Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39235080

RESUMEN

Quinazolinone derivatives are an important class of pharmaceutical and pesticide intermediates, which are generally synthesized starting with the condensation reaction between aldehydes and 2-aminobenzamide to obtain corresponding intermediates and then oxidized to obtain the products. Although some catalysts have been developed currently for the synthesis of quinazolinone derivatives, their catalytic efficiency is relatively low because only the oxidative catalytic sites of the catalyst have been focused on. Herein, we synthesized three new polyoxometalate-based metal-organic frameworks, [CuI4(4,4'-bipy)7(Hn-1PMo12-nVnO40)]·2H2O (n = 1-3), which were formed by coordinating a Cu(I)-bipy complex with different Keggin-type phosphomolybdic acids. An important feature of these compounds is that they possess proton and multioxidative active sites [Cu(I) center and V(V) center]; thus, we applied them to the catalytic synthesis of quinazolinone derivatives. The results indicate that compound 3 has an excellent catalytic activity. Based on density functional theory calculations, it is speculated that protons participate in the aldehyde amine condensation reaction, which changes the reaction pathway and reduces the activation energy from 55.1 to 31.4 kcal/mol, thereby increasing the reaction rate significantly. Interestingly, Raman spectra and electron paramagnetic resonance measurements indicate the presence of CuIIOO• and •O2- during the oxidative dehydrogenation process, which facilitates the rapid consumption of 2-phenyl-2,3-dihydroquinazolin-4(1H)-one intermediates, thereby promoting the chemical reaction to move toward the positive direction. Thanks to the synergistic effect of multicatalytic sites, compound 3 achieved highly efficient catalytic synthesis of quinazolinones with 99% yield in 1 h.

2.
Bioorg Chem ; 153: 107761, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39241586

RESUMEN

This synthetic organic methodology involves the creation of novel coumarin-based hybrids of series (1-4) with pyrazole ring and (5-8) with oxadiazole moiety. The targeted compounds were tested for In vitro Antimicrobial efficacy against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans pathogenic microbes using disc diffusion and broth microdilution with ciprofloxacin and fluconazole as reference standards. Density functional theory (DFT) studies were used to study atomic structure and reactivity, including absolute electronegativity (χ), electrophilicity (ω), electron acceptor (ω+), donor capabilities (ω-), electron affinity (EA), energy gap (ΔE), global hardness (η), global softness (S), and ionisation potential (IP) and FMOs, NBOs, MEP, and Mulliken Charge analysis. The POM tests found three integrated pharmacophore sites with antibacterial, antiviral, and anticancer activities. Molecular docking studies are also used to determine the S. aureus nucleoside diphosphate kinase receptor's affinity and mode of action for the synthesized drugs. In silico analysis of thermodynamic and therapeutic effectiveness properties, including Lipinski's 'rule of five', Veber's rule, and ADME properties, predicted toxicity-free, non-carcinogenic, and risk-free oral administration of the synthesized complexes.

3.
Sci Rep ; 14(1): 18142, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103411

RESUMEN

The impact of adding ethylene vinyl acetate copolymer (EVA 80) and 1 wt% TiO2 nanoparticles on the morphology and crystallization behavior of poly(lactic acid) blends was investigated using DSC, SEM, and POM. Thermal analysis revealed the enhancement of crystallinity of PLA in the presence of TiO2 and higher EVA 80 content in the blend. The PLA and EVA 80 components showed compatibility, as evidenced by the shift of the glass transition temperatures of the PLA phase in the blend to lower values compared to neat PLA. The lower temperature shift of the cold crystallization of the PLA and the formation of the small spherulites of the PLA in the blends indicated that the EVA 80 and TiO2 act as a nucleating agent for crystallization. The non-isothermal crystallization parameters of the composites were evaluated using Avrami's modified model, the MO approach, and Friedman's isoconversional method. The Avrami's modified rate constant (K) and the effective activation energy values significantly increased with the incorporation of EVA 80 and TiO2 nanoparticles. Furthermore, the thermogravimetric analysis (TGA) showed improved thermal stability of PLA by adding EVA 80 and TiO2.

4.
Talanta ; 280: 126786, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39216417

RESUMEN

A lantern-shaped viologen/polyoxometalate (POM)-based compound [NiII(MSBP)2(H2O)2]·(ß-Mo8O26)·H2O (Ni-POM) (MSBP = 1-(4-Methanesulfonyl-benzyl)-[4,4']bipyridinyl-1-ium) was successfully synthesized by a hydrothermal method for the efficient detection of Ag+. A strong affinity between Ag+ and SO in the viologen component of the Ni-POM structure made them interact, which led to blue fluorescence quenching. In the concentration range of 0.1-4 µM, a strong linear relationship was observed between the Ag+concentration and the fluorescence intensity ratio of Ni-POM, and the limit of detection (LOD) was 20.4 nM. Considering the widespread presence of Ag+ in various water sources, daily necessities and food preservatives, the utilization of Ni-POM for detecting the concentration of Ag+ in real samples (water, daily necessities and beverages) was proved to be highly effective. Moreover, a remarkable recovery rate ranging from 95.70 % to 103.60 % was achieved, indicating that the monitoring results of practical samples were satisfactory. A fluorescent ink based on Ni-POM was designed for the purpose of information confidentiality. More importantly, the hydrogel intelligent device for visual detection of Ag+ was developed, which could realize visual real-time on-site quantitative detection of Ag+ concentration in beverages and daily necessities. Therefore, Ni-POM provides an effective platform for the development of visually quantitative detection of Ag+ in food and daily necessities.


Asunto(s)
Bebidas , Colorantes Fluorescentes , Plata , Compuestos de Tungsteno , Colorantes Fluorescentes/química , Plata/química , Compuestos de Tungsteno/química , Bebidas/análisis , Espectrometría de Fluorescencia/métodos , Límite de Detección , Níquel/química , Níquel/análisis , Molibdeno/química
5.
Ecol Evol ; 14(6): e11539, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38895578

RESUMEN

While macroinvertebrate dispersal operates at the individual level, predictions of their dispersal capabilities often rely on indirect proxies rather than direct measurements. To gain insight into the dispersal of individual specimens, it is crucial to mark (label) and capture individuals. Isotopic enrichment with 15N is a non-invasive method with the potential of labelling large quantities of macroinvertebrates. While the analysis of 15N is widely utilised in food web studies, knowledge on the specific utility of isotopic enrichment with 15N for mass labelling of macroinvertebrate individuals across different taxa and feeding types is limited. Previous studies have focused on single species and feeding types, leaving gaps in our understanding of the broader applicability of this method. Therefore, this study aimed to test and compare isotopic mass enrichment across several macroinvertebrate taxa and feeding types. We released 15NH4Cl at five stream reaches in North-Rhine Westphalia, Germany, and successfully enriched 12 distinct macroinvertebrate taxa (Crustacea and Insecta). Significant enrichment was achieved in active and passive filter feeders, grazers, shredders and predators, and predominantly showed positive correlations with the enrichment of the taxa's main food sources phytobenthos and particulate organic matter. Enrichment levels rose rapidly and peaked at distances between 50 m and 300 m downstream of the isotopic inlet; significant enrichment occurred up to 2000 m downstream of the isotopic inlet in all feeding types. Macroinvertebrate density estimates on the stream bottom averaged to a total of approximately 3.4 million labelled individuals of the 12 investigated taxa, thus showing the high potential of isotopic (15N) enrichment as a non-invasive method applicable for mass labelling across different macroinvertebrate feeding types. Hence, isotopic enrichment can greatly assist the analysis of macroinvertebrate dispersal through mark-and-recapture experiments, as it allows to measure the movement at the level of individual specimens.

6.
J Colloid Interface Sci ; 674: 437-444, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38941936

RESUMEN

Self-assembly of nanoclusters (NCs) is an effective synthetic method for preparing functionalized nanomaterials. However, the assembly process and mechanisms in solutions still remain ambiguous owing to the limited strategies to monitor intermediate assembled states. Herein, the self-assembly process of amphiphilic molecule 4POSS-DL-POM (consisting of four polyhedral oligomeric silsesquioxanes, a dendritic linker, and one polyoxometalate) by evaporation of acetone in a mixed acetone/n-decane solution is monitored by time-resolved synchrotron small-angle X-ray scattering (SAXS). Scattering data assessments, including Kratky analysis, pair distance distribution function, and model fitting, track the self-assembly process of 4POSS-DL-POM from a fractal network to compact NCs, then to core-shell NCs, and finally to superlattice structure. The calculated average aggregation number of a core-shell NC is 11 according to the parameters obtained from core-shell model fitting, in agreement with electron microscopy. The fundamental understanding of the self-assembly dynamics from heterocluster into NCs provides principles to control building block shape and guide target aggregation, which can further promote the design and construction of highly ordered cluster-assembled functional nanomaterials.

7.
Neurosci Biobehav Rev ; 162: 105691, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38733894

RESUMEN

The article presents a systematic literature review on the use and the psychiatric implications of over-the-counter drugs (OTC), prescription-only-medications (POM), and new psychoactive substances (NPS) within custodial settings. The searches wer carried out on 2 November 2022 on PubMed, Scopus, and Web of Science in line with PRISMA guidelines. A total of 538 records were identified, of which 37 met the inclusion criteria. Findings showed the most prevalent NPS and OTC and POM classes reported in prisons were synthetic cannabinoids receptor agonists (SCRAs) and opioids, respectively. NPS markets were shown to be in constant evolution following the pace of legislations aimed to reduce their spread. The use of such substances heavily impacts the conditions and rehabilitation of persons in custody, with consequent physical and mental health risks. It is important to raise awareness of the use and misuse of such substances in prisons (i) from an early warning perspective for law enforcement and policy makers (ii) to prompt doctors to cautiously prescribe substances that may be misused (iii) to improve and increase access to treatment provided (iv) to add such substances to routine toxicological screening procedures (v) to improve harm reduction programmes.


Asunto(s)
Medicamentos sin Prescripción , Psicotrópicos , Trastornos Relacionados con Sustancias , Humanos , Trastornos Relacionados con Sustancias/epidemiología , Prisiones , Medicamentos bajo Prescripción , Prisioneros
8.
Int J Biol Macromol ; 271(Pt 2): 132691, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38810857

RESUMEN

Eco-friendly poly(L-lactic acid) (PLA) can be made more versatile, and its crystallization rate is accelerated by adding Zinc-based metal-organic framework (Zn-MOF) particles. Using differential scanning calorimetry (DSC), the non-isothermal melt crystallization behavior of biodegradable PLA nucleated by 0.3 to 3 wt% of Zn-MOF was examined. The non-isothermal melt crystallization kinetics parameters were determined using a modified Avrami model and Mo approach. Zn-MOF dramatically accelerated the crystallization process, as evidenced by several non-isothermal crystallization metrics, including the crystallization half-time and crystallization rate constant. The melt crystallization temperatures of the PLA-Zn-MOF composites, with contents of 0.7 and 1 wt%, were increased by 21 °C compared to the neat PLA. Using the Friedman isoconversional kinetic method, the neat PLA and PLA-Zn-MOF composites' effective activation energy values, ∆E, were determined. The ∆E values of PLA-Zn-MOF from 0.3 to 1 wt% Zn-MOF composites were lower than that of neat PLA. Moreover, polarized optical microscopy revealed the formation of numerous small-sized PLA spherulites upon Zn-MOF addition. The results indicate that the Zn-MOF (at concentrations of 0.7 to 1.0 wt%) can be used as an efficient nucleating agent for PLA, where it increases the melt crystallization temperature, nucleation density, and crystallinity without changing the crystalline structure, while also significantly reduces the effective activation energy and the size of spherulites. Additionally, scanning electron microscopy confirms good dispersion of Zn-MOF (0.3 to 1 wt%) within the PLA matrix.


Asunto(s)
Cristalización , Estructuras Metalorgánicas , Poliésteres , Zinc , Poliésteres/química , Zinc/química , Estructuras Metalorgánicas/química , Cinética , Rastreo Diferencial de Calorimetría , Temperatura , Tecnología Química Verde/métodos
9.
Polymers (Basel) ; 16(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38732659

RESUMEN

Nanoparticles of spinel ferrites with a composition of Co0.9Cu0.1Fe2O4 (AM NPs) were effectively synthesized via a hydrothermal route. The structure of ferrite nanoparticles was characterized with X-ray diffraction, which showed a single cubic spinel phase. Energy-dispersive X-ray (EDX) spectroscopy and field emission-scanning electron microscopy (FE-SEM) were employed to analyse elemental composition and surface morphology, respectively. Moreover, the effects of the Co0.9Cu0.1Fe2O4 on the morphology of [PLA = polylactic acid] nanocomposites were examined through polarized light optical microscopy (POM) and X-ray diffraction (XRD). The thermal behaviours for tested samples were studied through [DSC = differential scanning calorimetry] and [TGA = thermal gravimetric analysis]. A great number of minor PLA spherulites were detected using POM in the presence of the Co0.9Cu0.1Fe2O4 ceramic magnetic nanoparticles (AM), increasing with AM nanoparticle contents. X-ray diffraction (XRD) analysis showed that the presence of nanoparticles led to an increase in the intensity of diffraction peaks. The DSC findings implied that the crystallization behaviours for the efficient PLA as well as its nanocomposites were affected by the addition of AM nanoparticles. They act as efficient nucleating agents because they shift the temperature of crystallization to a lower value. The Avrami models were used to analyse kinetics data. The experimental data were well described using the Avrami method for all samples tested. The addition of AM to the PLA matrix resulted in a decrease in the crystallization half-time t1/2 values, indicating a faster crystallization rate. TGA data showed that the occurrence of AM nanoparticles decreased the thermal stability of PLA.

10.
Med Chem ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38638049

RESUMEN

INTRODUCTION: In the present work, a series of novel pyridine carboxamides 3(a-h) were synthesized and screened with antibacterial activity. This research explores the application of Density Functional Theory (DFT) in studying biological systems at the quantum mechanical level, particularly in the context of drug design. DFT offers a streamlined approach to quantum mechanical calculations, making it indispensable in various scientific fields, and for its exceptional accuracy, reduced computational time, and cost-effectiveness has become a pivotal tool in computational chemistry. This research work highlights the integration of DFT studies with POM analyses, which effectively identify pharmacophoric sites. Moreover, the research incorporates in silico pharmacokinetics analyses to assess the pharmacokinetic properties of synthesized compounds. The paper focused on a series of compounds previously reported, aiming to provide a comprehensive understanding of their electronic structure, pharmacophoric features, and potential as drug candidates. This study not only contributes to the evolving field of computational chemistry but also holds implications for advancing drug design processes by combining theoretical insights with practical analyses. METHODS: The compounds 3(a-h) were subjected to Density Functional Theory (DFT) computations using the B3LYP/6-31G(d) basis set to get optimized geometric structures. GaussViewis used to display the contributions of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO). The determination of energy gaps was conducted using Gaussian 09W. The pharmacokinetic profiles were evaluated using existing techniques such as Osiris, Petra, and Molinspiration, as well as a novel platform called POM Analyse. RESULTS: The computational studies DFT, POM and in silico pharmacokinetics studies revealed that the studied compounds are biologically active, non-toxic, non-carcinogenic in nature and may be utilized as drug candidates. CONCLUSION: Density functional theory (DFT) investigations emphasize the exceptional stability of complex 3d, which possesses the biggest energy gap and the lowest softness. In contrast, compound 3h demonstrates poorer stability among the tested compounds, characterized by the lowest energy gap and the highest softness values. These findings are further substantiated by absolute energy calculations. The negligible energy difference in compound 3h indicates an increased transfer of electric charge within the molecule, which is associated with its enhanced biological effectiveness. The drug-likeness of the compounds is confirmed by POM and in silico pharmacokinetics investigations, with compound 3h being identified as the most biologically active among the investigated compounds.

11.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38543081

RESUMEN

Lipophilicity, a significant physicochemical parameter of bioactive molecules, along with absorption, distribution, metabolism, excretion parameters and toxicity risk, was investigated for 32 thiazolo[3,2-b][1,2,4]triazole and imidazo[2,1-b][1,3,4]thiadiazole derivatives with anti-inflammatory potential. The experimental lipophilicity study was carried out by reversed-phase thin-layer chromatography in a binary isopropanol-water mobile phase, and the obtained results were compared with the theoretical lipophilicity parameters estimated by various computational methods. Strong correlations were found between the experimental retention factors and calculated partition coefficients. A modified Petra/Osiris/Molinspiration analysis was performed on the previously synthesized compounds, using SwissADME, Osiris and Molinspiration web tools. The predicted in silico parameters highlighted the most promising compounds as potential drug candidates. The compounds showed good gastrointestinal absorption, moderate activity according to the bioactivity score (values situated between -1.25 and -0.06), and a safe toxicity profile. The results obtained in this study will contribute to lipophilicity studies and other future studies focused on modulating new drug candidates starting from thiazolo[3,2-b][1,2,4]triazole and imidazo[2,1-b][1,3,4]thiadiazole derivatives, which are important heterocycles in medicinal chemistry.

12.
Molecules ; 29(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38257339

RESUMEN

In this study, using the Comparative Molecular Field Analysis (CoMFA) approach, the structure-activity relationship of 33 small quinoline-based compounds with biological anti-gastric cancer activity in vitro was analyzed in 3D space. Once the 3D geometric and energy structure of the target chemical library has been optimized and their steric and electrostatic molecular field descriptions computed, the ideal 3D-QSAR model is generated and matched using the Partial Least Squares regression (PLS) algorithm. The accuracy, statistical precision, and predictive power of the developed 3D-QSAR model were confirmed by a range of internal and external validations, which were interpreted by robust correlation coefficients (RTrain2=0.931; Qcv2=0.625; RTest2=0.875). After carefully analyzing the contour maps produced by the trained 3D-QSAR model, it was discovered that certain structural characteristics are beneficial for enhancing the anti-gastric cancer properties of Quinoline derivatives. Based on this information, a total of five new quinoline compounds were developed, with their biological activity improved and their drug-like bioavailability measured using POM calculations. To further explore the potential of these compounds, molecular docking and molecular dynamics simulations were performed in an aqueous environment for 100 nanoseconds, specifically targeting serine/threonine protein kinase. Overall, the new findings of this study can serve as a starting point for further experiments with a view to the identification and design of a potential next-generation drug for target therapy against cancer.


Asunto(s)
Antineoplásicos , Quinolinas , Neoplasias Gástricas , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Antineoplásicos/farmacología , Quinolinas/farmacología , Relación Estructura-Actividad Cuantitativa , Neoplasias Gástricas/tratamiento farmacológico
13.
Macromol Rapid Commun ; 45(8): e2300674, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38234077

RESUMEN

Defined, branched polymer architectures with low dispersity and architectural purity are of great interest to polymer science but are challenging to synthesize. Besides star and comb, especially the pom-pom topology is of interest as it is the simplest topology with exactly two branching points. Most synthetic approaches to a pom-pom topology reported a lack of full control and variability over one of the three topological parameters, the backbone or arm molecular weight and arm number. A new, elegant, fast, and scalable synthetic route without the need for post-polymerization modification (PPM) or purification steps during the synthesis to a pom-pom and a broad variety of topologies made from styrene and dienes is reported, with potential application to barbwire, bottlebrush, miktoarm star, Janus type polymers, or multi-graft copolymers. The key is to inset short poly(2-vinyl-pyridine) blocks (<2 mol% in the branched product) into the backbone as branching points. Carb anions can react at the C6 carbon of the pyridine ring, grafting the arms onto the backbone. Since the synthetic route to polystyrene pom-poms has only two steps and is free of PPM or purification, large amounts of up to 300 g of defined pom-pom structures can be synthesized in one batch.


Asunto(s)
Aniones , Polimerizacion , Poliestirenos , Poliestirenos/química , Aniones/química , Estructura Molecular , Polímeros/química , Polímeros/síntesis química , Polivinilos/química , Polivinilos/síntesis química
14.
Mol Neurobiol ; 61(8): 5282-5294, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38180612

RESUMEN

Expansion of the GGGGCC-RNA repeat is a known cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), which currently have no cure. Recent studies have indicated the activation of Sigma-1 receptor plays an important role in providing neuroprotection, especially in ALS and Alzheimer's disease. Nevertheless, the mechanisms underlying Sigma-1R activation and its effect on (G4C2)n-RNA-induced cell death remain unclear. In this study, we demonstrated that fluvoxamine is a Sigma-1R agonist that can increase chaperone activity and stabilize the protein expression of Pom121 in (G4C2)31-RNA-expressing NSC34 cells, leading to increased colocalization at the nuclear envelope. Interestingly, fluvoxamine treatment increased Pom121 protein expression without affecting transcription. In C9orf72-ALS, the nuclear translocation of TFEB autophagy factor decreased owing to nucleocytoplasmic transport defects. Our results showed that pretreatment of NSC34 cells with fluvoxamine promoted the shuttling of TFEB into the nucleus and elevated the expression of LC3-II compared to the overexpression of (G4C2)31-RNA alone. Additionally, even when used alone, fluvoxamine increases Pom121 expression and TFEB translocation. To summarize, fluvoxamine may act as a promising repurposed medicine for patients with C9orf72-ALS, as it stabilizes the nucleoporin Pom121 and promotes the translocation of TFEB in (G4C2)31-RNA-expressing NSC34 cells.


Asunto(s)
Transporte Activo de Núcleo Celular , Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Fluvoxamina , Receptores sigma , Receptor Sigma-1 , Fluvoxamina/farmacología , Receptores sigma/metabolismo , Autofagia/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Humanos , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Ratones , Núcleo Celular/metabolismo , Núcleo Celular/efectos de los fármacos , Proteína C9orf72/metabolismo , Proteína C9orf72/genética , Línea Celular
15.
Dev Cell ; 59(4): 545-557.e4, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38228139

RESUMEN

Cyclin-dependent kinase (CDK) determines the temporal ordering of the cell cycle phases. However, despite significant progress in studying regulators of CDK and phosphorylation patterns of CDK substrates at the population level, it remains elusive how CDK regulators coordinately affect CDK activity at the single-cell level and how CDK controls the temporal order of cell cycle events. Here, we elucidate the dynamics of CDK activity in fission yeast and mammalian cells by developing a CDK activity biosensor, Eevee-spCDK. We find that although CDK activity does not necessarily correlate with cyclin levels, it converges to the same level around mitotic onset in several mutant backgrounds, including pom1Δ cells and wee1 or cdc25 overexpressing cells. These data provide direct evidence that cells enter the M phase when CDK activity reaches a high threshold, consistent with the quantitative model of cell cycle progression in fission yeast.


Asunto(s)
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Animales , Fosforilación , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Mitosis , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Mamíferos/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo
16.
Brain ; 147(1): 109-121, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37639327

RESUMEN

We have recently identified the aberrant nuclear accumulation of the ESCRT-III protein CHMP7 as an initiating event that leads to a significant injury to the nuclear pore complex (NPC) characterized by the reduction of specific nucleoporins from the neuronal NPC in sporadic amyotrophic lateral sclerosis (sALS) and C9orf72 ALS/frontotemporal dementia (FTD)-induced pluripotent stem cell-derived neurons (iPSNs), a phenomenon also observed in post-mortem patient tissues. Importantly, this NPC injury is sufficient to contribute to TDP-43 dysfunction and mislocalization, a common pathological hallmark of neurodegenerative diseases. However, the molecular mechanisms and events that give rise to increased nuclear translocation and/or retention of CHMP7 to initiate this pathophysiological cascade remain largely unknown. Here, using an iPSN model of sALS, we demonstrate that impaired NPC permeability barrier integrity and interactions with the LINC complex protein SUN1 facilitate CHMP7 nuclear localization and the subsequent 'activation' of NPC injury cascades. Collectively, our data provide mechanistic insights in the pathophysiological underpinnings of ALS/FTD and highlight SUN1 as a potent contributor to and modifier of CHMP7-mediated toxicity in sALS pathogenesis.


Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Enfermedad de Pick , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Demencia Frontotemporal/patología , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Neuronas/metabolismo , Proteínas de la Membrana , Proteínas Asociadas a Microtúbulos , Proteínas Nucleares , Complejos de Clasificación Endosomal Requeridos para el Transporte
17.
Adv Mater ; 36(1): e2309219, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37943506

RESUMEN

Polyoxometalates (POMs) are known antitumoral, antibacterial, antiviral, and anticancer agents and considered as next-generation metallodrugs. Herein, a new biological functionality in neutral physiological media, where selected mixed-metal POMs are sufficiently stable and able to affect membrane transport of impermeable, hydrophilic, and cationic peptides (heptaarginine, heptalysine, protamine, and polyarginine) is reported. The uptake is observed in both, model membranes as well as cells, and attributed to the superchaotropic properties of the polyoxoanions. In view of the structural diversity of POMs these findings pave the way toward their biomedical application in drug delivery or for cell-biological uptake studies with biological effector molecules or staining agents.


Asunto(s)
Antineoplásicos , Metales , Aniones , Antineoplásicos/química
18.
Chemistry ; 30(10): e202303401, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38057690

RESUMEN

The synthesis of highly efficient visible-light-responsive photocatalysts is fundamental to solving the problems of low efficiency and poor selectivity in photocatalytic organic synthesis reactions. We synthesized a crystalline polyoxometalate @metal-organic framework material {Zn4 (H2 O)8 [Ir(ppy)2 (dcbpy)]4 [SiW12 O40 ]} ⋅ 4H2 O (Ir-SiW) by self-assembly of Ir metalloligands with POMs. The introduction of Ir metalloligands extends the light absorbing range to visible light, improving the efficient utilization of solar energy. The transfer of photogenerated electrons from Ir metalloligands to SiW12 was observed under visible light irradiation, which boosted the carrier separation efficiency. The synergistic effect of the two components increased the photocatalytic thioether oxidation activity, and the product methyl phenyl sulfoxide for 2.5 h under visible light irradiation (λ >400 nm) reached 99.5 %, which was higher than those of other POM-based photocatalysts. Meanwhile, the yield of methyl phenyl sulfoxide was still higher than 97 % after three cycles, demonstrating the high stability and reusability of Ir-SiW.

19.
Radiol Artif Intell ; 5(6): e220259, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38074778

RESUMEN

Purpose: To evaluate the performance of a biopsy decision support algorithmic model, the intelligent-augmented breast cancer risk calculator (iBRISK), on a multicenter patient dataset. Materials and Methods: iBRISK was previously developed by applying deep learning to clinical risk factors and mammographic descriptors from 9700 patient records at the primary institution and validated using another 1078 patients. All patients were seen from March 2006 to December 2016. In this multicenter study, iBRISK was further assessed on an independent, retrospective dataset (January 2015-June 2019) from three major health care institutions in Texas, with Breast Imaging Reporting and Data System (BI-RADS) category 4 lesions. Data were dichotomized and trichotomized to measure precision in risk stratification and probability of malignancy (POM) estimation. iBRISK score was also evaluated as a continuous predictor of malignancy, and cost savings analysis was performed. Results: The iBRISK model's accuracy was 89.5%, area under the receiver operating characteristic curve (AUC) was 0.93 (95% CI: 0.92, 0.95), sensitivity was 100%, and specificity was 81%. A total of 4209 women (median age, 56 years [IQR, 45-65 years]) were included in the multicenter dataset. Only two of 1228 patients (0.16%) in the "low" POM group had malignant lesions, while in the "high" POM group, the malignancy rate was 85.9%. iBRISK score as a continuous predictor of malignancy yielded an AUC of 0.97 (95% CI: 0.97, 0.98). Estimated potential cost savings were more than $420 million. Conclusion: iBRISK demonstrated high sensitivity in the malignancy prediction of BI-RADS 4 lesions. iBRISK may safely obviate biopsies in up to 50% of patients in low or moderate POM groups and reduce biopsy-associated costs.Keywords: Mammography, Breast, Oncology, Biopsy/Needle Aspiration, Radiomics, Precision Mammography, AI-augmented Biopsy Decision Support Tool, Breast Cancer Risk Calculator, BI-RADS 4 Mammography Risk Stratification, Overbiopsy Reduction, Probability of Malignancy (POM) Assessment, Biopsy-based Positive Predictive Value (PPV3) Supplemental material is available for this article. Published under a CC BY 4.0 license.See also the commentary by McDonald and Conant in this issue.

20.
BMC Infect Dis ; 23(1): 883, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110897

RESUMEN

BACKGROUND: Pseudomonas otitidis belongs to the genus Pseudomonas and causes various infections, including ear, skin, and soft tissue infections. P. otitidis has a unique susceptibility profile, being susceptible to penicillins and cephalosporins but resistant to carbapenems, due to the production of the metallo-ß-lactamase called POM-1. This revealed genetic similarities with Pseudomonas aeruginosa, which can sometimes lead to misidentification. CASE PRESENTATION: We report the case of a 70-year-old Japanese male who developed cellulitis and bacteremia during chemotherapy for multiple myeloma. He was initially treated with meropenem, but blood culture later revealed gram-negative bacilli identified as P. otitidis using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Carbapenem resistance was predicted from previous reports; therefore, we switched to dual therapy with levofloxacin and cefepime, and favorable treatment results were obtained. CONCLUSION: This is the first reported case of P. otitidis cellulitis and bacteremia in an immunocompromised patient. Carbapenems are typically used in immunocompromised patients and P. otitidis is often resistant to it. However, its biochemical properties are similar to those of Pseudomonas aeruginosa; therefore, its accurate identification is critical. In the present study, we rapidly identified P. otitidis using MALDI-TOF MS and switched from carbapenems to an appropriate antimicrobial therapy, resulting in a successful outcome.


Asunto(s)
Bacteriemia , Infecciones por Pseudomonas , Humanos , Masculino , Anciano , Antibacterianos/uso terapéutico , Celulitis (Flemón)/diagnóstico , Celulitis (Flemón)/tratamiento farmacológico , Pseudomonas , Carbapenémicos/uso terapéutico , Infecciones por Pseudomonas/diagnóstico , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa , Bacteriemia/diagnóstico , Bacteriemia/tratamiento farmacológico , Huésped Inmunocomprometido , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA