Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Virchows Arch ; 485(3): 461-469, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39096416

RESUMEN

Metaplastic thymoma (MT), a rare subtype of thymic epithelial tumors (TETs), harbors YAP1::MAML2 fusions. Poroma, a skin tumor, also carries these fusions and exhibits a unique staining pattern for YAP1 immunohistochemistry (IHC), namely, a YAP1 N-terminus (YAP1[N])-positive but YAP1 C-terminus (YAP1[C])-negative pattern. In this context, MT was recently reported to lack YAP1(C) expression exclusively among TET subtypes. However, a lack of information about YAP1(N) expression in that study and another report that wild-type YAP1 expression was diminished in type B3 thymoma and thymic carcinoma warrants further studies for YAP1 expression in TETs. Thus, we immunohistochemically examined YAP1(N) and YAP1(C) staining patterns in our TET samples, including 14 cases of MT. In addition, 11 of the 14 MT cases were genetically analyzed with the formalin-fixed paraffin-embedded tissues if they harbored YAP1::MAML2 fusions. MT consistently exhibited YAP1(N)-positive and YAP(C)-negative staining, whereas type B3 thymoma and thymic carcinoma showed relatively heterogeneous staining patterns for YAP1(N) and YAP1(C) and were sometimes negative for both antibodies. Furthermore, a lower expression of YAP1 was found in type B3 compared to B2 thymomas. Among genetically analyzed 11 MT cases, 6 cases showed YAP1::MAML2 fusions, whereas the analysis failed in 5 very old cases due to poor RNA quality. These results indicate that IHC of both YAP1(N) and YAP1(C) is recommended to obtain staining patterns almost unique to MT. The biological significance of YAP1 in high-grade TETs warrants further investigation.

2.
Cancer Cell ; 42(8): 1336-1351.e9, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39029462

RESUMEN

The POU2F3-POU2AF2/3 transcription factor complex is the master regulator of the tuft cell lineage and tuft cell-like small cell lung cancer (SCLC). Here, we identify a specific dependence of the POU2F3 molecular subtype of SCLC (SCLC-P) on the activity of the mammalian switch/sucrose non-fermentable (mSWI/SNF) chromatin remodeling complex. Treatment of SCLC-P cells with a proteolysis targeting chimera (PROTAC) degrader of mSWI/SNF ATPases evicts POU2F3 and its coactivators from chromatin and attenuates downstream signaling. B cell malignancies which are dependent on the POU2F1/2 cofactor, POU2AF1, are also sensitive to mSWI/SNF ATPase degraders, with treatment leading to chromatin eviction of POU2AF1 and IRF4 and decreased IRF4 signaling in multiple myeloma cells. An orally bioavailable mSWI/SNF ATPase degrader significantly inhibits tumor growth in preclinical models of SCLC-P and multiple myeloma without signs of toxicity. This study suggests that POU2F-POU2AF-driven malignancies have an intrinsic dependence on the mSWI/SNF complex, representing a therapeutic vulnerability.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Factores de Transcripción , Humanos , Animales , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Carcinoma Pulmonar de Células Pequeñas/patología , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Línea Celular Tumoral , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Transducción de Señal , Regulación Neoplásica de la Expresión Génica , Factor 2 de Transcripción de Unión a Octámeros
3.
Cancer Cell ; 42(8): 1352-1369.e13, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39029464

RESUMEN

Small cell lung cancers (SCLCs) are composed of heterogeneous subtypes marked by lineage-specific transcription factors, including ASCL1, NEUROD1, and POU2F3. POU2F3-positive SCLCs, ∼12% of all cases, are uniquely dependent on POU2F3 itself; as such, approaches to attenuate POU2F3 expression may represent new therapeutic opportunities. Here using genome-scale screens for regulators of POU2F3 expression and SCLC proliferation, we define mSWI/SNF complexes as top dependencies specific to POU2F3-positive SCLC. Notably, chemical disruption of mSWI/SNF ATPase activity attenuates proliferation of all POU2F3-positive SCLCs, while disruption of non-canonical BAF (ncBAF) via BRD9 degradation is effective in pure non-neuroendocrine POU2F3-SCLCs. mSWI/SNF targets to and maintains accessibility over gene loci central to POU2F3-mediated gene regulatory networks. Finally, clinical-grade pharmacologic disruption of SMARCA4/2 ATPases and BRD9 decreases POU2F3-SCLC tumor growth and increases survival in vivo. These results demonstrate mSWI/SNF-mediated governance of the POU2F3 oncogenic program and suggest mSWI/SNF inhibition as a therapeutic strategy for POU2F3-positive SCLCs.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Factores de Transcripción , Humanos , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Carcinoma Pulmonar de Células Pequeñas/patología , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/tratamiento farmacológico , Animales , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Ratones , Línea Celular Tumoral , Proliferación Celular , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/genética
4.
Mod Pathol ; 37(10): 100557, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38964503

RESUMEN

Small cell carcinomas (SMC) of the lung are now molecularly classified based on the expression of transcriptional regulators (NEUROD1, ASCL1, POU2F3, and YAP1) and DLL3, which has emerged as an investigational therapeutic target. PLCG2 has been shown to identify a distinct subpopulation of lung SMC with stem cell-like and prometastasis features and poor prognosis. We analyzed the expression of these novel neuroendocrine markers and their association with traditional neuroendocrine markers and patient outcomes in a cohort of bladder neuroendocrine carcinoma (NEC) consisting of 103 SMC and 19 large cell NEC (LCNEC) assembled in tissue microarrays. Coexpression patterns were assessed and integrated with detailed clinical annotation including overall (OS) and recurrence-free survival (RFS) and response to neoadjuvant/adjuvant chemotherapy. We identified 5 distinct molecular subtypes in bladder SMC based on the expression of ASCL1, NEUROD1, and POU2F3: ASCL1+/NEUROD1- (n = 33; 34%), ASCL1- /NEUROD1+ (n = 21; 21%), ASCL1+/NEUROD1+ (n = 17; 17%), POU2F3+ (n = 22, 22%), and ASCL1- /NEUROD1- /POU2F3- (n = 5, 5%). POU2F3+ tumors were mutually exclusive with those expressing ASCL1 and NEUROD1 and exhibited lower expression of traditional neuroendocrine markers. PLCG2 expression was noted in 33 tumors (32%) and was highly correlated with POU2F3 expression (P < .001). DLL3 expression was high in both SMC (n = 72, 82%) and LCNEC (n = 11, 85%). YAP1 expression was enriched in nonneuroendocrine components and negatively correlated with all neuroendocrine markers. In patients without metastatic disease who underwent radical cystectomy, PLCG2+ or POU2F3+ tumors had shorter RFS and OS (P < .05), but their expression was not associated with metastasis status or response to neoadjuvant/adjuvant chemotherapy. In conclusion, the NEC of the bladder can be divided into distinct molecular subtypes based on the expression of ASCL1, NEUROD1, and POU2F3. POU2F3-expressing tumors represent an ASCL1/NEUROD1-negative subset of bladder NEC characterized by lower expression of traditional neuroendocrine markers. Marker expression patterns were similar in SMC and LCNEC. Expression of PLCG2 and POU2F3 was associated with shorter RFS and OS. DLL3 was expressed at high levels in both SMC and LCNEC of the bladder, nominating it as a potential therapeutic target.

5.
Cancer Cell ; 42(6): 1086-1105.e13, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38788720

RESUMEN

The olfactory epithelium undergoes neuronal regeneration from basal stem cells and is susceptible to olfactory neuroblastoma (ONB), a rare tumor of unclear origins. Employing alterations in Rb1/Trp53/Myc (RPM), we establish a genetically engineered mouse model of high-grade metastatic ONB exhibiting a NEUROD1+ immature neuronal phenotype. We demonstrate that globose basal cells (GBCs) are a permissive cell of origin for ONB and that ONBs exhibit cell fate heterogeneity that mimics normal GBC developmental trajectories. ASCL1 loss in RPM ONB leads to emergence of non-neuronal histopathologies, including a POU2F3+ microvillar-like state. Similar to small-cell lung cancer (SCLC), mouse and human ONBs exhibit mutually exclusive NEUROD1 and POU2F3-like states, an immune-cold tumor microenvironment, intratumoral cell fate heterogeneity comprising neuronal and non-neuronal lineages, and cell fate plasticity-evidenced by barcode-based lineage tracing and single-cell transcriptomics. Collectively, our findings highlight conserved similarities between ONB and neuroendocrine tumors with significant implications for ONB classification and treatment.


Asunto(s)
Linaje de la Célula , Estesioneuroblastoma Olfatorio , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Animales , Ratones , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patología , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Humanos , Estesioneuroblastoma Olfatorio/genética , Estesioneuroblastoma Olfatorio/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Microambiente Tumoral , Neoplasias Nasales/genética , Neoplasias Nasales/patología , Mucosa Olfatoria/patología , Mucosa Olfatoria/metabolismo , Modelos Animales de Enfermedad , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
6.
Cancer Cell ; 42(6): 1106-1125.e8, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38788718

RESUMEN

Neuroendocrine carcinomas (NECs) are extremely lethal malignancies that can arise at almost any anatomic site. Characterization of NECs is hindered by their rarity and significant inter- and intra-tissue heterogeneity. Herein, through an integrative analysis of over 1,000 NECs originating from 31 various tissues, we reveal their tissue-independent convergence and further unveil molecular divergence driven by distinct transcriptional regulators. Pan-tissue NECs are therefore categorized into five intrinsic subtypes defined by ASCL1, NEUROD1, HNF4A, POU2F3, and YAP1. A comprehensive portrait of these subtypes is depicted, highlighting subtype-specific transcriptional programs, genomic alterations, evolution trajectories, therapeutic vulnerabilities, and clinicopathological presentations. Notably, the newly discovered HNF4A-dominated subtype-H exhibits a gastrointestinal-like signature, wild-type RB1, unique neuroendocrine differentiation, poor chemotherapeutic response, and prevalent large-cell morphology. The proposal of uniform classification paradigm illuminates transcriptional basis of NEC heterogeneity and bridges the gap across different lineages and cytomorphological variants, in which context-dependent prevalence of subtypes underlies their phenotypic disparities.


Asunto(s)
Carcinoma Neuroendocrino , Regulación Neoplásica de la Expresión Génica , Humanos , Carcinoma Neuroendocrino/genética , Carcinoma Neuroendocrino/patología , Carcinoma Neuroendocrino/clasificación , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proteínas Señalizadoras YAP , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo
7.
Pathol Res Pract ; 257: 155296, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615507

RESUMEN

POU class 2 homeobox 3 (POU2F3)-positive small cell bladder carcinoma (SCBC) is an extremely rare entity, and its clinicopathologic features have not been fully described. Here, we investigated the clinicopathologic features of 4 cases of POU2F3-positive small cell bladder carcinoma (SCBC) and reviewed the literature. We collected 12 cases of SCBC from our departmental archives and detected the expression of POU2F3 by immunohistochemical (IHC) staining. Selected cases with or without POU2F3 expression were subjected to gene expression analysis between two different groups using DESeq2 software. We identified 4 POU2F3-positive SCBC patients, 2 males and 2 females, with a mean age of 77 years. Three patients had hematuria, and 1 patient had dysuria. Radiologic findings showed a bladder mass. Pathologic diagnosis showed that 3 cases were pure SCBC and 1 was mixed urothelial cancer (UC). Histopathologically, four POU2F3-positive SCBC tumors were composed of small round cells with sparse cytoplasm, the nuclei were salt-and-pepper-like or finely granular. Tumor cells showed characteristic cytoplasmic staining with punctate positive signals for cytokeratin. Syn and CD56 were diffusely positive in all the 4 patients. CgA was positive in only one patient. POU2F3-positive SCBC showed higher expression levels of POU2F3, HMGA2 and PLCG2 genes by RNA-Seq. Our data showed the specific clinicopathologic features of 4 rare POU2F3-positive SCBC cases, and the distinct molecular feature was observed between POU2F3-positive and negative SCBC in the limited number of cases.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Células Pequeñas , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Masculino , Femenino , Anciano , Carcinoma de Células Pequeñas/patología , Carcinoma de Células Pequeñas/metabolismo , Carcinoma de Células Pequeñas/genética , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Anciano de 80 o más Años , Persona de Mediana Edad , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/análisis
8.
EBioMedicine ; 102: 105062, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492534

RESUMEN

BACKGROUND: Recent studies have reported the predictive and prognostic value of novel transcriptional factor-based molecular subtypes in small-cell lung cancer (SCLC). We conducted an in-depth analysis pairing multi-omics data with immunohistochemistry (IHC) to elucidate the underlying characteristics associated with differences in clinical outcomes between subtypes. METHODS: IHC (n = 252), target exome sequencing (n = 422), and whole transcriptome sequencing (WTS, n = 189) data generated from 427 patients (86.4% males, 13.6% females) with SCLC were comprehensively analysed. The differences in the mutation profile, gene expression profile, and inflammed signatures were analysed according to the IHC-based molecular subtype. FINDINGS: IHC-based molecular subtyping, comprised of 90 limited-disease (35.7%) and 162 extensive-disease (64.3%), revealed a high incidence of ASCL1 subtype (IHC-A, 56.3%) followed by ASCL1/NEUROD1 co-expressed (IHC-AN, 17.9%), NEUROD1 (IHC-N, 12.3%), POU2F3 (IHC-P, 9.1%), triple-negative (IHC-TN, 4.4%) subtypes. IHC-based subtype showing high concordance with WTS-based subtyping and non-negative matrix factorization (NMF) clusterization method. IHC-AN subtype resembled IHC-A (rather than IHC-N) in terms of both gene expression profiles and clinical outcomes. Favourable median overall survival was observed in IHC-A (15.2 months) compared to IHC-N (8.0 months, adjusted HR 2.3, 95% CI 1.4-3.9, p = 0.002) and IHC-P (8.3 months, adjusted HR 1.7, 95% CI 0.9-3.2, p = 0.076). Inflamed tumours made up 25% of cases (including 53% of IHC-P, 26% of IHC-A, 17% of IHC-AN, but only 11% of IHC-N). Consistent with recent findings, inflamed tumours were more likely to benefit from first-line immunotherapy treatment than non-inflamed phenotype (p = 0.002). INTERPRETATION: This study provides fundamental data, including the incidence and basic demographics of molecular subtypes of SCLC using both IHC and WTS from a comparably large, real-world Asian/non-Western patient cohort, showing high concordance with the previous NMF-based SCLC model. In addition, we revealed underlying biological pathway activities, immunogenicity, and treatment outcomes based on molecular subtype, possibly related to the difference in clinical outcomes, including immunotherapy response. FUNDING: This work was supported by AstraZeneca, Future Medicine 2030 Project of the Samsung Medical Center [grant number SMX1240011], the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) [grant number 2020R1C1C1010626] and the 7th AstraZeneca-KHIDI (Korea Health Industry Development Institute) oncology research program.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Masculino , Femenino , Humanos , Factores de Transcripción/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/terapia , Pronóstico
9.
Discov Oncol ; 15(1): 36, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358561

RESUMEN

PURPOSE: Salivary gland tumors are histologically diverse. Ionocytes and tuft cells, rare epithelial cells found in normal salivary glands, might be associated with salivary tumors. Here, we explored the expression of FOXI1 and POU2F3, master regulators of ionocytes and tuft cells, respectively, for common salivary neoplasms using immunohistochemistry. METHODS: We analyzed normal salivary tissues and nine salivary gland tumors; Warthin tumors (WT), pleomorphic adenomas (PA), basal cell adenomas, and oncocytomas were benign, whereas mucoepidermoid, adenoid cystic, acinic cell, salivary duct carcinomas, and polymorphous adenocarcinomas were malignant. RESULTS: Normal salivary glands contained a few FOXI1- and POU2F3-positive cells in the ducts instead of the acini, consistent with ionocytes and tuft cells, respectively. Among the benign tumors, only WTs and PAs consistently expressed FOXI1 (10/10 and 9/10, respectively). The median H-score of WTs was significantly higher than that of PAs (17.5 vs. 4, P = 0.01). While WTs and PAs harbored POU2F3-positive cells (10/10 and 9/10, respectively), the median H-score was higher in WTs than in PAs (10.5 vs 4, respectively). Furthermore, WTs exhibited a unique staining pattern of FOXI1- and POU2F3-positive cells, which were present in luminal and abluminal locations, respectively. Whereas none of the malignant tumors expressed FOXI1, only adenoid cystic carcinoma consistently expressed POU2F3 (5/5), with a median H-score of 4. CONCLUSION: The expression patterns of the characteristic transcription factors found in ionocytes and tuft cells vary among salivary gland tumor types and are higher in WT, which might be relevant for understanding and diagnosing salivary gland neoplasms.

10.
bioRxiv ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38328238

RESUMEN

The POU2F3-POU2AF2/3 (OCA-T1/2) transcription factor complex is the master regulator of the tuft cell lineage and tuft cell-like small cell lung cancer (SCLC). Here, we found that the POU2F3 molecular subtype of SCLC (SCLC-P) exhibits an exquisite dependence on the activity of the mammalian switch/sucrose non-fermentable (mSWI/SNF) chromatin remodeling complex. SCLC-P cell lines were sensitive to nanomolar levels of a mSWI/SNF ATPase proteolysis targeting chimera (PROTAC) degrader when compared to other molecular subtypes of SCLC. POU2F3 and its cofactors were found to interact with components of the mSWI/SNF complex. The POU2F3 transcription factor complex was evicted from chromatin upon mSWI/SNF ATPase degradation, leading to attenuation of downstream oncogenic signaling in SCLC-P cells. A novel, orally bioavailable mSWI/SNF ATPase PROTAC degrader, AU-24118, demonstrated preferential efficacy in the SCLC-P relative to the SCLC-A subtype and significantly decreased tumor growth in preclinical models. AU-24118 did not alter normal tuft cell numbers in lung or colon, nor did it exhibit toxicity in mice. B cell malignancies which displayed a dependency on the POU2F1/2 cofactor, POU2AF1 (OCA-B), were also remarkably sensitive to mSWI/SNF ATPase degradation. Mechanistically, mSWI/SNF ATPase degrader treatment in multiple myeloma cells compacted chromatin, dislodged POU2AF1 and IRF4, and decreased IRF4 signaling. In a POU2AF1-dependent, disseminated murine model of multiple myeloma, AU-24118 enhanced survival compared to pomalidomide, an approved treatment for multiple myeloma. Taken together, our studies suggest that POU2F-POU2AF-driven malignancies have an intrinsic dependence on the mSWI/SNF complex, representing a therapeutic vulnerability.

11.
Virchows Arch ; 484(5): 777-788, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38168015

RESUMEN

Pulmonary large cell carcinoma (LCC) is an undifferentiated neoplasm lacking morphological, histochemical, and immunohistochemical features of small cell lung cancer, adenocarcinoma (ADC), or squamous cell carcinoma (SCC). The available molecular information on this rare disease is limited. This study aimed to provide an integrated molecular overview of 16 cases evaluating the mutational asset of 409 genes and the transcriptomic profiles of 20,815 genes. Our data showed that TP53 was the most frequently inactivated gene (15/16; 93.7%) followed by RB1 (5/16; 31.3%) and KEAP1 (4/16; 25%), while CRKL and MYB genes were each amplified in 4/16 (25%) cases and MYC in 3/16 (18.8%) cases; transcriptomic analysis identified two molecular subtypes including a Pure-LCC and an adenocarcinoma like-LCC (ADLike-LCC) characterized by different activated pathways and cell of origin. In the Pure-LCC group, POU2F3 and FOXI1 were distinctive overexpressed markers. A tuft cell-like profile and the enrichment of a replication stress signature, particularly involving ATR, was related to this profile. Differently, the ADLike-LCC were characterized by an alveolar-cell transcriptomic profile and association with AIM2 inflammasome complex signature. In conclusion, our study split the histological marker-null LCC into two different transcriptomic entities, with POU2F3, FOXI1, and AIM2 genes as differential expression markers that might be probed by immunohistochemistry for the differential diagnosis between Pure-LCC and ADLike-LCC. Finally, the identification of several signatures linked to replication stress in Pure-LCC and inflammasome complex in ADLike-LCC could be useful for designing new potential therapeutic approaches for these subtypes.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Células Grandes , Neoplasias Pulmonares , Transcriptoma , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Anciano , Persona de Mediana Edad , Femenino , Carcinoma de Células Grandes/genética , Carcinoma de Células Grandes/patología , Carcinoma de Células Grandes/terapia , Perfilación de la Expresión Génica , Mutación , Anciano de 80 o más Años
12.
Cancer Cell ; 41(12): 2066-2082.e9, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37995683

RESUMEN

Trans-differentiation from an adenocarcinoma to a small cell neuroendocrine state is associated with therapy resistance in multiple cancer types. To gain insight into the underlying molecular events of the trans-differentiation, we perform a multi-omics time course analysis of a pan-small cell neuroendocrine cancer model (termed PARCB), a forward genetic transformation using human prostate basal cells and identify a shared developmental, arc-like, and entropy-high trajectory among all transformation model replicates. Further mapping with single cell resolution reveals two distinct lineages defined by mutually exclusive expression of ASCL1 or ASCL2. Temporal regulation by groups of transcription factors across developmental stages reveals that cellular reprogramming precedes the induction of neuronal programs. TFAP4 and ASCL1/2 feedback are identified as potential regulators of ASCL1 and ASCL2 expression. Our study provides temporal transcriptional patterns and uncovers pan-tissue parallels between prostate and lung cancers, as well as connections to normal neuroendocrine cell states.


Asunto(s)
Carcinoma de Células Pequeñas , Neoplasias Pulmonares , Neoplasias de la Próstata , Carcinoma Pulmonar de Células Pequeñas , Masculino , Humanos , Neoplasias Pulmonares/genética , Carcinoma de Células Pequeñas/genética , Factores de Transcripción/genética , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Transdiferenciación Celular/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Carcinoma Pulmonar de Células Pequeñas/genética
13.
Histopathology ; 83(6): 912-924, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37644667

RESUMEN

AIMS: Small cell lung carcinoma (SCLC) can be classified into transcription factor-based subtypes (ASCL1, NeuroD1, POU2F3). While in-vitro studies suggest intratumoral heterogeneity in the expression of these markers, how SCLC subtypes vary over time and among locations in patients remains unclear. METHODS AND RESULTS: We searched a consecutive series of patients at our institution in 2006-22 for those with greater than one available formalin-fixed paraffin-embedded SCLC sample in multiple sites and/or time-points. Immunohistochemistry for ASCL1, NeuroD1 and POU2F3 was performed and evaluated using H-scores, with subtype assigned based on the positive marker (H-score threshold >10) with the highest H-score. The 179 samples (75, lung; 51, lymph nodes; 53, non-nodal metastases) from 84 patients (74 with two, 10 with more than two samples) included 98 (54.7%) ASCL1-dominant, 47 (26.3%) NeuroD1-dominant, 15 (8.4%) POU2F3-dominant, 17 (9.5%) triple-negative and two (1.1%) ASCL1/NeuroD1 co-dominant samples. NeuroD1-dominant subtype was enriched in non-lung locations. Subtype concordance from pairwise comparison was 71.4% overall and 89.7% after accounting for ASCL1/NeuroD1-dual expressors and technical factors including <500 cells/slide, H-score thresholds and sample decalcification. No significant difference in subtype concordance was noted with a longer time lapse or with extrathoracic versus intrathoracic samples in this cohort. CONCLUSIONS: After accounting for technical factors, transcription factor-based subtyping was discordant among multiple SCLC samples in ~10% of patients, regardless of sample locations and time lapse. Our findings highlighted the spatiotemporal heterogeneity of SCLC in clinical samples and potential challenges, including technical and biological factors, that might limit concordance in SCLC transcription factor-based subtyping.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma Pulmonar de Células Pequeñas/patología , Factores de Transcripción/genética , Neoplasias Pulmonares/patología , Pulmón/patología , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Factores de Transcripción de Octámeros/metabolismo
14.
Pathol Int ; 73(7): 265-280, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37278579

RESUMEN

Thymic epithelial tumors (TETs) encompass morphologically various subtypes. Thus, it would be meaningful to explore the expression phenotypes that delineate each TET subtype or overarching multiple subtypes. If these profiles are related to thymic physiology, they will improve our biological understanding of TETs and may contribute to the establishment of a more rational TET classification. Against this background, pathologists have attempted to identify histogenetic features in TETs for a long time. As part of this work, our group has reported several TET expression profiles that are histotype-dependent and related to the nature of thymic epithelial cells (TECs). For example, we found that beta5t, a constituent of thymoproteasome unique to cortical TECs, is expressed mainly in type B thymomas, for which the nomenclature of cortical thymoma was once considered. Another example is the discovery that most thymic carcinomas, especially thymic squamous cell carcinomas, exhibit expression profiles similar to tuft cells, a recently discovered special type of medullary TEC. This review outlines the currently reported histogenetic phenotypes of TETs, including those related to thymoma-associated myasthenia gravis, summarizes their genetic signatures, and provides a perspective for the future direction of TET classification.


Asunto(s)
Neoplasias Glandulares y Epiteliales , Timoma , Neoplasias del Timo , Humanos , Timoma/patología , Neoplasias del Timo/genética , Neoplasias del Timo/patología , Neoplasias Glandulares y Epiteliales/genética , Neoplasias Glandulares y Epiteliales/patología , Timo/patología
15.
Eur Urol ; 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37380560

RESUMEN

Small cell/neuroendocrine bladder cancers (SCBCs) are rare and highly aggressive tumors that are associated with poor clinical outcomes. We discovered that lineage-specific transcription factors (ASCL1, NEUROD1, and POU2F3) defined three SCBC molecular subtypes that resemble well-characterized subtypes in small cell lung cancer. The subtypes expressed various levels of neuroendocrine (NE) markers and distinct downstream transcriptional targets. Specifically, the ASCL1 and NEUROD1 subtypes had high NE marker expression and were enriched with different downstream regulators of the NE phenotype (FOXA2 and HES6, respectively). ASCL1 was also associated with the expression of delta-like ligands that control oncogenic Notch signaling. POU2F3, a master regulator of the NE low subtype, targeted TRPM5, SOX9, and CHAT. We also observed an inverse association between NE marker expression and immune signatures associated with sensitivity to immune checkpoint blockade, and the ASCL1 subtype had distinct targets for clinically available antibody-drug conjugates. These findings provide new insight into molecular heterogeneity in SCBCs with implications for the development of new treatment regimens. PATIENT SUMMARY: We investigated the levels of different proteins in a specific type of bladder cancer (small cell/neuroendocrine; SCBC). We could identify three distinct subtypes of SCBC with similarity to small cell/neuroendocrine cancers in other tissues. The results may help in identifying new treatment approaches for this type of bladder cancer.

16.
Cancers (Basel) ; 15(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37190202

RESUMEN

Thymic carcinoma is an aggressive malignancy that can be challenging to distinguish from thymoma using histomorphology. We assessed two emerging markers for these entities, EZH2 and POU2F3, and compared them with conventional immunostains. Whole slide sections of 37 thymic carcinomas, 23 type A thymomas, 13 type B3 thymomas, and 8 micronodular thymomas with lymphoid stroma (MNTLS) were immunostained for EZH2, POU2F3, CD117, CD5, TdT, BAP1, and MTAP. POU2F3 (≥10% hotspot staining), CD117, and CD5 showed 100% specificity for thymic carcinoma versus thymoma with 51%, 86%, and 35% sensitivity, respectively, for thymic carcinoma. All POU2F3 positive cases were also positive for CD117. All thymic carcinomas showed >10% EZH2 staining. EZH2 (≥80% staining) had a sensitivity of 81% for thymic carcinoma and a specificity of 100% for thymic carcinoma versus type A thymoma and MNTLS but had poor specificity (46%) for thymic carcinoma versus B3 thymoma. Adding EZH2 to a panel of CD117, TdT, BAP1, and MTAP increased cases with informative results from 67/81 (83%) to 77/81 (95%). Overall, absent EZH2 staining may be useful for excluding thymic carcinoma, diffuse EZH2 staining may help to exclude type A thymoma and MNTLS, and ≥10% POU2F3 staining has excellent specificity for thymic carcinoma versus thymoma.

17.
BMC Cancer ; 23(1): 438, 2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37179317

RESUMEN

BACKGROUND: Breast cancer is highly heterogeneous, suggesting that small but relevant subsets have been under-recognized. Rare and mainly triple-negative breast cancers (TNBCs) were recently found to exhibit tuft cell-like expression profiles, including POU2F3, the tuft cell master regulator. In addition, immunohistochemistry (IHC) has identified POU2F3-positive cells in the normal human breast, suggesting the presence of tuft cells in this organ. METHODS: Here, we (i) reviewed previously identified POU2F3-positive invasive breast cancers (n = 4) for POU2F3 expression in intraductal cancer components, (ii) investigated a new cohort of invasive breast cancers (n = 1853) by POU2F3-IHC, (iii) explored POU2F3-expressing cells in non-neoplastic breast tissues obtained from women with or without BRCA1 mutations (n = 15), and (iv) reanalyzed publicly available single-cell RNA sequencing (scRNA-seq) data from normal breast cells. RESULTS: Two TNBCs of the four previously reported invasive POU2F3-positive breast cancers contained POU2F3-positive ductal carcinoma in situ (DCIS). In the new cohort of invasive breast cancers, IHC revealed four POU2F3-positive cases, two of which were triple-negative, one luminal-type, and one triple-positive. In addition, another new POU2F3-positive tumor with a triple-negative phenotype was found in daily practice. All non-neoplastic breast tissues contained POU2F3-positive cells, irrespective of BRCA1 status. The scRNA-seq reanalysis confirmed POU2F3-expressing epithelial cells (3.3% of all epithelial cells) and the 17% that co-expressed the other two tuft cell-related markers (SOX9/AVIL or SOX9/GFI1B), which suggested they were bona fide tuft cells. Of note, SOX9 is also known as the "master regulator" of TNBCs. CONCLUSIONS: POU2F3 expression defines small subsets in various breast cancer subtypes, which can be accompanied by DCIS. The mechanistic relationship between POU2F3 and SOX9 in the breast warrants further analysis to enhance our understanding of normal breast physiology and to clarify the significance of the tuft cell-like phenotype for TNBCs.


Asunto(s)
Carcinoma Intraductal no Infiltrante , Neoplasias de la Mama Triple Negativas , Femenino , Humanos , Neoplasias de la Mama Triple Negativas/patología , Carcinoma Intraductal no Infiltrante/patología , Células Epiteliales/metabolismo , Factor de Transcripción SOX9/genética
18.
Cesk Patol ; 59(1): 18-22, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37072275

RESUMEN

Small cell lung carcinoma (SCLC) is a high grade neuroendocrinne tumour accounting for approximately 15 % of lung cancers. It is characterised by early relapse and low survival rate. The treatment has remained unchanged for decades. Histological and cytological characteristics are summarised in brief, along with genetic alterations of the tumour. A new molecular subtype classification is presented according to the expression of transciptional factors ASCL1 (SCLC-A), NEUROD1 (SCLC-D), POU2F3 (SCLC-P) and YAP1 (SCLC-Y). These subtypes represent different ways of tumorigenesis, and the distinct genomic alterations may offer new therapeutic strategies.


Asunto(s)
Carcinogénesis , Carcinoma Pulmonar de Células Pequeñas , Carcinoma Pulmonar de Células Pequeñas/clasificación , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patología , Carcinoma Pulmonar de Células Pequeñas/terapia , Humanos , Factores de Transcripción/genética , Carcinogénesis/genética , Regulación Neoplásica de la Expresión Génica
19.
Int J Cancer ; 153(2): 437-449, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-36815540

RESUMEN

Rectal cancer (RC) accounts for one-third of colorectal cancers (CRC), and 40% of these are locally advanced rectal cancers (LARC). The use of neoadjuvant chemoradiotherapy (nCRT) significantly reduces the rate of local recurrence compared to adjuvant therapy or surgery alone. However, after nCRT, up to 40%-60% of patients show a poor pathological response, while only about 20% achieve a pathological complete response. In this scenario, the identification of novel predictors of tumor response to nCRT is urgently needed to reduce LARC mortality and to spare poorly responding patients from unnecessary treatments. Therefore, by combining gene and microRNA expression datasets with proteomic data from LARC patients, we developed an integrated network centered on seven hub-genes putatively involved in the response to nCRT. In an independent validation cohort of LARC patients, we confirmed that differential expression of NFKB1, TRAF6 and STAT3 is correlated with the response to nCRT. In addition, the functional enrichment analysis also revealed that these genes are strongly related to hallmarks of cancer and inflammation, whose dysfunction may causatively affect LARC patient's response to nCRT. Furthermore, by constructing the transcription factor-module network, we hypothesized a protective role of POU2F3 gene, which could be used as a new drug target in LARC patients. Finally, we identified and tested in vitro entinostat, a histone deacetylase inhibitor, as a chemical compound that could be combined with a classical therapeutic regimen in order to design more efficient therapeutic strategies in LARC management.


Asunto(s)
Antineoplásicos , Neoplasias del Recto , Humanos , Fluorouracilo , Resultado del Tratamiento , Multiómica , Proteómica , Quimioradioterapia , Neoplasias del Recto/tratamiento farmacológico , Neoplasias del Recto/genética , Neoplasias del Recto/patología , Terapia Neoadyuvante , Factores de Transcripción de Octámeros
20.
Cancer Treat Res Commun ; 35: 100684, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36716535

RESUMEN

INTRODUCTION: Recently, several clinical trials of immunotherapy for extensive-stage small-cell lung cancer (ES-SCLC) have shown limited benefits because of unselected patients. Thus, we aimed to explore whether YES-associated protein 1 (YAP-1) and POU domain class 2 transcription factor 3 (POU2F3) could identify SCLC patients with durable benefits from immunotherapy as potential biomarkers. METHODS: We performed IHC of YAP-1 and POU2F3, and RNA-seq on tissues of ES- SCLC patients. An open-source plugin based on IHC-profiler was conducted to calculate the expression levels of YAP-1 and POU2F3. RESULTS: Patients with ES-SCLC were retrospectively investigated in the Guangdong Provincial People's Hospital from January 2018 to July 2021, and 21 patients whoever received atezolizumab plus etoposide/carboplatin (ECT) regimen also had tissue samples reachable. The median IHC-score of YAP-1 in responders (CR/PR patients) was significantly lower than in nonresponders (SD/PD patients) at 13.97 (95% CI: 8.97-16.30) versus 23.72 (95% CI: 8.13-75.40). The IHC-score of YAP-1 and PFS showed a negative correlation by Spearman (r=-0.496). However, POU2F3 did not show a correlation with efficacy. Besides, patients with YAP-1 high expression had IL6, MYCN, and MYCT1 upregulated, while analysis of immune cell infiltration only showed that M0 macrophages were significantly higher. CONCLUSIONS: The expression of YAP-1 negatively correlated with the efficacy of ECT in ES-SCLC patients while POU2F3 did not reveal the predictive value. However, prospective investigations with a large sample size are needed.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Inmunoterapia , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas Nucleares , Factores de Transcripción de Octámeros , Estudios Prospectivos , Estudios Retrospectivos , Carcinoma Pulmonar de Células Pequeñas/tratamiento farmacológico , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA