas Tirosina Fosfatasas/metabolismo , Humanos , Línea Celular Tumoral , Animales , Proteínas de Neoplasias/metabolismo , Movimiento Celular , Ratones , Membrana Celular/metabolismo , Fosfatidilinositoles/metabolismo , Proteínas de la Membrana , Proteínas de Ciclo Celular
2.
Endocr J ; 71(7): 661-674, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38749736

RESUMEN

The placenta secretes a prolactin (PRL)-like hormone PRL3B1 (placental lactogen II), a luteotropic hormone essential for maintaining pregnancy until labor in mice. A report from 1984 examined the secretion pattern of PRL3B1 in prepartum mice. In the current study, we found contradictory findings in the secretion pattern that invalidate the previous report. By measuring maternal plasma PRL3B1 and PRL every 4 hrs from gestational day 17 (G17), we newly discovered that maternal plasma PRL3B1 levels decrease rapidly in prepartum C57BL/6 mice. Interestingly, the onset of this decline coincided with the PRL surge at G18, demonstrating a plasma prolactin axis shift from placental to pituitary origin. We also found that maternal plasma progesterone regression precedes the onset of the PRL shift. The level of Prl3b1 mRNA was determined by RT-qPCR in the placenta and remained stable until parturition, implying that PRL3B1 peptide production or secretion was suppressed. We hypothesized that production of the PRL family, the 25 paralogous PRL proteins exclusively expressed in mice placenta, would decrease alongside PRL3B1 during this period. To investigate this hypothesis and to seek proteomic changes, we performed a shotgun proteome analysis of the placental tissue using data-independent acquisition mass spectrometry (DIA-MS). Up to 5,891 proteins were identified, including 17 PRL family members. Relative quantitative analysis between embryonic day 17 (E17) and E18 placentas showed no significant difference in the expression of PRL3B1 and most PRL family members except PRL7C1. These results suggest that PRL3B1 secretion from the placenta is suppressed at G18 (E18).


Asunto(s)
Ratones Endogámicos C57BL , Hipófisis , Placenta , Prolactina , Animales , Embarazo , Femenino , Prolactina/sangre , Prolactina/metabolismo , Placenta/metabolismo , Hipófisis/metabolismo , Ratones , Lactógeno Placentario/metabolismo , Lactógeno Placentario/genética , Progesterona/sangre , Progesterona/metabolismo
3.
Biomolecules ; 14(3)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38540761

RESUMEN

Protein phosphatases are primarily responsible for dephosphorylation modification within signal transduction pathways. Phosphatase of regenerating liver-3 (PRL-3) is a dual-specific phosphatase implicated in cancer pathogenesis. Understanding PRL-3's intricate functions and developing targeted therapies is crucial for advancing cancer treatment. This review highlights its regulatory mechanisms, expression patterns, and multifaceted roles in cancer progression. PRL-3's involvement in proliferation, migration, invasion, metastasis, angiogenesis, and drug resistance is discussed. Regulatory mechanisms encompass transcriptional control, alternative splicing, and post-translational modifications. PRL-3 exhibits selective expressions in specific cancer types, making it a potential target for therapy. Despite advances in small molecule inhibitors, further research is needed for clinical application. PRL-3-zumab, a humanized antibody, shows promise in preclinical studies and clinical trials. Our review summarizes the current understanding of the cancer-related cellular function of PRL-3, its prognostic value, and the research progress of therapeutic inhibitors.


Asunto(s)
Neoplasias , Transducción de Señal , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Proteínas Tirosina Fosfatasas/metabolismo , Procesamiento Proteico-Postraduccional , Fosfoproteínas Fosfatasas , Línea Celular Tumoral
4.
Genesis ; 62(1): e23585, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38124435

RESUMEN

The placenta plays a pivotal role in the maintenance of normal pregnancy, but how it forms, matures, and performs its function remains poorly understood. Here, we describe a novel mouse line (Prl3d1-iCre) that expresses iCre recombinase under the control of the endogenous prl3d1 promoter. Prl3d1 has been proposed as a marker for distinguishing trophoblast giant cells (TGCs) from other trophoblast cells in the placenta. The in vivo efficiency and specificity of the Cre line were analyzed by interbreeding Prl3d1-iCre mice with B6-G/R reporter mice. Through anatomical studies of the placenta and other tissues of Prl3d1-iCre/+; B6-G/R mouse mice, we found that the tdTomato signal was expressed in parietal trophoblast giant cells (P-TGCs). Thus, we report a mouse line with ectopic Cre expression in P-TGCs, which provides a valuable tool for studying human pathological pregnancies caused by implantation failure or abnormal trophoblast secretion due to aberrant gene regulation.


Asunto(s)
Placenta , Proteína Fluorescente Roja , Trofoblastos , Animales , Femenino , Ratones , Embarazo , Células Gigantes/metabolismo , Integrasas/genética , Integrasas/metabolismo , Ratones Transgénicos , Placenta/metabolismo
5.
Mol Ther Oncolytics ; 30: 153-166, 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37674627

RESUMEN

Phosphatase of regenerating liver 3 (PRL3) is a specific tumor antigen overexpressed in a broad range of adult cancer types. However, its physiological expression in pediatric embryonal and mesenchymal tumors and its association with clinical outcomes in children is unknown. We sought to profile the expression of PRL3 in pediatric tumors in relation to survival outcomes, expression of angiogenesis markers, and G-protein-coupled receptor (GPCR)-mitogen-activated protein kinase (MAPK) signaling targets. PRL3-zumab, a first-in-class humanized antibody, was administered in a dose escalation schedule in a first-in-child clinical trial to study toxicity, pharmacokinetics, and clinical outcomes. Among 64 pediatric tumors, PRL3 was most frequently expressed in neuroblastoma (100%), rhabdomyosarcoma and non-rhabdomyosarcoma soft tissue sarcomas (71%), and renal sarcomas (60%) but absent in paired normal tissues. PRL3 was expressed in 75% of relapsed tumors and associated with shorter median event-free survival. Microarray profiling of PRL3-positive tumors showed elevation of angiogenin, TIMP1 and TIMP2, and GPCR-MAPK signaling proteins that commonly interacted with PRL3. The first use of PRL3-zumab in a pediatric patient saw no adverse events. A 28.6% reduction in maximum target lesion diameter was achieved when PRL3-zumab was administered concurrently with hypofractionated radiation. These findings support wider exploration of PRL3 expression in embryonal and mesenchymal tumors and further clinical application of PRL3-zumab in pediatric patients.

6.
J Cancer ; 14(13): 2585-2595, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37670977

RESUMEN

Background: Colon cancer is the one of leading causes of cancer-related death. Chemotherapy, radiotherapy and immunotherapy will be the mainstream in inoperable advanced cancer in clinics. Precision treatment is still lack in colon cancer. Materials and Methods: We developed a series of mAbs targeting PRL-3 through different types of immunogens. The binding domains of mAbs were identified through the ELISA and Western blotting experiments. The antitumor activity of mAbs was verified by cell proliferation, migration and invasion experiments. Xenograft subcutaneous and metastatic models and patient derived Xenograft (PDX) model were established. Results: mAb 12G12 targeting 77-120AA exhibited inhibition in migration and invasion experiments. 12G12 inhibited the migration of multiple types of cancer cells, including colon cancer, gastric cancer, esophagus cancer, liver cancer, lung cancer and pancreatic cancer cells. 12G12 decreased the tumor growth and metastasis in Xenograft subcutaneous and metastatic tumor model, respectively. The antitumor activity of mAb 12G12 was also confirmed in PDX model of gastric cancer. PRL-3 interacted with Golgi protein TMED10. Knockdown of TMED10 expression attenuated the cell migration triggered by purified GST-PRL-3 protein. Conclusion: Our results confirmed the antitumor activity of mAb 12G12 in colorectal adenocarcinoma and provided a new potential targeted therapy of colon cancer.

7.
J Gastrointest Oncol ; 14(2): 863-873, 2023 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-37201051

RESUMEN

Background: Hepatocellular carcinoma (HCC) is the leading cause of mortality worldwide. Phosphatase regenerating liver 3 (PRL-3) was associated with cancer metastasis. However, the significance of PRL-3 in the prognosis of HCC remains elusive. The aim of this study was to elucidate the role of PRL-3 in HCC metastasis and its prognosis. Methods: The expressions of PRL-3 in cancer tissues isolated from 114 HCC patients, who underwent curative hepatectomy from May to November in 2008, were analyzed by immunohistochemistry, and its prognostic significance was evaluated. Thereafter, the migration, invasion, and metastatic alterations in MHCC97H cells with PRL-3 overexpression or knockdown were explored and compared with the tumor size and lung metastasis in orthotopic HCC model of nude mice derived from MHCC97H cells with PRL-3 overexpression or knockdown. The underlying mechanism involving PRL-3-mediated effect on HCC migration, invasion, and metastasis was further examined. Results: Univariate and multivariate analysis demonstrated PRL-3 overexpression was an independent prognostic factor for poor overall survival (OS) and progression-free survival (PFS) of the HCC patients. Increased PRL-3 expression in MHCC97H cells was in accordance with the enhanced metastasis potential. PRL-3 knockdown inhibited the migration, invasiveness, and clone forming ability in MHCC97H cells, whereas PRL-3 overexpression reverted the above behavior. The growth of xenograft tumor in the liver was suppressed, and the lung metastasis in nude mice was inhibited by PRL-3 downregulation. The knockdown of PRL-3 could downregulate the expressions of Integrinß1 and p-Src (Tyr416), p-Erk (Thr202/Tyr204) activation, and reduce MMP9 expression. Both MEK1/2 inhibitor (U0126) and Src inhibitor could repress PRL-3-induced invasiveness and migration in MHCC97H cells. Conclusions: PRL-3 was significantly overexpressed and an independent prognostic factor to predict the death of HCC patients. Mechanically, PRL-3 plays a critical role in HCC invasive and metastasis via Integrinß1/FAK-Src/RasMAPK signaling. Validation of PRL-3 as a clinical prediction marker in HCC warrants further research.

8.
Theranostics ; 13(6): 1876-1891, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37064866

RESUMEN

Phosphatase of Regenerating Liver-3 (PRL3) was discovered in 1998 and was subsequently found to be correlated with cancer progression and metastasis in 2001. Extensive research in the past two decades has produced significant findings on PRL3-mediated cancer signaling and functions, as well as its clinical relevance in diverse types of cancer. PRL3 has been established to play a role in many cancer-related functions, including but not limited to metastasis, proliferation, and angiogenesis. Importantly, the tumor-specific expression of PRL3 protein in multiple cancer types has made it an attractive therapeutic target. Much effort has been made in developing PRL3-targeted therapy with small chemical inhibitors against intracellular PRL3, and notably, the development of PRL3-zumab as a novel cancer immunotherapy against PRL3. In this review, we summarize the current understanding of the role of PRL3 in cancer-related cellular functions, its prognostic value, as well as perspectives on PRL3 as a target for unconventional immunotherapy in the clinic with PRL3-zumab.


Asunto(s)
Neoplasias , Transducción de Señal , Línea Celular Tumoral , Inmunoterapia , Regulación Neoplásica de la Expresión Génica , Neoplasias/terapia
9.
Mol Cancer ; 22(1): 69, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-37032358

RESUMEN

BACKGROUND: Extranodal natural killer/T-cell lymphoma (NKTL) is an aggressive type of non-Hodgkin lymphoma with dismal outcome. A better understanding of disease biology and key oncogenic process is necessary for the development of targeted therapy. Super-enhancers (SEs) have been shown to drive pivotal oncogenes in various malignancies. However, the landscape of SEs and SE-associated oncogenes remain elusive in NKTL. METHODS: We used Nano-ChIP-seq of the active enhancer marker histone H3 lysine 27 acetylation (H3K27ac) to profile unique SEs NKTL primary tumor samples. Integrative analysis of RNA-seq and survival data further pinned down high value, novel SE oncogenes. We utilized shRNA knockdown, CRISPR-dCas9, luciferase reporter assay, ChIP-PCR to investigate the regulation of transcription factor (TF) on SE oncogenes. Multi-color immunofluorescence (mIF) staining was performed on an independent cohort of clinical samples. Various function experiments were performed to evaluate the effects of TOX2 on the malignancy of NKTL in vitro and in vivo. RESULTS: SE landscape was substantially different in NKTL samples in comparison with normal tonsils. Several SEs at key transcriptional factor (TF) genes, including TOX2, TBX21(T-bet), EOMES, RUNX2, and ID2, were identified. We confirmed that TOX2 was aberrantly overexpressed in NKTL relative to normal NK cells and high expression of TOX2 was associated with worse survival. Modulation of TOX2 expression by shRNA, CRISPR-dCas9 interference of SE function impacted on cell proliferation, survival and colony formation ability of NKTL cells. Mechanistically, we found that RUNX3 regulates TOX2 transcription by binding to the active elements of its SE. Silencing TOX2 also impaired tumor formation of NKTL cells in vivo. Metastasis-associated phosphatase PRL-3 has been identified and validated as a key downstream effector of TOX2-mediated oncogenesis. CONCLUSIONS: Our integrative SE profiling strategy revealed the landscape of SEs, novel targets and insights into molecular pathogenesis of NKTL. The RUNX3-TOX2-SE-TOX2-PRL-3 regulatory pathway may represent a hallmark of NKTL biology. Targeting TOX2 could be a valuable therapeutic intervene for NKTL patients and warrants further study in clinic.


Asunto(s)
Transformación Celular Neoplásica , Linfoma Extranodal de Células NK-T , Humanos , Transformación Celular Neoplásica/metabolismo , Oncogenes , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , ARN Interferente Pequeño/metabolismo , Células Asesinas Naturales/patología , Línea Celular Tumoral , Proteínas HMGB/genética , Proteínas HMGB/metabolismo
10.
Front Biosci (Landmark Ed) ; 27(10): 286, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36336860

RESUMEN

BACKGROUND: It has been reported that ubiquitin specific peptidase 4 (USP4) was functional in several tumors, but its function and mechanism in gastric cancer were still unknown. METHODS: Bioinformatic tools were used to predict the prognosis of gastric cancer patients and the expression levels of USP4 in gastric cancer. Quantitative real-time polymerase chain reaction (qRT-PCR) and immunoblotting were carried out to detect the messenger RNA (mRNA) and protein levels. Cell viability of gastric cancer was evaluated by Cell Counting Kit-8 (CCK-8) assay. Cell line-derived xenograft models were established to evaluate the tumor growth of gastric cancer. Luciferase assay and immunoblotting were used to determine the activation of nuclear factor kappa B (NF-κB) signaling. RESULTS: The public database Kaplan-Meier Plotter showed that gastric cancer patients with high USP4 expression had a shorter overall survival or post-progression survival than the patients with decreased USP4. Further studies indicated that USP4 was elevated in gastric cancer tumor tissues. In contrast, knockdown of USP4 markedly inhibited gastric cancer cell growth, and suppressed the tumor growth of gastric cancer. Further studies revealed that USP4 knockdown significantly suppressed NF-κB-driven luciferase activity, and inhibited the phosphorylation of NF-κB p65 in gastric cancer cells. Additionally, qRT-PCR analysis showed that USP4 knockdown significantly downregulated the expressions of cyclin D2 (CCND2) and B cell leukemia/lymphoma 2 (BCL2). We also found that USP4 knockdown decreased the expressions of phosphatase of regenerating liver-3 (PRL-3), in contrast, overexpression of PRL-3 attenuated the inhibitory effects of USP4 knockdown on NF-κB signaling and cell viability in gastric cancer cells. Finally, PR-619, which has been proven to inhibit the activities of USP4 and other deubiquitinases, could inhibit cell viability and NF-κB signaling in gastric cancer cells. CONCLUSIONS: This study indicated that elevated USP4 predicted a poor index for gastric cancer patients, and mediated gastric cancer cell growth by regulating PRL-3/NF-κB signaling, which suggested USP4 may be a novel therapeutic target for gastric cancer.


Asunto(s)
FN-kappa B , Neoplasias Gástricas , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Neoplasias Gástricas/patología , Línea Celular Tumoral , Proteínas Oncogénicas , Enzimas Desubicuitinizantes , Proliferación Celular/genética , Proteasas Ubiquitina-Específicas/genética
11.
Front Oncol ; 12: 878639, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35574414

RESUMEN

Objective: To evaluate the clinical correlation of epithelial-mesenchymal transition (EMT) with PRL-3 and MMP9 expression in the circulating tumor cells (CTCs) of patients with colorectal cancer (CRC). Materials and Methods: Between January 2016 and December 2018, the EMT phenotype-based subsets of CTCs and the expression levels of PRL-3 and MMP9 in CTCs were identified, and their clinical values in 172 patients were evaluated. The CTCs were isolated, classified, and counted using the CanPatrol™ CTC filtration system. The CTC subsets (epithelial cells, mesenchymal cells and biphenotypic cells), as well as PRL-3 and MMP9 expression, were detected by RNA in situ hybridization. Results: CTCs were detected in 93.0% (160/172) of the included patients with CRC. Positive PRL-3 and MMP9 expression in CTC and M-CTC was found in 75.0% (102/136) and 80.8% (97/120) of the patients, respectively. The proportion of patients with positive PRL-3 and MMP9 expression in M-CTC was significantly associated with distant metastasis (p<0.05). The patients with ≥6 CTCs tended to show poorer progression-free survival (PFS) and overall survival (OS) rates (p=0.016, 0.02, respectively), and the patients with ≥3 M-CTC also showed poor PFS (p=0.0013). Additionally, the patients with positive PRL-3 and MMP9 expression in CTCs had significantly poorer PFS (p=0.0024) and OS (p=0.095) than the patients with negative PRL-3 and MMP9 expression. Multivariate Cox analysis uncovered that positive PRL-3 and MMP9 expression in CTCs may be an independent prognostic factor for worse PFS. Conclusion: EMT phenotypes and CTC numbers can be used as prognostic indicators for metastasis and survival in patients with CRC, and the combination of PRL-3 and MMP9 expression in CTCs is a promising clinical marker for patients with CRC.

12.
Bioengineered ; 13(2): 4112-4121, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35098869

RESUMEN

PRL-3 is a tyrosine phosphatase linked with tumor metastasis. It is detected high expression in different kinds of cancers, including colorectal, gastric, ovarian, and liver cancer. Its high expression is positively correlated with the progression of tumors and negatively with survivals of patients. However, the detailed mechanism underlying PRL-3 in tumor metastasis still remains unclear. In the present study, we found that PRL-3 is able to bind to ß3-tubulin in pull-down and co-immunoprecipitation assays. Furthermore, overexpression of PRL-3 dephosphorylated ß3-tubulin, a component of cytoskeleton, which plays critical role in cell shape formation and migration. Using cell wound healing and matrigel invasion assays, we found that PRL-3 could promote the migration and invasion of glioma cells. Taken together, our study revealed that PRL-3 may be involved in migration and invasion of glioma by dephosphorylating ß3-tubulin. It is tempting to speculate that dephosphorylation of ß3-tubulin by PRL-3 results in assembly of the cytoskeleton and facilitates cell migration and/or tumor metastasis.


Asunto(s)
Glioma , Invasividad Neoplásica/genética , Proteínas de Neoplasias/genética , Proteínas Tirosina Fosfatasas/genética , Tubulina (Proteína)/genética , Línea Celular Tumoral , Movimiento Celular , Glioma/genética , Glioma/patología , Humanos
13.
Free Radic Biol Med ; 177: 72-87, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34662712

RESUMEN

Hypoxia within the tumor microenvironment, which leads to excessive ROS and genomic instability, is one of the hallmarks of cancer, contributing to self-renewal capability, metastasis, and radio-chemotherapy resistance. PRL-3 is an oncoprotein involved in various pro-survival signaling pathways, such as Ras/Erk, PI3K/Akt, Src/STAT, mTORC1 and JAK/STAT. However, there is little evidence connecting PRL-3-mediated apoptosis resistance to tumor microenvironmental stress. In this study, by profiling the PRL-3 expression of multiple tumor types retrieved from public databases (TCGA and NCBI GEO), we confirmed the oncogenic function of PRL-3 and found an intriguing connection between PRL-3 expression and tumor hypoxia signature genes. Moreover, by using CoCl2, a hypoxia mimetic and ROS inducer, we discovered that cells stably expressing PRL-3, but not catalytically-inactive mutant PRL-3 C104S, showed significant resistance to CoCl2 -induced apoptosis. This resistance to apoptosis was found to depend on p38 MAPK signaling and was further confirmed in other conditions of microenvironmental stress, including UV, H2O2 and hypoxia. Mechanistically, we proved that PRL-3 is a direct phosphatase of p38 MAPK under stressed conditions. Additionally, in mouse models of tumor metastasis, higher lung metastatic burden and lower p38 MAPK phosphorylation were found in mice seeded with GFP-PRL-3 expressing cells compared with those seeded with GFP-Ctrl cells. Taken together, our study identified a critical role of RPL-3 in tumorigenesis by negatively regulating p38 MAPK activity in order to facilitate tumor cell adaptation to a hypoxic stressed tumor microenvironment and suggests that PRL-3 could serve as a promising novel therapeutic target for cancer patients.


Asunto(s)
Supervivencia Celular , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos , Animales , Hipoxia de la Célula , Humanos , Peróxido de Hidrógeno , Ratones , Fosforilación , Microambiente Tumoral , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
14.
Biochem Biophys Res Commun ; 576: 108-116, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34482023

RESUMEN

Ras-related GTP binding (Rag) GTPases are required to activate mechanistic target of rapamycin complex 1 (mTORC1), which plays a central role in cell growth and metabolism and is considered as one of the most important oncogenic pathways. Therefore, Rag GTPases have been speculated to play a pro-cancer role via mTOR induction. However, aside from stimulation of mTOR signaling, firm links connecting Rag GTPase activity and their downstream effectors with cancer progression, remain largely unreported. In this study, we reported a novel link between RagB/C and a known oncoprotein phosphatase of regenerating liver-3 (PRL-3) by screening 22 pairs of tumors and their adjacent normal tissues from gastric, liver and lung cancers, and validating our findings in cancer cell lines with ectopic RagB/C expression. RagB/C was found to enhance PRL-3 stability by modulating two major cellular protein degradation pathways: lysosomal-autophagy and ubiquitin-proteasome system (UPS). Functionally, we identified the correlation between RagB/C expression with poor clinical outcomes in breast or colon cancer patients who also showed low PRL-3 mRNA expression from data retrieved from TCGA datasets, highlighting the potential relevance of Rag GTPase and PRL-3 mRNA in combination as a prognostic clinical biomarker.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Proteínas de Neoplasias/antagonistas & inhibidores , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Línea Celular Tumoral , Biología Computacional , Bases de Datos Genéticas , Humanos , Proteínas de Unión al GTP Monoméricas/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Pronóstico , Unión Proteica , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Proteolisis , Transducción de Señal , Tasa de Supervivencia
15.
J Mol Med (Berl) ; 99(10): 1413-1426, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34129057

RESUMEN

Expression of the phosphatase of regenerating liver-3 (PRL-3) is known to promote tumor growth in gastrointestinal adenocarcinomas, and the incidence of tumor formation upon inflammatory events correlates with PRL-3 levels in mouse models. These carcinomas and their onset are associated with the impairment of intestinal cell homeostasis, which is regulated by a balanced number of Paneth cells and Lgr5 expressing intestinal stem cells (Lgr5+ ISCs). Nevertheless, the consequences of PRL-3 overexpression on cellular homeostasis and ISC fitness in vivo are unexplored. Here, we employ a doxycycline-inducible PRL-3 mouse strain to show that aberrant PRL-3 expression within a non-cancerous background leads to the death of Lgr5+ ISCs and to Paneth cell expansion. A higher dose of PRL-3, resulting from homozygous expression, led to mice dying early. A primary 3D intestinal culture model obtained from these mice confirmed the loss of Lgr5+ ISCs upon PRL-3 expression. The impaired intestinal organoid formation was rescued by a PRL inhibitor, providing a functional link to the observed phenotypes. These results demonstrate that elevated PRL-3 phosphatase activity in healthy intestinal epithelium impairs intestinal cell homeostasis, which correlates this cellular mechanism of tumor onset with PRL-3-mediated higher susceptibility to tumor formation upon inflammatory or mutational events.Key messages• Transgenic mice homozygous for PRL-3 overexpression die early.• PRL-3 heterozygous mice display disrupted intestinal self-renewal capacity.• PRL-3 overexpression alone does not induce tumorigenesis in the mouse intestine.• PRL-3 activity leads to the death of Lgr5+ ISCs and Paneth cell expansion.• Impairment of cell homeostasis correlates PRL-3 action with tumor onset mechanisms.


Asunto(s)
Homeostasis/fisiología , Proteínas Inmediatas-Precoces/metabolismo , Mucosa Intestinal/metabolismo , Intestinos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Modelos Animales de Enfermedad , Femenino , Humanos , Mucosa Intestinal/patología , Intestinos/patología , Masculino , Ratones , Ratones Transgénicos , Organoides/metabolismo , Organoides/patología , Células de Paneth/metabolismo , Células de Paneth/patología , Transducción de Señal/fisiología , Células Madre/metabolismo , Células Madre/patología
16.
Bioorg Med Chem Lett ; 41: 127981, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33766767

RESUMEN

Increasing evidences demonstrated that PRL-3 was associated with metastatic potential in a variety of cancers including CRC, gastric cancer, ovarian cancer and so on. PRL-3 knock down inhibited the development of metastasis by reducing the size of primary tumors and inhibiting the invasion and growth of cancer cells. Therefore, PRL-3 is a promising diagnostic marker and therapeutic target in tumors. So far, only several PRL-3 inhibitors have been reported. In this study, six rhodanine derivatives were synthesized and characterized. The compounds were evaluated against tyrosine phosphatase PRL-3. Among these compounds, 5-(5-chloro-2-(trifluoromethyl)benzylidene)-2-thioxothiazolidin-4-one (4) could effectively inhibit PRL-3 with IC50 value of 15.22 µM. Fluorescent assays suggested compound 4 tightly bound to tyrosine phosphatase PRL-3 with the molar ratio of 1:1, and the binding constant of 1.74 × 106 M-1. Compound 4 entered into SW-480 cells, selectively inhibited the expression of PRL-3 and increased the phosphorylation of PRL-3 substrates, and decreased the survival rate of SW-480 cells with IC50 of 6.64 µM and induced apoptosis. The results revealed that compound 4 is a dual functional inhibitor against the activity and expression of PRL-3 and a promising anti-cancer candidate targeting PRL-3.


Asunto(s)
Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Proteínas de Neoplasias/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas/antagonistas & inhibidores , Rodanina/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Rodanina/síntesis química , Rodanina/química , Relación Estructura-Actividad
17.
J Surg Oncol ; 123(1): 42-51, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33179291

RESUMEN

OBJECTIVES: To evaluate the relationship between phosphatase of regenerating liver 3 (PRL3) expression and clinical outcome in colorectal cancer (CRC). BACKGROUND: PRL3, a protein tyrosine phosphatase functions as one of the key regulatory enzymes of various signal transduction pathways. PRL3 is highly expressed in a majority of cancers and is a novel potential therapeutic target. METHODS: PRL3 expression was evaluated by immunohistochemistry in 167 patients with CRC, 37 patients with no disease, and 26 patients with metastatic CRC (mCRC). Phosphorylated Akt at serine 473 (p-Akt S473) expression was also evaluated by immunohistochemistry in mCRC patients. RESULTS: High expression of PRL3 was correlated with CRC progression, and every one unit increase in PRL3 level contributed to an increase in the rate of death by 1%-1.7%. PRL3 expression was significantly higher in liver metastases compared with primary tumors and showed a significant positive correlation with the expression level of p-Akt S473. CONCLUSION: PRL3 expression levels associated with CRC progression and metastasis, and positively correlated with activated Akt level in mCRC. Together, these findings indicated that PRL3 might be a potential marker for increased risk of CRC-specific tumor burden and identify PRL3 as an attractive therapeutic target for mCRC treatment.


Asunto(s)
Adenocarcinoma/patología , Biomarcadores de Tumor/metabolismo , Carcinoma de Células en Anillo de Sello/patología , Neoplasias Colorrectales/patología , Proteínas de Neoplasias/metabolismo , Recurrencia Local de Neoplasia/patología , Proteínas Tirosina Fosfatasas/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/terapia , Anciano , Carcinoma de Células en Anillo de Sello/metabolismo , Carcinoma de Células en Anillo de Sello/terapia , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/terapia , Terapia Combinada , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Masculino , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/terapia , Pronóstico , Estudios Retrospectivos , Tasa de Supervivencia
18.
Cancer Lett ; 501: 105-113, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33290866

RESUMEN

Many cell signaling pathways are activated or deactivated by protein tyrosine phosphorylation and dephosphorylation, catalyzed by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), respectively. Even though PTPs are as important as PTKs in this process, their role has been neglected for a long time. Multiple myeloma (MM) is a cancer of plasma cells, which is characterized by production of monoclonal immunoglobulin, anemia and destruction of bone. MM is still incurable with high relapse frequency after treatment. In this review, we highlight the PTPs that were previously described in MM or have a role that can be relevant in a myeloma context. Our purpose is to show that despite the importance of PTPs in MM pathogenesis, many unanswered questions in this field need to be addressed. This might help to detect novel treatment strategies for MM patients.


Asunto(s)
Mieloma Múltiple/enzimología , Proteínas Tirosina Fosfatasas/metabolismo , Animales , Humanos
19.
Theranostics ; 10(22): 10345-10359, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32929353

RESUMEN

Background: In addition to protein tyrosine kinases, accumulating evidence has shown that protein tyrosine phosphatases (PTPs) are suitable therapeutic targets in cancer. PRL-3 is a PTP member that has been well studied in many malignant tumours. The goal of the present study was to elucidate the role of PRL-3 in hepatocellular carcinoma (HCC), which remains largely unknown. Methods: Bioinformatic and immunohistochemical analyses were performed to analyse PRL-3 expression in HCC tissue samples and determine its clinical relevance. PRL-3 gene copy number variations were evaluated by bioinformatic analysis and quantitative-genomic polymerase chain reaction. The biological functions of PRL-3 were investigated in vivo and vitro. Gene microarray assays, RT-qPCR, western blotting and luciferase experiments were performed to identify the downstream effectors of PRL-3 that mediate its functions in HCC. Results: PRL-3 expression was upregulated in HCC samples from public databases and in cohort samples from our centre. High PRL-3 expression was associated with poor prognosis. Copy number gains and amplification of chromosome 8q24.3 in HCC were determined to be positively correlated with the PRL-3 overexpression. PRL-3 overexpression promoted HCC cell proliferation, migration and adhesion, while its loss had the opposite effects. Further study showed that focal adhesion kinase (FAK) was co-amplified and co-expressed with PRL-3 in HCC. Interestingly, PRL-3 also promoted the phosphorylation of FAK, which subsequently mediated the oncogenic functions of PRL-3 in HCC cells. Moreover, TGFB1 was identified as a downstream molecule of PRL-3. TGF-ß signalling was shown to mediate the PRL-3-induced activation of FAK. Furthermore, the p38 and PI3K/AKT pathways were observed to mediate the PRL-3-induced expression of TGFB1 and the subsequent activation of FAK, while the activation of FAK in turn stimulated activation of the p38 and PI3K/AKT pathways, forming a PRL-3-triggered AKT/p38/TGFB1/FAK positive feedback loop. Conclusion: Collectively, our findings indicate that the PTP PRL-3 plays a crucial role in the progression of HCC and provides an example of how co-amplified genes work together in HCC.


Asunto(s)
Carcinoma Hepatocelular/genética , Quinasa 1 de Adhesión Focal/genética , Neoplasias Hepáticas/genética , Proteínas de Neoplasias/genética , Proteínas Tirosina Fosfatasas/genética , Animales , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Variaciones en el Número de Copia de ADN/genética , Progresión de la Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Hepáticas/patología , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Oncogenes/genética , Fosfatidilinositol 3-Quinasas/genética , Fosforilación/genética , Pronóstico , Transducción de Señal/genética , Regulación hacia Arriba/genética
20.
Dev Cell ; 54(3): 317-332.e9, 2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32652076

RESUMEN

Melanocytes, replenished throughout life by melanocyte stem cells (MSCs), play a critical role in pigmentation and melanoma. Here, we reveal a function for the metastasis-associated phosphatase of regenerating liver 3 (PRL3) in MSC regeneration. We show that PRL3 binds to the RNA helicase DDX21, thereby restricting productive transcription by RNAPII at master transcription factor (MITF)-regulated endolysosomal vesicle genes. In zebrafish, this mechanism controls premature melanoblast expansion and differentiation from MSCs. In melanoma patients, restricted transcription of this endolysosomal vesicle pathway is a hallmark of PRL3-high melanomas. Our work presents the conceptual advance that PRL3-mediated control of transcriptional elongation is a differentiation checkpoint mechanism for activated MSCs and has clinical relevance for the activity of PRL3 in regenerating tissue and cancer.


Asunto(s)
Diferenciación Celular/genética , ARN Helicasas DEAD-box/metabolismo , Melanocitos/citología , Melanoma/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Animales , ARN Helicasas DEAD-box/genética , Regulación del Desarrollo de la Expresión Génica , Humanos , Melanoma/genética , Factor de Transcripción Asociado a Microftalmía/genética , Mutación , Proteínas de Neoplasias/genética , Proteínas Tirosina Fosfatasas/genética , Células Madre/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA