Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Viruses ; 16(8)2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39205314

RESUMEN

The intrinsically disordered polyglutamine-binding protein 1 (PQBP1) has been linked to various cellular processes including transcription, alternative splicing, translation and innate immunity. Mutations in PQBP1 are causative for neurodevelopmental conditions collectively termed as the Renpenning syndrome spectrum. Intriguingly, cells of Renpenning syndrome patients exhibit a reduced innate immune response against human immunodeficiency virus 1 (HIV-1). PQBP1 is responsible for the initiation of a two-step recognition process of HIV-1 reverse-transcribed DNA products, ensuring a type 1 interferon response. Recent investigations revealed that PQBP1 also binds to the p17 protein of avian reovirus (ARV) and is affected by the ORF52 of Kaposi's sarcoma-associated herpesvirus (KSHV), possibly also playing a role in the innate immune response towards these RNA- and DNA-viruses. Moreover, PQBP1-mediated microglia activation in the context of tauopathies has been reported, highlighting the role of PQBP1 in sensing exogenous pathogenic species and innate immune response in the central nervous system. Its unstructured nature, the promiscuous binding of various proteins and its presence in various tissues indicate the versatile roles of PQBP1 in cellular regulation. Here, we systematically review the available data on the structure of PQBP1 and its cellular functions and interactome, as well as possible implications for innate immune responses and neurodegenerative disorders.


Asunto(s)
Inmunidad Innata , Humanos , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/inmunología , Unión Proteica , Proteínas Portadoras/metabolismo , Proteínas Portadoras/inmunología , Proteínas Portadoras/genética , VIH-1/inmunología , VIH-1/genética , Interacciones Huésped-Patógeno/inmunología
2.
Adv Sci (Weinh) ; 11(15): e2306229, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38342602

RESUMEN

Splicing factor polyglutamine binding protein-1 (PQBP1) is abundantly expressed in the central nervous system during development, and mutations in the gene cause intellectual disability. However, the roles of PQBP1 in cancer progression remain largely unknown. Here, it is shown that PQBP1 overexpression promotes tumor progression and indicates worse prognosis in ovarian cancer. Integrative analysis of spyCLIP-seq and RNA-seq data reveals that PQBP1 preferentially binds to exon regions and modulates exon skipping. Mechanistically, it is shown that PQBP1 regulates the splicing of genes related to the apoptotic signaling pathway, including BAX. PQBP1 promotes BAX exon 2 skipping to generate a truncated isoform that undergoes degradation by nonsense-mediated mRNA decay, thus making cancer cells resistant to apoptosis. In contrast, PQBP1 depletion or splice-switching antisense oligonucleotides promote exon 2 inclusion and thus increase BAX expression, leading to inhibition of tumor growth. Together, the results demonstrate an oncogenic role of PQBP1 in ovarian cancer and suggest that targeting the aberrant splicing mediated by PQBP1 has therapeutic potential in cancer treatment.


Asunto(s)
Discapacidad Intelectual , Neoplasias Ováricas , Femenino , Humanos , Proteína X Asociada a bcl-2/genética , Proteínas de Unión al ADN/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Neoplasias Ováricas/genética , Empalme del ARN/genética , Factores de Empalme de ARN/genética
3.
Virus Res ; 332: 199119, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37201645

RESUMEN

Avian reovirus (ARV) can commonly infect a flock and cause immunosuppressive diseases in poultry. The nonstructural protein p17 is involved in viral replication, and significant progress has been made in showing its ability to regulate cellular signaling pathways. In our previous study, to further investigate the effect of ARV p17 protein on viral replication, the host protein polyglu-tamine binding protein 1 (PQBP1) was identified to interact with p17 by a yeast two-hybrid system. In the current study, the interaction between PQBP1 and p17 protein was further confirmed by laser confocal microscopy and coimmunoprecipitation assays. In addition, the N-terminal WWD of PQBP1 was found to mediate the process of binding to the p17 protein. Interestingly, we found that ARV infection significantly inhibited PQBP1 expression. While the quantity of ARV replication was largely influenced by PQBP1, PQBP1 overexpression decreased ARV replication. In contrast, upon PQBP1 knockdown, the quantity of ARV was notably increased. ARV infection and p17 protein expression were both proven to induce PQBP1 to mediate cellular inflammation. In the current study, we revealed through qRT‒PCR, ELISA and Western blotting methods that PQBP1 plays a positive role in ARV-induced inflammation. Furthermore, the mechanism of this process was shown to involve the NFκB-dependent transcription of inflammatory genes. In addition, PQBP1 was shown to regulate the phosphorylation of p65 protein. In conclusion, this research provides clues to elucidating the function of the p17 protein and the pathogenic mechanism of ARV, especially the cause of the inflammatory response. It also provides new ideas for the study of therapeutic targets of ARV.


Asunto(s)
Orthoreovirus Aviar , Proteínas Virales , Animales , Chlorocebus aethiops , Proteínas Virales/metabolismo , Orthoreovirus Aviar/genética , Células Vero , Replicación Viral , Línea Celular
4.
Cell Rep ; 42(3): 112277, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36943865

RESUMEN

The balance between cell proliferation and differentiation is essential for maintaining the neural progenitor pool and brain development. Although the mechanisms underlying cell proliferation and differentiation at the transcriptional level have been studied intensively, post-transcriptional regulation of cell proliferation and differentiation remains largely unclear. Here, we show that deletion of the alternative splicing regulator PQBP1 in striatal progenitors results in defective striatal development due to impaired neurogenesis of spiny projection neurons (SPNs). Pqbp1-deficient striatal progenitors exhibit declined proliferation and increased differentiation, resulting in a reduced striatal progenitor pool. We further reveal that PQBP1 associates with components in splicing machinery. The alternative splicing profiles identify that PQBP1 promotes the exon 9 inclusion of Numb, a variant that mediates progenitor proliferation. These findings identify PQBP1 as a regulator in balancing striatal progenitor proliferation and differentiation and provide alternative insights into the pathogenic mechanisms underlying Renpenning syndrome.


Asunto(s)
Empalme Alternativo , Neurogénesis , Empalme Alternativo/genética , Diferenciación Celular , Proliferación Celular , Empalme del ARN , Proteínas de Unión al ADN/metabolismo
5.
Biochem Soc Trans ; 51(1): 363-372, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36815699

RESUMEN

Mutations in the polyglutamine tract-binding protein 1 (PQBP1) gene are associated with Renpenning syndrome, which is characterized by microcephaly, intellectual deficiency, short stature, small testes, and distinct facial dysmorphism. Studies using different models have revealed that PQBP1 plays essential roles in neural development and function. In this mini-review, we summarize recent findings relating to the roles of PQBP1 in these processes, including in the regulation of neural progenitor proliferation, neural projection, synaptic growth, neuronal survival, and cognitive function via mRNA transcription and splicing-dependent or -independent processes. The novel findings provide insights into the mechanisms underlying the pathogenesis of Renpenning syndrome and may advance drug discovery and treatment for this condition.


Asunto(s)
Parálisis Cerebral , Discapacidad Intelectual , Discapacidad Intelectual Ligada al Cromosoma X , Humanos , Proteínas Portadoras/química , Discapacidad Intelectual Ligada al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/patología , Mutación , Parálisis Cerebral/genética , Parálisis Cerebral/patología , Discapacidad Intelectual/genética , Proteínas de Unión al ADN/genética
6.
Mol Cell ; 82(15): 2871-2884.e6, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35809572

RESUMEN

We have previously described polyglutamine-binding protein 1 (PQBP1) as an adapter required for the cyclic GMP-AMP synthase (cGAS)-mediated innate response to the human immunodeficiency virus 1 (HIV-1) and other lentiviruses. Cytoplasmic HIV-1 DNA is a transient and low-abundance pathogen-associated molecular pattern (PAMP), and the mechanism for its detection and verification is not fully understood. Here, we show a two-factor authentication strategy by the innate surveillance machinery to selectively respond to the low concentration of HIV-1 DNA, while distinguishing these species from extranuclear DNA molecules. We find that, upon HIV-1 infection, PQBP1 decorates the intact viral capsid, and this serves as a primary verification step for the viral nucleic acid cargo. As reverse transcription and capsid disassembly initiate, cGAS is recruited to the capsid in a PQBP1-dependent manner. This positions cGAS at the site of PAMP generation and sanctions its response to a low-abundance DNA PAMP.


Asunto(s)
VIH-1 , Cápside/metabolismo , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , VIH-1/genética , Humanos , Inmunidad Innata , Nucleotidiltransferasas/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo
7.
Int J Mol Sci ; 23(11)2022 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-35682906

RESUMEN

The idea that a common pathology underlies various neurodegenerative diseases and dementias has attracted considerable attention in the basic and medical sciences. Polyglutamine binding protein-1 (PQBP1) was identified in 1998 after a molecule was predicted to bind to polyglutamine tract amino acid sequences, which are associated with a family of neurodegenerative disorders called polyglutamine diseases. Hereditary gene mutations of PQBP1 cause intellectual disability, whereas acquired loss of function of PQBP1 contributes to dementia pathology. PQBP1 functions in innate immune cells as an intracellular receptor that recognizes pathogens and neurodegenerative proteins. It is an intrinsically disordered protein that generates intracellular foci, similar to other neurodegenerative disease proteins such as TDP43, FUS, and hnRNPs. The knowledge accumulated over more than 20 years has given rise to a new concept that shifts in the equilibrium between physiological and pathological processes have their basis in the dysregulation of common protein structure-linked molecular mechanisms.


Asunto(s)
Discapacidad Intelectual , Enfermedades Neurodegenerativas , Proteínas Portadoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Inmunidad Innata , Discapacidad Intelectual/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Proteínas Nucleares/genética
8.
Appl Neuropsychol Child ; 11(4): 921-927, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34470565

RESUMEN

Mutations in the PQBP1 gene are associated with Renpenning syndrome (RENS1, MIM# 309500). Most cases are characterized by intellectual disability, but a detailed neuropsychological profile has not yet been established. The present case study of a 8.5 years-old male child with a missense novel mutation in the PQBP1 gene expands existing understanding of this syndrome by presenting a milder clinical and neuropsychological phenotype. Whole exome trio analysis sequencing revealed a maternally inherited PQBP1 missense mutation in chromosome X [NM_001032383.1, c.727C > T (p.Arg243Trp)]. Variant functional studies demonstrated a significant reduction in the interaction between PQBP1 and the component of the nuclear pre-mRNA splicing machinery, U5-15KD. A comprehensive neuropsychological assessment revealed marked deficits in processing speed, attention and executive functioning (including planning, inhibitory control and working memory) without intellectual disability. Several components of language processing were also impaired. These results support that this mutation partially disrupts the function of this gene, which is known to play critical roles in embryonic and neural development. As most of the genomic PQBP1 abnormalities associated with intellectual disability have been found to be loss-of-function mutations, we hypothesize that a partial loss-of-function of this variant is associated with a mild behavioral and neuropsychological phenotype.


Asunto(s)
Discapacidad Intelectual , Mutación Missense , Proteínas Portadoras/genética , Parálisis Cerebral , Proteínas de Unión al ADN/genética , Humanos , Discapacidad Intelectual/genética , Masculino , Herencia Materna , Discapacidad Intelectual Ligada al Cromosoma X , Proteínas Nucleares/genética , Fenotipo , Precursores del ARN
9.
Mol Cell ; 81(7): 1425-1438.e10, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33662272

RESUMEN

Eukaryotic elongation factor 2 (eEF2) mediates translocation of peptidyl-tRNA from the ribosomal A site to the P site to promote translational elongation. Its phosphorylation on Thr56 by its single known kinase eEF2K inactivates it and inhibits translational elongation. Extensive studies have revealed that different signal cascades modulate eEF2K activity, but whether additional factors regulate phosphorylation of eEF2 remains unclear. Here, we find that the X chromosome-linked intellectual disability protein polyglutamine-binding protein 1 (PQBP1) specifically binds to non-phosphorylated eEF2 and suppresses eEF2K-mediated phosphorylation at Thr56. Loss of PQBP1 significantly reduces general protein synthesis by suppressing translational elongation. Moreover, we show that PQBP1 regulates hippocampal metabotropic glutamate receptor-dependent long-term depression (mGluR-LTD) and mGluR-LTD-associated behaviors by suppressing eEF2K-mediated phosphorylation. Our results identify PQBP1 as a novel regulator in translational elongation and mGluR-LTD, and this newly revealed regulator in the eEF2K/eEF2 pathway is also an excellent therapeutic target for various disease conditions, such as neural diseases, virus infection, and cancer.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Hipocampo/metabolismo , Depresión Sináptica a Largo Plazo , Extensión de la Cadena Peptídica de Translación , Factor 2 de Elongación Peptídica/metabolismo , Receptores de Glutamato Metabotrópico/biosíntesis , Animales , Proteínas de Unión al ADN/genética , Células HEK293 , Células HeLa , Humanos , Ratones , Ratones Noqueados , Factor 2 de Elongación Peptídica/genética , Fosforilación , Receptores de Glutamato Metabotrópico/genética
10.
Mol Syndromol ; 11(3): 157-161, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32903913

RESUMEN

Renpenning syndrome is an X-linked intellectual disability syndrome caused by mutations in the human polyglutamine binding protein 1 (PQBP1) gene characterized by intellectual disability (ID), microcephaly, and dysmorphic facial features. We report a Turkish child with a novel pathogenic variant in PQBP1 and a likely pathogenic variant in the PACS1 gene presenting with growth restriction, microcephaly, ID, micropenis, bilateral iris coloboma, and hypogammaglobulinemia. Cytogenetic investigations, including a high-resolution-banded karyotype, were normal. Clinical exome sequencing was performed. We found the novel PQBP1 variant, c.640C>T; p.(Arg214Trp), and the known PACS1 variant, c.607C>T; p.(Arg203Trp), in the proband. The patient's hypogammaglobulinemia did not respond to treatment. This condition was detected for the first time in a patient with Renpenning syndrome.

11.
J Biol Chem ; 295(13): 4093-4100, 2020 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-32041777

RESUMEN

Renpenning syndrome belongs to a group of X-linked intellectual disability disorders. The Renpenning syndrome-associated protein PQBP1 (polyglutamine-binding protein 1) is intrinsically disordered, associates with several splicing factors, and is involved in pre-mRNA splicing. PQBP1 uses its C-terminal YxxPxxVL motif for binding to the splicing factor TXNL4A (thioredoxin like 4A), but the biological function of this interaction has yet to be elucidated. In this study, using recombinant protein expression, in vitro binding assays, and immunofluorescence microscopy in HeLa cells, we found that a recently reported X-linked intellectual disability-associated missense mutation, resulting in the PQBP1-P244L variant, disrupts the interaction with TXNL4A. We further show that this interaction is critical for the subcellular location of TXNL4A. In combination with other PQBP1 variants lacking a functional nuclear localization signal required for recognition by the nuclear import receptor karyopherin ß2, we demonstrate that PQBP1 facilitates the nuclear import of TXNL4A via a piggyback mechanism. These findings expand our understanding of the molecular basis of the PQBP1-TXNL4A interaction and of the etiology and pathogenesis of Renpenning syndrome and related disorders.


Asunto(s)
Parálisis Cerebral/genética , Proteínas de Unión al ADN/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Ribonucleoproteína Nuclear Pequeña U5/genética , beta Carioferinas/genética , Transporte Activo de Núcleo Celular/genética , Parálisis Cerebral/patología , Regulación de la Expresión Génica/genética , Células HeLa , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Discapacidad Intelectual Ligada al Cromosoma X/patología , Mutación Missense/genética , Unión Proteica/genética , Precursores del ARN/genética , Empalme del ARN/genética , Factores de Empalme de ARN/genética , Transducción de Señal/genética
12.
Biochem Biophys Res Commun ; 523(4): 894-899, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-31959475

RESUMEN

Polyglutamine tract-binding protein 1 (PQBP1), an intellectual disability causative gene, is involved in transcriptional and post-transcriptional regulation of gene expression in animals, and possibly also in plants. In our previous work, reduced brain size, associated with an elongated cell cycle duration in neural stem cells (NSCs), was observed in the NSCs conditional Pqbp1 gene knockout (cKO) mice, which mimic microcephaly patients. However, the physiological significance of PQBP1 in bone metabolism has not been elucidated. Here, we analyzed the bone phenotype of nestin-Cre Pqbp1-cKO mice. Surprisingly, the Pqbp1-cKO mice were significantly shorter than control mice and had a lower bone mass, shown by micro-computed tomography. Furthermore, bone histology showed impaired bone formation in the Pqbp1-cKO mice as well as a chondrocyte deficiency. Real-time PCR analysis showed reduced osteoblast- and chondrocyte-related gene expression in the Pqbp1-cKO mice, while the osteoclast-related gene expression remained unchanged. These results suggest that PQBP1 in bone marrow mesenchymal stem cells may play a crucial role in bone formation and cartilage development.


Asunto(s)
Desarrollo Óseo/genética , Proteínas de Unión al ADN/genética , Crecimiento y Desarrollo/genética , Discapacidad Intelectual/genética , Animales , Huesos/metabolismo , Cartílago/embriología , Diferenciación Celular , Femenino , Masculino , Ratones Noqueados , Tamaño de los Órganos , Osteoblastos/metabolismo , Osteoclastos/metabolismo
13.
Am J Med Genet A ; 182(2): 293-295, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31840915

RESUMEN

Renpenning syndrome is one of the well-characterized causes of X-linked intellectual disability and is associated with microcephaly and various visceral malformations. Face is considered characteristic but the dysmorphism is subtle. Here we report an Indian adult with a very lean habitus, progressive atrophy of the upper back muscles, microcephaly, loss of cervical lordosis, and upper thoracic scoliosis. Using whole-exome sequencing, a hemizygous deletion was identified in PQBP1 that leads to a frameshift and premature termination of translation. The loss of normal curvatures of cervical and upper thoracic spine due to muscular atrophy is a characteristic feature, though it may be age dependent.


Asunto(s)
Parálisis Cerebral/genética , Proteínas de Unión al ADN/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Adulto , Parálisis Cerebral/patología , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Humanos , Discapacidad Intelectual/patología , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/patología , Microcefalia/diagnóstico , Microcefalia/genética , Mutación/genética , Linaje , Secuenciación del Exoma
14.
Am J Med Genet A ; 182(3): 498-503, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31840929

RESUMEN

Renpenning syndrome (OMIM: 309500) is a rare X-linked disorder that causes intellectual disability, microcephaly, short stature, a variety of eye anomalies, and characteristic craniofacial features. This condition results from pathogenic variation of PQBP1, a polyglutamine-binding protein involved in transcription and pre-mRNA splicing. Renpenning syndrome has only been reported in affected males. Carrier females do not usually have clinical features, and in reported families with Renpenning syndrome, most female carriers exhibit favorable skewing of X-chromosome inactivation. We describe a female with syndromic features typical of Renpenning syndrome. She was identified by exome sequencing to have a de novo heterozygous c.459_462delAGAG mutation in PQBP1 (Xp11.23), affecting the AG hexamer in exon 4, which is the most common causative mutation in this syndrome. Streaky hypopigmentation of the skin was observed, supporting a hypothesized presence of an actively expressed, PQBP1 mutation-bearing X-chromosome in some cells. X-inactivation studies on peripheral blood cells demonstrated complete skewing in both the proband and her mother with preferential inactivation of the maternal X chromosome in the child. We demonstrated expression of the PQBP1 mutant transcript in leukocytes of the affected girl. Therefore, it is highly likely that the PQBP1 mutation arose from the paternal X chromosome.


Asunto(s)
Anomalías Múltiples/genética , Parálisis Cerebral/genética , Proteínas de Unión al ADN/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/patología , Parálisis Cerebral/diagnóstico , Parálisis Cerebral/patología , Niño , Cromosomas Humanos X/genética , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/diagnóstico , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Humanos , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/diagnóstico , Discapacidad Intelectual Ligada al Cromosoma X/patología , Mutación/genética , Inactivación del Cromosoma X/genética
15.
Ophthalmic Genet ; 40(6): 534-540, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31718390

RESUMEN

Background: Patients with intellectual disability syndromes frequently have coexisting abnormalities of ocular structures and the visual pathway system. The microphthalmos, anophthalmos, and coloboma (MAC) spectrum represent structural developmental eye defects that occur as part of a syndrome in one-third of cases. Ophthalmic examination may provide important diagnostic clues in identifying these syndromes.Purpose: To provide a detailed and comprehensive description of the microphthalmos, anophthalmos, and coloboma (MAC) spectrum in two brothers with intellectual disability and dysmorphism.Methods: The two brothers underwent a detailed ophthalmic and systemic evaluation. A family pedigree was obtained and exome sequencing was performed in the proband.Results: The two brothers aged 4 and 7 years had intellectual disability, microcephaly, short stature, and characteristic dysmorphic features. Ophthalmic evaluation revealed the presence of the MAC spectrum in both boys. Genetic testing led to the detection of an X-linked hemizygous truncating mutation in the nuclear polyglutamine-binding protein 1 (PQBP1) gene confirming the diagnosis of X-linked recessive Renpenning syndrome.Conclusion: The presence of X-linked intellectual disability and characteristic dysmorphism, in a patient with the MAC spectrum should raise the suspicion of Renpenning syndrome. PQBP1 mutation testing is confirmatory. A comprehensive systemic evaluation is mandatory in all patients with the MAC spectrum and intellectual disability.


Asunto(s)
Anoftalmos/patología , Parálisis Cerebral/complicaciones , Coloboma/patología , Proteínas de Unión al ADN/genética , Discapacidad Intelectual Ligada al Cromosoma X/complicaciones , Microftalmía/patología , Mutación , Anoftalmos/etiología , Parálisis Cerebral/genética , Niño , Preescolar , Coloboma/etiología , Humanos , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/genética , Microftalmía/etiología , Pronóstico , Síndrome
16.
J Cancer ; 10(9): 2091-2101, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31205570

RESUMEN

Osteosarcoma (OS) is the most common primary bone malignancy, predominately affecting children and adolescents. Due to the introduction of chemotherapy, the 5-year survival rate of OS patients has dramatically improved to 60-70%. Unfortunately, OS patients with recurrence or metastatic disease have less than a 20% chance of long-term survival, despite aggressive therapies. In this study, we aimed to identify gene expression patterns associated with metastasis and recurrence in order to identify potential biomarkers with prognostic power. We found that high expression of polyglutamine tract-binding protein 1 (PQBP1) and low expression of phosphoenolpyruvate carboxykinase 2 (PCK2) were related to a high probability of recurrence and metastasis in OS patients and also predicted shorter recurrence-free survival (RFS) and metastasis-free survival (MFS) after adjustment for other clinical variables. Prediction models based on the combination of PQBP1 and PCK2 expression had good and robust predictive power for recurrence and metastasis. A PQBP1 and PCK2-centered protein interaction network was built, and the hypothetical regulatory path between them was identified and termed the PQBP1-SF3A2-UBA52-PCK2 axis. Gene enrichment analysis indicated that aberrations of metabolism might play an important role in recurrence and metastasis in OS patients. Accordingly, PQBP1 and PCK2 are crucial for recurrence and metastasis in OS, and these findings provide a molecular basis for the exploitation of diagnostic and therapeutic strategies for overcoming recurrence and metastasis in OS.

17.
J Huntingtons Dis ; 7(4): 297-307, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30372687

RESUMEN

The polyglutamine (polyQ) diseases, such as Huntington's disease and the spinocerebellar ataxias, are characterized by the accumulation of elongated polyQ sequences (epolyQ) and mostly occur during midlife. Considering that polyQ disorders have not been selected out in evolution, there might be important physiological functions of epolyQ during development and/or reproduction. In a similar context, the physiological functions of neurodegeneration-associated amyloidogenic proteins (APs), such as ß-amyloid in Alzheimer's disease and α-synuclein in Parkinson's disease, remain elusive. In this regard, we recently proposed that evolvability for coping with diverse stressors in the brain, which is beneficial for offspring, might be relevant to the physiological functions of APs. Given analogous properties of APs and epolyQ in terms of neurotoxic amyloid-fibril formation, the objective of this paper is to determine whether evolvability could also be applied to the physiological functions of epolyQ. Indeed, APs and epolyQ are similar in many ways, including functional redundancy of non-amyloidogenic homologues, hormesis conferred by the heterogeneity of the stress-induced protein aggregates, the transgenerational prion-like transmission of the protein aggregates via germ cells, and the antagonistic pleiotropy relationship between evolvability and neurodegenerative disease. Given that epolyQ is widely expressed from microorganisms to human brain, whereas APs are only identified in vertebrates, evolvability of epolyQ is considered to be much more primitive compared to those of APs during evolution. Collectively, epolyQ may be not only be important in the pathophysiology of polyQ diseases, but also in the evolution of amyloid-related evolvability.


Asunto(s)
Amiloide/genética , Enfermedad de Huntington/genética , Péptidos/genética , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Atrofia Bulboespinal Ligada al X/genética , Evolución Molecular , Pleiotropía Genética , Humanos , Enfermedad de Machado-Joseph/genética , Epilepsias Mioclónicas Progresivas/genética , Enfermedad de Parkinson/genética , Péptidos/metabolismo , Ataxias Espinocerebelosas/genética , Expansión de Repetición de Trinucleótido/genética , alfa-Sinucleína/genética
18.
Am J Med Genet A ; 176(11): 2446-2450, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30244542

RESUMEN

We report two discordant clinical and imaging features in four male patients from two unrelated families of Egyptian descent with hemizygous pathogenic variants in PQBP1. The three patients of the first family displayed the typical features underlying PQBP1 such as the long triangular face, bulbous nose, hypoplastic malar region, and micrognathia, which were subsequently confirmed using targeted sequence analysis that showed a previously reported nonsense mutation c.586C>T p.R196*. Whole exome sequencing identified a novel missense PQBP1 variant c.530G>A:p.R177H in the second family, in which the index patient presented with intellectual disability and dysmorphic facial features reminiscent of Kabuki-like syndrome and his brain magnetic resonance imaging revealed partial agenesis of corpus callosum, mild vermis, and brainstem hypoplasia. These imaging features are distinct from the previously described with a well-known phenotype that is already known for PQBP1. This report expands the phenotypic spectrum of PQBP1-related disorders and is the second reported missense PQBP1 variant. Further, it highlights the possible role of PQBP1 in hindbrain development.


Asunto(s)
Proteínas Portadoras/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Proteínas Nucleares/genética , Adulto , Niño , Preescolar , Análisis Mutacional de ADN , Proteínas de Unión al ADN , Humanos , Lactante , Recién Nacido , Discapacidad Intelectual/diagnóstico por imagen , Imagen por Resonancia Magnética , Masculino , Fenotipo
19.
Ann Clin Lab Sci ; 48(4): 522-527, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30143497

RESUMEN

Renpenning syndrome is a rare X-linked disorder characterized by mental retardation, leanness, microcephaly, facial dysmorphism, short stature, and small testes. This disease is caused by PQBP1 mutations. Herein, we present a literature review and describe the clinical and molecular findings in a Korean boy with Renpenning syndrome. A 23-month-old boy presented with mental retardation, narrow face, bulbous nose, and cardiac anomaly. Interestingly, targeted exome sequencing identified a novel mutation c.559delT (p.Tyr187llefs*8) in the PQBP1 gene, and he was diagnosed as having Renpenning syndrome. In line with previously reported studies, our case suggests that men with mental retardation, short stature, and microcephaly should include Renpenning syndrome as a differential diagnosis.


Asunto(s)
Pueblo Asiatico/genética , Proteínas Portadoras/genética , Parálisis Cerebral/diagnóstico , Parálisis Cerebral/genética , Secuenciación del Exoma/métodos , Discapacidad Intelectual Ligada al Cromosoma X/diagnóstico , Discapacidad Intelectual Ligada al Cromosoma X/genética , Mutación/genética , Proteínas Nucleares/genética , Secuencia de Bases , Parálisis Cerebral/diagnóstico por imagen , Análisis Mutacional de ADN , Proteínas de Unión al ADN , Humanos , Lactante , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/diagnóstico por imagen
20.
Mol Immunol ; 99: 182-190, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29807326

RESUMEN

Recent studies have highlighted the importance of immune sensing of cytosolic DNA of both pathogen and host origin. We aimed to examine the role of DNA sensors interferon-γ-inducible protein 16 (IFI16) and cyclic GMP-AMP synthase (cGAS) in responding to cytosolic DNA. We show IFI16 and cGAS can synergistically induce IFNb transcriptional activity in response to cytoplasmic DNA. We also examined the role of polyglutamine binding protein 1 (PQBP1), a protein predominantly expressed in lymphoid and myeloid cells that has been shown to lead to type I interferon production in response to retroviral infection. We show PQBP1 associates with cGAS and IFI16 in THP-1 cells. Unexpectedly, knockout of PQBP1 in THP-1 cells causes significantly increased type I IFN production in response to transfected cytosolic nucleic acids or DNA damage, unlike what is seen in response to retroviral infection. Overexpression of PQBP1 in HEK293 T cells impairs IFI16/cGAS-induced IFNb transcriptional activity. In human cancer patients, low expression of PQBP1 is correlated with improved survival, the opposite correlation of that seen with cGAS or IFI16 expression. Our findings suggest that PQBP1 inhibits IFI16/cGAS-induced signaling in response to cytosolic DNA, in contrast to the role of this protein in response to retroviral infection.


Asunto(s)
Proteínas Portadoras/inmunología , Citosol/inmunología , ADN/inmunología , Inmunidad Innata/inmunología , Proteínas Nucleares/inmunología , Línea Celular , Daño del ADN/inmunología , Proteínas de Unión al ADN , Células HEK293 , Humanos , Interferón Tipo I/inmunología , Interferón beta/inmunología , Linfocitos/inmunología , Células Mieloides/inmunología , Transducción de Señal/inmunología , Células THP-1 , Transcripción Genética/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA