Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 872
Filtrar
1.
Nutr Metab (Lond) ; 21(1): 73, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39272080

RESUMEN

BACKGROUND: Breast cancer is the most diagnosed cancer in women. Its pathogenesis includes several pathways in cancer proliferation, apoptosis, and metastasis. Some clinical data have indicated the association between coffee consumption and decreased cancer risk. However, little data is available on the effect of coffee on breast cancer cells in vitro and in vivo. METHODS: In our study, we assessed the effect of Turkish coffee and Fridamycin-H on different pathways in breast cancer, including apoptosis, proliferation, and oxidative stress. A human breast cancer cell line (MCF-7) was treated for 48 h with either coffee extract (5% or 10 v/v) or Fridamycin-H (10 ng/ml). Ehrlich solid tumors were induced in mice for in vivo modeling of breast cancer. Mice with Ehrlich solid tumors were treated orally with coffee extract in drinking water at a final concentration (v/v) of either 3%, 5%, or 10% daily for 21 days. Protein expression levels of Caspase-8 were determined in both in vitro and in vivo models using ELISA assay. Moreover, P-glycoprotein and peroxisome proliferator-activated receptor gamma (PPAR-γ) protein expression levels were analyzed in the in vitro model. ß-catenin protein expression was analyzed in tumor sections using immunohistochemical analysis. In addition, malondialdehyde (MDA) serum levels were analyzed using colorimetry. RESULTS: Both coffee extract and Fridamycin-H significantly increased Caspase-8, P-glycoprotein, and PPAR-γ protein levels in MCF-7 cells. Consistently, all doses of in vivo coffee treatment induced a significant increase in Caspase-8 and necrotic zones and a significant decrease in ß- catenin, MDA, tumor volume, tumor weight, and viable tumor cell density. CONCLUSION: These findings suggest that coffee extract and Fridamycin-H warrant further exploration as potential therapies for breast cancer.

2.
Brain Behav Immun ; 123: 64-80, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39242055

RESUMEN

Traumatic brain injury (TBI) is a disabling neurotraumatic condition and the leading cause of injury-related deaths and disability in the United States. Attenuation of neuroinflammation early after TBI is considered an important treatment target; however, while these inflammatory responses can induce secondary brain injury, they are also involved in the repair of the nervous system. Pioglitazone, which activates peroxisome proliferator-activated receptor gamma, has been shown to decrease inflammation acutely after TBI, but the long-term consequences of its use remain unknown. For this reason, the impacts of treatment with pioglitazone during the acute/subacute phase (30 min after injury and each subsequent 24 h for 5 days) after TBI were interrogated during the chronic phase (30- and 274-days post-injury (DPI)) in mice using the controlled cortical impact model of experimental TBI. Acute/subacute pioglitazone treatment after TBI results in long-term deleterious consequences, including disruption of tau homeostasis, chronic glial cell activation, neuronal pathology, and worsened injury severity particularly at 274 DPI, with male mice being more susceptible than female mice. Further, male pioglitazone-treated TBI mice exhibited increased dominant and offensive-like behavior while having a decreased non-social exploring behavior at 274 DPI. After TBI, both sexes exhibited glial activation at 30 DPI when treated with pioglitazone; however, while injury severity was increased in females it was not impacted in male mice. This work reveals that although pioglitazone has been shown to lead to attenuated TBI outcomes acutely, sex-based differences, timing and long-term consequences of treatment with glitazones must be considered and further studied prior to their clinical use for TBI therapy.

3.
Cell Host Microbe ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39293437

RESUMEN

Microbiota and feeding modes influence the susceptibility of premature newborns to necrotizing enterocolitis (NEC) through mechanisms that remain unknown. Here, we show that microbiota colonization facilitated by breastmilk feeding promotes NOD-like receptor family CARD domain containing 5 (Nlrc5) gene expression in mouse intestinal epithelial cells (IECs). Notably, inducible knockout of the Nlrc5 gene in IECs predisposes neonatal mice to NEC-like injury in the small intestine upon viral inflammation in an NK1.1+ cell-dependent manner. By contrast, formula feeding enhances neonatal gut colonization with environment-derived tilivalline-producing Klebsiella spp. Remarkably, tilivalline disrupts microbiota-activated STAT1 signaling that controls Nlrc5 gene expression in IECs through a PPAR-γ-mediated mechanism. Consequently, this dysregulation hinders the resistance of neonatal intestinal epithelium to self-NK1.1+ cell cytotoxicity upon virus infection/colonization, promoting NEC development. Together, we discover the underappreciated role of intestinal microbiota colonization in shaping a disease tolerance program to viral inflammation and elucidate the mechanisms impacting NEC development in neonates.

4.
Adv Exp Med Biol ; 1460: 595-627, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39287866

RESUMEN

In obesity, the process of adipogenesis largely determines the number of adipocytes in body fat depots. Adipogenesis is regulated by several adipocyte-selective micro-ribonucleic acids (miRNAs) and transcription factors that modulate adipocyte proliferation and differentiation. However, some miRNAs block the expression of master regulators of adipogenesis. Since the specific miRNAs display different expressions during adipogenesis, in mature adipocytes and permanent obesity, their use as biomarkers or therapeutic targets is feasible. Upregulated miRNAs in persistent obesity are downregulated during adipogenesis. Moreover, some of the downregulated miRNAs in obese individuals are upregulated in mature adipocytes. Induction of adipocyte stress and hypertrophy leads to the release of adipocyte-derived exosomes (AdEXs) that contain the cargo molecules, miRNAs. miRNAs are important messengers for intercellular communication involved in metabolic responses and have very specific signatures that direct the metabolic activity of target cells. While each miRNA targets multiple messenger RNAs (mRNAs), which may coordinate or antagonize each other's functions, several miRNAs are dysregulated in other tissues during obesity-related comorbidities. Deletion of the miRNA-processing enzyme DICER in pro-opiomelanocortin-expressing cells results in obesity, which is characterized by hyperphagia, increased adiposity, hyperleptinemia, defective glucose metabolism, and alterations in the pituitary-adrenal axis. In recent years, RNA-based therapeutical approaches have entered clinical trials as novel therapies against overweight and its complications. Development of lipid droplets, macrophage accumulation, macrophage polarization, tumor necrosis factor receptor-associated factor 6 activity, lipolysis, lipotoxicity, and insulin resistance are effectively controlled by miRNAs. Thereby, miRNAs as epigenetic regulators are used to determine the new gene transcripts and therapeutic targets.


Asunto(s)
Adipogénesis , Epigénesis Genética , MicroARNs , Obesidad , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Obesidad/genética , Obesidad/metabolismo , Adipogénesis/genética , Animales , Adipocitos/metabolismo , Exosomas/metabolismo , Exosomas/genética , Regulación de la Expresión Génica
5.
Exp Neurol ; 382: 114949, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39284540

RESUMEN

Sleep loss leads to significant pathophysiological consequences, including cognitive impairment. The neuroinflammation are pivotal factors in the pathogenesis of cognitive impairment induced by sleep loss. The phloretin (PHL), derived from peel of juicy fruits, has demonstrated potent anti-inflammatory properties. However, the precise influence of PHL on the cognitive impairment triggered by sleep loss and its underlying mechanism remain uncertain. In the present study, mice were subjected to sleep deprivation (SD) paradigm. Cognitive impairment induced by SD were significantly relieved by administration of PHL in a dose-dependent manner. Furthermore, PHL not only mitigated the synaptic losses but also enhanced dendritic spine density and neuronal activity within mice hippocampus following exposure to SD. Moreover, PHL treatment decreased the microglial numbers and altered microglial morphology in the hippocampus to restore the M1/M2 balances; these effects were accompanied by regulation of pro-/anti-inflammatory cytokine production and secretion in SD-exposed mice. Additionally, in vivo and in vitro studies showed PHL might attenuate the inflammation through the PPARγ/NF-κB pathway. Our findings suggest that PHL exerts inhibitory effects on microglia-mediated neuroinflammation, thereby providing protection against cognitive impairment induced by SD through a PPAR-γ dependent mechanism. The results indicate PHL is expected to provide a valuable candidate for new drug development for SD-induced cognitive impairment in the future.

6.
Front Neurol ; 15: 1410389, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39258156

RESUMEN

Aim: Hearing loss, affecting a significant portion of the global population, is prevented with peroxisome proliferator-activated receptor γ agonism. Understanding potential protective treatments is crucial for public health. We examine the effect of telmisartan, an antihypertensive drug and partial peroxisome proliferator-activated receptor γ agonist, on hearing loss in patients with hypertension. Method and results: This retrospective cohort analysis used data from the OMOP Common Data Model database, encompassing information from three tertiary institutions in South Korea. The study included a substantial sample size of 860,103 people diagnosed with hypertension. The study included individuals who had been medically diagnosed with hypertension and had been prescribed antihypertensive drugs, including telmisartan. The study design was established to evaluate the comparative effects of telmisartan and other hypertension medications on hearing loss. We used propensity score matching (PSM) to create a balanced cohort, reducing potential biases between the telmisartan and non-telmisartan groups. From the initial 860,103 patients with hypertension, a propensity score matched cohort was derived from 20,010 patients, with 2,193 in the telmisartan group. After PSM, lower incidence of total hearing loss was observed in the telmisartan group compared to the non-telmisartan group during the 3-year follow-up (0.5% vs. 1.5%, log-rank p = 0.005). In subgroup analysis, this study showed consistent results that lower incidence of total hearing loss was higher in the telmisartan group than in the non-telmisartan group. Conclusion: Telmisartan was associated with reducing certain types of hearing loss in patients with hypertension. Further research is needed to confirm these findings and understand the mechanisms.

7.
Artículo en Inglés | MEDLINE | ID: mdl-39222244

RESUMEN

Prostate enlargement due to benign prostate hyperplasia (BPH) is a common, progressive disorder in elderly males with increasing prevalence. It causes devastating lower urinary tract symptoms with no satisfactory medication. Asiatic acid (AA), a natural pentacyclic triterpenoid, is known to have antiproliferative, antioxidant, and anti-inflammatory activities. The aim of this study was to evaluate the possible preventive activities of AA against BPH induced by testosterone in rats. Finasteride (0.5 mg/kg) was used as a reference drug. AA (10 or 20 mg/kg) administration inhibited the rise in prostatic weight and index induced by testosterone. Histopathological staining proved that AA mitigated the pathological features of BPH induced by testosterone, which was reflected as lower glandular epithelial in AA-treated groups. Also, the administration of AA along with testosterone restored the redox valance by inhibiting lipid peroxidation, and MDA production, and restoring the activities of superoxide dismutase (SOD) and catalase (CAT) activities. Also, AA reduced prostate interleukin-6 (IL-6), cyclooxygenase-2 (COX-2), tumor necrosis factor-alpha (TNF-α), and nuclear factor-kappa B (NF-κB) protein expression. In addition, AA modulated mRNA expression of Bax and Bcl-2 in favor of apoptosis. The effects of AA (20 mg/kg) were comparable to those of finasteride. Further, AA ameliorated the rise in insulin-like growth factor 1 receptor (IGF-1R) mRNA expression. This was associated with the enhancement of the prostatic content of PPAR-γ. It can be concluded that AA mitigated the features of BPH induced by testosterone in rats. This involves antioxidant, anti-inflammatory and pro-apototic activities of AA as well as its ability to down-regulate IGF-1R expression and enhance PPAR-γ concentration in prostatic tissues.

8.
Bioorg Chem ; 152: 107760, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39197383

RESUMEN

A novel series of thiazole derivatives with pyrazole scaffold 16a-l as hybrid rosiglitazone/celecoxib analogs was designed, synthesized and tested for its PPAR-γ activation, α-glucosidase, α-amylase and COX-2 inhibitory activities. Regarding the anti-diabetic activity, all compounds were assessed in vitro against PPAR-γ activation, α-glucosidase and α-amylase inhibition in addition to in vivo hypoglycemic activity (one day and 15 days studies). Compounds 16b, 16c, 16e and 16 k showed good PPAR-γ activation (activation % ≈ 72-79 %) compared to that of the reference drug rosiglitazone (74 %). In addition, the same derivatives 16b, 16c, 16e and 16 k showed the highest inhibitory activities against α-glucosidase (IC50 = 0.158, 0.314, 0.305, 0.128 µM, respectively) and against α-amylase (IC50 = 32.46, 23.21, 7.74, 35.85 µM, respectively) compared to the reference drug acarbose (IC50 = 0.161 and 31.46 µM for α-glucosidase and α-amylase, respectively). The most active derivatives 16b, 16c, 16e and 16 k also revealed good in vivo hypoglycemic effect comparable to that of rosiglitazone. In addition, compounds 16b and 16c had the best COX-2 selectivity index (S.I. = 18.7, 31.7, respectively) compared to celecoxib (S.I. = 10.3). In vivo anti-inflammatory activity of the target derivatives 16b, 16c, 16e and 16 k supported the results of in vitro screening as the derivatives 16b and 16c (ED50 = 8.2 and 24 mg/kg, respectively) were more potent than celecoxib (ED50 = 30 mg/kg). In silico docking, ADME, toxicity, and molecular dynamic studies were carried out to explain the interactions of the most active anti-diabetic and anti-inflammatory compounds 16b, 16c, 16e and 16 k with the target enzymes in addition to their physiochemical parameters.


Asunto(s)
Inhibidores de la Ciclooxigenasa 2 , Diseño de Fármacos , Inhibidores de Glicósido Hidrolasas , Hipoglucemiantes , PPAR gamma , Pirazoles , Tiazoles , alfa-Amilasas , alfa-Glucosidasas , PPAR gamma/metabolismo , alfa-Glucosidasas/metabolismo , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/síntesis química , Inhibidores de la Ciclooxigenasa 2/química , Relación Estructura-Actividad , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/síntesis química , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Tiazoles/química , Tiazoles/farmacología , Tiazoles/síntesis química , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/síntesis química , Animales , Estructura Molecular , Ciclooxigenasa 2/metabolismo , Simulación del Acoplamiento Molecular , Relación Dosis-Respuesta a Droga , Humanos , Ratas , Descubrimiento de Drogas , Agonistas de PPAR-gamma
9.
J Agric Food Chem ; 72(36): 19766-19785, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39186442

RESUMEN

Colorectal cancer (CRC) is the third-largest cancer worldwide. Lactobacillus can regulate the intestinal barrier and gut microbiota. However, the mechanisms of Lactobacillus that alleviate CRC remained unknown. This study aimed to explore the regulatory effect of Lactobacillus plantarum on CRC and its potential mechanism. CCFM8661 treatment significantly ameliorated CRC compared with phosphate-buffered solution (PBS) treatment in ApcMin/+ mice. In addition, conjugated linoleic acid (CLA) was proved to be the key metabolite for CCFM8661 in ameliorating CRC by molecular biology techniques. Peroxisome proliferator-activated receptor γ (PPAR-γ) was proved to be the key receptor in ameliorating CRC by inhibitor intervention experiments. Moreover, supplementation with CCFM8661 ameliorated CRC by producing CLA to inhibit NF-κB pathway and pro-inflammatory cytokines, up-regulate ZO-1, Claudin-1, and MUC2, and promote tumor cell apoptosis in a PPAR-γ-dependent manner. Metagenomic analysis showed that CCFM8661 treatment significantly increased Odoribacter splanchnicus, which could ameliorate CRC by repairing the intestinal barrier. Clinical results showed that intestinal CLA, butyric acid, PPAR-γ, and Lactobacillus were significantly decreased in CRC patients, and these indicators were significantly negatively correlated with CRC. CCFM8661 alleviated CRC by ameliorating the intestinal barrier through the CLA-PPAR-γ axis. These results will promote the development of dietary probiotic supplements for CRC.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Mucosa Intestinal , Lactobacillus plantarum , Ácidos Linoleicos Conjugados , Ratones Endogámicos C57BL , PPAR gamma , Probióticos , Lactobacillus plantarum/metabolismo , PPAR gamma/metabolismo , PPAR gamma/genética , Animales , Ratones , Neoplasias Colorrectales/metabolismo , Humanos , Probióticos/administración & dosificación , Probióticos/farmacología , Masculino , Ácidos Linoleicos Conjugados/farmacología , Ácidos Linoleicos Conjugados/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Femenino , FN-kappa B/metabolismo , FN-kappa B/genética , Apoptosis/efectos de los fármacos , Claudina-1/metabolismo , Claudina-1/genética , Proteína de la Zonula Occludens-1/metabolismo , Proteína de la Zonula Occludens-1/genética
10.
Diseases ; 12(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39195171

RESUMEN

Diabetic wounds (DWs) are considered chronic complications observed in patients suffering from type 2 diabetes mellitus (DM). Usually, DWs originate from the interplay of inflammation, oxidation, impaired tissue re-epithelialization, vasculopathy, nephropathy, and neuropathy, all of which are related to insulin resistance and sensitivity. The conventional approaches available for the treatment of DWs are mainly confined to the relief of wound pressure, debridement of the wound, and management of infection. In this paper, we speculate that treatment of DWs with 5-aminosalicylic acid (5-ASA) and subsequent activation of peroxisome proliferator-activated receptor gamma (PPAR-γ) and transforming growth factor beta (TGF-ß) via the AhR pathway might be highly beneficial for DW patients. This estimation is based on several lines of evidence showing that 5-ASA and PPAR-γ activation are involved in the restoration of insulin sensitivity, re-epithelialization, and microcirculation. Additionally, 5-ASA and TGF-ß activate inflammation and the production of pro-inflammatory mediators. Suitable stabilized formulations of 5-ASA with high absorption rates are indispensable for scrutinizing its probable pharmacological benefits since 5-ASA is known to possess lower solubility profiles because of its reduced permeability through skin tissue. In vitro and in vivo studies with stabilized formulations and a control (placebo) are mandatory to determine whether 5-ASA indeed holds promise for the curative treatment of DWs.

11.
Artículo en Inglés | MEDLINE | ID: mdl-39167169

RESUMEN

This study aimed to elucidate the possible hepatocellular protective role of irbesartan during hepatic ischemia-reperfusion injury (HIRI) and the probable underlying mechanisms. Wistar rats were allocated into four groups: sham; HIRI (control); irbesartan (50 mg/kg) + HIRI; irbesartan (100 mg/kg) + HIRI; irbesartan + GW9662 (1 mg/kg, i.p.) + HIRI. Rats pretreated orally with irbesartan or vehicle for 14 days underwent 45-min hepatic ischemia followed by 60-min reperfusion. Irbesartan preconditioning diminished alanine transaminase (ALT) and aspartate transaminase (AST) serum levels, and reduced extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription 3 (STAT3). Irbesartan decreased proapoptotic BAX (bcl-2-like protein 4), increased anti-apoptotic B-cell lymphoma 2 (BCL2) hepatic content, and thereby reduced BAX/BCL2 ratio. Moreover, irbesartan preconditioning reduced autophagy-related proteins Beclin1 and LC3 II, and elevated p62 (protein responsible for autophagosome degradation). It elevated proliferator-activated receptor γ (PPAR-γ), and reduced tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) hepatic gene expression. Also, hepatic protein expressions of nuclear factor kappa-B p65 (NF-κB p65) and caspase-3 were lessoned by irbesartan pretreatment in HIRI rats. However, GW9662 abrogated irbesartan's effect on HIRI. The protective effect of irbesartan on HIRI may be mediated by alleviation of ERK, STAT3, and PPAR-γ inflammatory pathways, exerting anti-apoptotic and anti-autophagic effects in HIRI in rats.

12.
Inflamm Res ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39112648

RESUMEN

BACKGROUND: Acute Kidney Injury (AKI), a prevalent complication of Liver Transplantation (LT) that occurs during the perioperative period has been established to profoundly impact the prognosis of transplant recipients. This study aimed to investigate the mechanism of the hepatic IRI-induced AKI and to identify potential therapeutic targets for treating this condition and improving the prognosis of LT patients. METHODS: An integrated transcriptomics and proteomics approach was employed to investigate transcriptional and proteomic alterations in hepatic IRI-induced AKI and the hypoxia-reoxygenation (H/R) model using TCMK-1 cells and the hepatic IRI-induced AKI mouse model using male C57BL/6 J mice were employed to elucidate the underlying mechanisms. Hematoxylin-eosin staining, reverse transcription quantitative polymerase chain reaction, enzyme-linked immunosorbent assay and Western blot were used to assess the effect of Rosiglitazone (RGZ) on hepatic IRI-induced AKI in vitro and in vivo. RESULTS: According to the results, 322 genes and 128 proteins were differentially expressed between the sham and AKI groups. Furthermore, Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomics (KEGG) pathway analyses revealed significant enrichment in pathways related to amino acid and lipid metabolism. Additionally, the Protein-Protein Interaction (PPI) network analysis of the kidney tissues obtained from a hepatic IRI-induced AKI mouse model highlighted arachidonic acid metabolism as the most prominent pathway. Animal and cellular analyses further revealed that RGZ, a PPAR-γ agonist, could inhibit the expression of the PPAR-γ/NF-κB signaling pathway-associated proteins in in vitro and in vivo. CONCLUSIONS: These findings collectively suggest that RGZ ameliorates hepatic IRI-induced AKI via PPAR-γ/NF-κB signaling pathway modulation, highlighting PPAR-γ as a crucial therapeutic target for AKI prevention post-LT.

13.
J Inflamm (Lond) ; 21(1): 32, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198816

RESUMEN

BACKGROUND: Intervertebral disc degeneration (IVDD) is a common spine disease with inflammation as its main pathogenesis. Mulberroside A (MA), isolated from herbal medicine, possesses anti-inflammatory characteristics in many diseases. Whereas, there is little exploration of the therapeutic potential of MA on IVDD. This study aimed at the therapeutic potential of MA on IVDD in vivo and in vitro and the mechanism involved. METHODS: In vitro, western blotting, RT-qPCR, and immunofluorescence analysis were implemented to explore the bioactivity of MA on interleukin-1 beta (IL-1ß)-induced inflammation nucleus pulposus cells (NPCs) isolated from Sprague-Dawley male rats. In vivo, X-ray and MRI were applied to measure the morphological changes, and histological staining and immunohistochemistry were employed to investigate the histological changes of intervertebral disc sections on puncture-induced IVDD rat models. RESULTS: In vitro, MA up-regulated the expression level of anabolic-related proteins (Aggrecan and Collagen II) and decreased catabolic-related proteins (Mmp2, Mmp3, Mmp9, and Mmp13) in IL-1ß-induced NPCs. Furthermore, MA inhibits the production of pro-inflammatory factors (Inos, Cox-2, and Il-6) stimulated by IL-1ß. Mechanistically, MA inhibited the signal transduction of mitogen-activated protein kinase (MAPK) and nuclear factor kappa-B (NF-κB) pathways in IL-1ß-induced NPCs. Moreover, MA might bind to Ppar-γ and then suppress the NF-kB pathway. In vivo experiment illustrated that MA mitigates the IVDD progression in puncture-induced IVDD model. X-ray and MRI images showed MA restore the disc height and T2-weighted signal intensity after puncturing. H&E and Safranin O/Fast Green also showed MA also alleviated morphological changes caused by acupuncture. In addition, MA reversed the expression level of Mmp13, Aggrecan, Collagen II, and Ppar-γ induced in IVDD models. CONCLUSIONS: MA inhibited degenerative phenotypes in NPCs and alleviated IVDD progression via inhibiting the MAPK and NF-κB pathways; besides, MA suppressed the NF-κB pathway was attributed to activating Ppar-γ, those supported that MA or Ppar-γ might be a potential drug or target for IVDD.

14.
Curr Pharm Des ; 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39129280

RESUMEN

INTRODUCTION: Macrophage dysregulation is a common pathogenic feature of viruses that provides extensive targets for antiviral therapy. Nobiletin, a polymethoxylated flavonoid found in citrus fruits, has a multitude of effects. METHODS: We investigated the effect of nobiletin on polyinosinic-polycytidylic acid (poly(I:C))-induced inflammation in RAW264.7 cells. Nobiletin inhibited the production of poly(I:C)-induced inflammatory factors, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, and CXCL10. High-throughput sequencing revealed that nobiletin inhibited the expression of TNF-α, IL-6, and CXCL10 and promoted the expression of CD206, Chil3, and Vcam1. In the Kyoto Encyclopedia of Genes and Genomes enrichment analyses, the upregulated differential genes were significantly enriched in the peroxisome proliferator-activated receptor (PPAR) signaling pathway. RESULTS: The PPAR-γ inhibitor T0070907 significantly reversed the inhibitory effects of nobiletin on IL-6 and CXCL10 but had no significant effect on TNF-α secretion. CONCLUSION: Thus, nobiletin regulated poly(I:C)-induced inflammatory responses in RAW264.7 cells partially via the PPAR-γ signaling pathway.

15.
Int Immunopharmacol ; 141: 112917, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39137630

RESUMEN

PURPOSE: This study aimed to explore novel targets for hepatocellular carcinoma (HCC) treatment by investigating the role of fatty acid metabolism. METHODS: RNA-seq and clinical data of HCC were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. Bioinformatic analyses were employed to identify differentially expressed genes (DEGs) related to prognosis. A signature was then constructed using the Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression to classify HCC patients from the TCGA database into low-risk and high-risk groups. The predictive performance of the signature was evaluated through principal components analysis (PCA), Kaplan Meier (KM) survival analysis, receiver operating characteristics (ROC) curves, nomogram, genetic mutations, drug sensitivity analysis, immunological correlation analysis, and enrichment analysis. Single-cell maps were constructed to illustrate the distribution of core genes. Immunohistochemistry (IHC), quantitative real-time PCR (qRT-PCR), and western blot were employed to verify the expression of core genes. The function of one core gene was validated through a series of in vitro assays, including cell viability, colony formation, wound healing, trans-well migration, and invasion assays. The results were analyzed in the context of relevant signaling pathways. RESULTS: Bioinformatic analyses identified 15 FAMGs that were related to prognosis. A 4-gene signature was constructed, and patients were divided into high- and low-risk groups according to the signature. The high-risk group exhibited a poorer prognosis compared to the low-risk group in both the training (P < 0.001) and validation (P = 0.020) sets. Furthermore, the risk score was identified as an independent predictor of OS (P < 0.001, HR = 8.005). The incorporation of the risk score and clinicopathologic features into a nomogram enabled the effective prediction of patient prognosis. The model was able to effectively predict the immune microenvironment, drug sensitivity to chemotherapy, and gene mutation for each group. Single-cell maps demonstrated that FAMGs in the model were distributed in tumor cells. Enrichment analyses revealed that the cell cycle, fatty acid ß oxidation and PPAR signaling pathways were the most significant pathways. Among the four key prognostically related FAMGs, Spermine Synthase (SMS) was selected and validated as a potential oncogene affecting cell cycle, PPAR-γ signaling pathway and fatty acid ß oxidation in HCC. CONCLUSIONS: The risk characteristics based on FAMGs could serve as independent prognostic indicators for predicting HCC prognosis and could also serve as evaluation criteria for gene mutations, immunity, and chemotherapy drug therapy in HCC patients. Meanwhile, targeted fatty acid metabolism could be used to treat HCC through related signaling pathways.


Asunto(s)
Carcinoma Hepatocelular , Ácidos Grasos , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , PPAR gamma , Transducción de Señal , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/mortalidad , Ácidos Grasos/metabolismo , PPAR gamma/metabolismo , PPAR gamma/genética , Oxidación-Reducción , Línea Celular Tumoral , Progresión de la Enfermedad , Pronóstico , Masculino , Femenino , Persona de Mediana Edad
16.
Food Chem Toxicol ; 193: 114967, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39197517

RESUMEN

Chlorpyrifos (CPF) is a widely used organophosphate (OP) pesticide. Unfortunately, pesticides are known to cause neuronal intoxication. Diosmin (DS) is an antioxidant, anti-inflammatory, and neuroprotective flavonoid with high efficacy and safety. We plan to investigate the efficacy of DS in treating CPF-induced neurotoxicity, as well as the mechanisms underlying the protective effects. In our study, rats were randomized into 5 groups: control, DS (50 mg/kg), CPF (10 mg/kg), CPF + DS (25 mg/kg), and CPF + DS (50 mg/kg). The results indicated that DS ameliorated neuronal intoxication induced by CPF, evidenced by decreasing Tau, p-Tau, and ß-amyloid. Histological examinations support these findings. DS significantly ameliorated CPF-induced neuronal oxidative injury by decreasing MDA content and elevating GSH, GST, and SOD levels mediated by PPAR-γ upregulation. DS suppressed CPF-induced brain inflammation by decreasing MPO enzymatic activity and TNF-α, IL-1ß, and IL-6 levels mediated by downregulation of NF-κB/AP-1(c-FOS and c-JUN) signal. Of note, DS protective effects were dose dependent. In conclusion, our data suggested that DS was a promising therapeutic strategy for attenuating CPF-induced neuronal intoxication by restoring oxidant-antioxidant balance and inhibiting inflammatory response in brain tissues.

17.
Hereditas ; 161(1): 21, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978149

RESUMEN

PURPOSE: This study aims to reveal the relationship between AMIGO2 and proliferation, migration and tumorigenicity of bladder cancer, and explore the potential molecular mechanisms. METHODS: The expression level of AMIGO2 is measured by qRT-PCR and immunohistochemistry (IHC). Stable AMIGO2 knockdown cell lines T24 and 5637 were established by lentivirus transfection. Cell Counting Kit (CCK-8 assay) was produced to determine cell proliferation, flow cytometry analysis was utilized to detect cell cycle, and wound healing assay was proceeded to test migration ability of bladder cancer cells. Xenograft mouse model was established for investigating the effect of AMIGO2 on tumor formation in vivo. The RNA Sequencing technology was applied to explore the underlying mechanisms. The expression level of PPAR-γ was measured by Western Blot. RESULTS: AMIGO2 was upregulated in bladder cancer cells and tissues. Inhibited expression of AMIGO2 suppresses cell proliferation and migration. Low AMIGO2 expression inhibited tumorigenicity of 5637 in nude mice. According to RNA-Seq and bioinformatics analysis, 917 DEGs were identified. The DEGs were mainly enriched in cell-cell adhesion, peroxisome proliferators-activated receptors (PPARs) signaling pathway and some other pathways. PPAR-γ is highly expressed in bladder cancer cell lines T24 and 5637, but when AMIGO2 is knocked down in T24 and 5637, the expression level of PPAR-γ is also decreased, and overexpression of PPAR-γ could reverse the suppression effect of cell proliferation and migration caused by the inhibition of AMIGO2. CONCLUSION: AMIGO2 is overexpressed in bladder cancer cells and tissues. Knockdown of AMIGO2 suppresses bladder cancer cell proliferation and migration. These processes might be regulated by PPAR-γ signaling pathway.


Asunto(s)
Movimiento Celular , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , PPAR gamma , Neoplasias de la Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Humanos , Animales , Línea Celular Tumoral , Ratones , Técnicas de Silenciamiento del Gen , Ratones Desnudos , Transducción de Señal
18.
Food Chem Toxicol ; 191: 114863, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38997059

RESUMEN

Antioxidants given concurrently with chemotherapy offer an effective strategy for reducing the negative effects of the drug. One remaining obstacle to the use of doxorubicin (DOX) in chemotherapy is cardiotoxicity. Using vitamin E (Vit. E) as a reference standard, our study focuses on the potential preventive benefits of oxyresveratrol (ORES) and/or dapagliflozin (DAPA) against DOX-induced cardiac injury. Acute cardiotoxicity was noticed after a single intravenous injection of a male rat's tail vein with 10 mg/kg of DOX. Oral doses of ORES (80 mg/kg), DAPA (10 mg/kg), and Vit. E (1 g/kg) were given, respectively. Pretreatment of animals with Vit. E, ORES and/or DAPA revealed a considerable alleviation of heart damage, as evidenced by histopathological change mitigation and a notable drop in serum AST, LDH, CK, CK-MB, and cardiac contents of MDA and NO2-. Also, serum TAC, tissue GSH, and SOD showed substantial increases. Additionally, tissue caspase-3, serum IL-6, and TNF-α were considerably reduced. Moreover, a downregulation in cardiac gene expression of ATG-5, Keap-1, and NF-κB in addition to an upregulation of Bcl-2 gene expression and HO-1, Nrf-2, and PPAR-γ protein expression clearly appeared. Ultimately, ORES and/or DAPA have an optimistic preventive action against severe heart deterioration caused by DOX.


Asunto(s)
Compuestos de Bencidrilo , Cardiotoxicidad , Caspasa 3 , Doxorrubicina , Glucósidos , Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , FN-kappa B , PPAR gamma , Animales , Glucósidos/farmacología , Masculino , Ratas , PPAR gamma/metabolismo , PPAR gamma/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , FN-kappa B/metabolismo , FN-kappa B/genética , Compuestos de Bencidrilo/toxicidad , Cardiotoxicidad/prevención & control , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/etiología , Doxorrubicina/toxicidad , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Caspasa 3/metabolismo , Caspasa 3/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Estilbenos/farmacología , Interleucina-6/metabolismo , Interleucina-6/genética , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo Oxigenasa (Desciclizante)/genética , Cardiotónicos/farmacología , Transducción de Señal/efectos de los fármacos , Modelos Animales de Enfermedad , Extractos Vegetales/farmacología , Ratas Wistar , Antioxidantes/farmacología
19.
Biology (Basel) ; 13(7)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39056661

RESUMEN

BACKGROUND: Human beings consume different chemical forms of iodine in their diet. These are transported by different mechanisms in the cell. The forms of iodine can be part of thyroid hormones, bind to lipids, be an antioxidant, or be an oxidant, depending on their chemical form. The excessive consumption of iodine has been associated with pancreatic damage and diabetes mellitus type 2, but the association between disease and the chemical form consumed in the diet is unknown. This research analyzes the effect of excessive iodine consumption as Lugol (molecular iodine/potassium iodide solution) and iodate on parameters of pancreatic function, thyroid and lipid profiles, antioxidant and oxidant status, the expression of IR/Akt/P-Akt/GLUT4, and transcription factors PPAR-γ and CEBP-ß. METHODS: Three groups of Wistar rats were treated with 300 µg/L of iodine in drinking water: (1) control, (2) KIO3, and (3) Lugol. RESULTS: Lugol and KIO3 consumption increased total iodine levels. Only KIO3 increased TSH levels. Both induced high serum glucose levels and increased oxidative stress and pancreatic alpha-amylase activity. Insulin levels and antioxidant status decreased significantly. PPAR-γ and C/EBP-ß mRNA expression increased. CONCLUSION: The pancreatic damage, hypertriglyceridemia, and oxidative stress were independent of the chemical form of iodine consumed. These effects depended on PPAR-γ, C/EBP-ß, GLUT-4, and IR.

20.
J Lipid Res ; 65(9): 100606, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39067519

RESUMEN

A high-fat diet (HFD) contributes to the pathogenesis of various inflammatory and metabolic diseases. Previous research confirms that under HFD conditions, the extraorbital lacrimal glands (ELGs) can be impaired, with significant infiltration of pro-inflammatory macrophages (Mps). However, the relationship between HFD and Mps polarization in the ELGs remains unexplored. We first identified and validated the differential expression of PPAR-γ in murine ELGs fed ND and HFD through RNA sequencing. Tear secretion was measured using the Schirmer test. Lipid droplet deposition within the ELGs was observed through Oil Red O staining and transmission electron microscopy. Mps phenotypes were determined through quantitative RT-PCR, immunofluorescence, and flow cytometric analysis. An in vitro high-fat culture system for Mps was established using palmitic acid (PA), with supernatants collected for co-culture with lacrimal gland acinar cells. Gene expression was determined through ELISA, immunofluorescence, immunohistochemistry, quantitative RT-PCR, and Western blot analysis. Pioglitazone reduced M1-predominant infiltration induced by HFD by increasing PPAR-γ levels in ELGs, thereby alleviating lipid deposition and enhancing tear secretion. In vitro tests indicated that PPAR-γ agonist shifted Mps from M1-predominant to M2-predominant phenotype in PA-induced Mps, reducing lipid synthesis in LGACs and promoting lipid catabolism, thus alleviating lipid metabolic disorders within ELGs. Conversely, the PPAR-γ antagonist induced opposite effects. In summary, the lacrimal gland is highly sensitive to high-fat and lipid metabolic disorders. Downregulation of PPAR-γ expression in ELGs induces Mps polarization toward predominantly M1 phenotype, leading to lipid metabolic disorder and inflammatory responses via the NF-κb/ERK/JNK/P38 pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA