Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 364: 143096, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39146993

RESUMEN

Rapid urbanization and industrialization have intensified air pollution, posing severe health risks and necessitating accurate PM2.5 predictions for effective urban air quality management. This study distinguishes itself by utilizing high-resolution ERA5 reanalysis data for a grid-based spatial analysis of Istanbul, Türkiye, a densely populated city with diverse pollutant sources. It assesses the predictive accuracy of advanced machine learning (ML) models-Multiple Linear Regression (MLR), Extreme Gradient Boosting (XGBoost), Light Gradient Boosting (LGB), Random Forest (RF), and Nonlinear Autoregressive with Exogenous Inputs (NARX). Notably, it introduces genetic algorithm optimization for the NARX model to enhance its performance. The models were trained on hourly PM2.5 concentrations from twenty monitoring stations across 2020-2021. Istanbul was divided into seven regions based on ERA5 grid distributions to examine PM2.5 spatial variability. Seventeen input variables from ERA5, including meteorological, land cover, and vegetation parameters, were analyzed using the Neighborhood Component Analysis (NCA) method to identify the most predictive variables. Comparative analysis showed that while all models provided valuable insights (RF > LGB > XGB > MLR), the NARX model outperformed them, particularly with the complex dataset used. The NARX model achieved a high R-value (0.89), low RMSE (5.24 µg/m³), and low MAE (2.94 µg/m³). It performed best in autumn and winter, with the highest accuracy in Region-1 (R-value 0.94) and the lowest in Region-5 (R-value 0.75). This study's success in a complex urban setting with limited monitoring underscores the robustness of the NARX model and the methodology's potential for global application in similar urban contexts. By addressing temporal and spatial variability in air quality predictions, this research sets a new benchmark and highlights the importance of advanced data analysis techniques for developing targeted pollution control strategies and public health policies.

2.
Atmos Environ (1994) ; 272: 118944, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35043042

RESUMEN

We investigate the impact of the COVID-19 outbreak on PM2.5 levels in eleven urban environments across the United States: Washington DC, New York, Boston, Chicago, Los Angeles, Houston, Dallas, Philadelphia, Detroit, Phoenix, and Seattle. We estimate daily PM2.5 levels over the contiguous U.S. in March-May 2019 and 2020, and leveraging a deep convolutional neural network, we find a correlation coefficient, an index of agreement, a mean absolute bias, and a root mean square error of 0.90 (0.90), 0.95 (0.95), 1.34 (1.24) µg/m3, and 2.04 (1.87) µg/m3, respectively. Results from Google Community Mobility Reports and estimated PM2.5 concentrations show a greater reduction of PM2.5 in regions with larger decreases in human mobility and those in which individuals remain in their residential areas longer. The relationship between vehicular PM2.5 (i.e., the ratio of vehicular PM2.5 to other sources of PM2.5) emissions and PM2.5 reductions (R = 0.77) in various regions indicates that regions with higher emissions of vehicular PM2.5 generally experience greater decreases in PM2.5. While most of the urban environments ⸺ Washington DC, New York, Boston, Chicago, Los Angeles, Houston, Dallas, Philadelphia, Detroit, and Seattle ⸺ show a decrease in PM2.5 levels by 21.1%, 20.7%, 18.5%, 8.05%, 3.29%, 3.63%, 6.71%, 4.82%, 13.5%, and 7.73%, respectively, between March-May of 2020 and 2019, Phoenix shows a 5.5% increase during the same period. Similar to their PM2.5 reductions, Washington DC, New York, and Boston, compared to other cities, exhibit the highest reductions in human mobility and the highest vehicular PM2.5 emissions, highlighting the great impact of human activity on PM2.5 changes in eleven regions. Moreover, compared to changes in meteorological factors, changes in pollutant concentrations, including those of black carbon, organic carbon, SO2, SO4, and especially NO2, appear to have had a significantly greater impact on PM2.5 changes during the study period.

3.
Environ Res ; 208: 112759, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35077716

RESUMEN

PM2.5 pollution endangers human health and urban sustainable development. Land use regression (LUR) is one of the most important methods to reveal the temporal and spatial heterogeneity of PM2.5, and the introduction of characteristic variables of geographical factors and the improvement of model construction methods are important research directions for its optimization. However, the complex non-linear correlation between PM2.5 and influencing indicators is always unrecognized by the traditional regression model. The two-dimensional landscape pattern index is difficult to reflect the real information of the surface, and the research accuracy cannot meet the requirements. As such, a novel integrated three-dimensional landscape pattern index (TDLPI) and machine learning extreme gradient boosting (XGBOOST) improved LUR model (LTX) are developed to estimate the spatiotemporal heterogeneity in the fine particle concentration in Shaanxi, China, and health risks of exposure and inhalation of PM2.5 were explored. The LTX model performed well with R2 = 0.88, RMSE of 8.73 µg/m3 and MAE of 5.85 µg/m3. Our findings suggest that integrated three-dimensional landscape pattern information and XGBOOST approaches can accurately estimate annual and seasonal variations of PM2.5 pollution The Guanzhong Plain and northern Shaanxi always feature high PM2.5 values, which exhibit similar distribution trends to those of the observed PM2.5 pollution. This study demonstrated the outstanding performance of the LTX model, which outperforms most models in past researches. On the whole, LTX approach is reliable and can improve the accuracy of pollutant concentration prediction. The health risks of human exposure to fine particles are relatively high in winter. Central part is a high health risk area, while northern area is low. Our study provides a new method for atmospheric pollutants assessing, which is important for LUR model optimization, high-precision PM2.5 pollution prediction and landscape pattern planning. These results can also contribute to human health exposure risks and future epidemiological studies of air pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , China , Monitoreo del Ambiente/métodos , Humanos , Aprendizaje Automático , Material Particulado/análisis
4.
Environ Pollut ; 271: 116327, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33360654

RESUMEN

Fine particulate matter (PM2.5) has attracted extensive attention because of its baneful influence on human health and the environment. However, the sparse distribution of PM2.5 measuring stations limits its application to public utility and scientific research, which can be remedied by satellite observations. Therefore, we developed a Geo-intelligent long short-term network (Geoi-LSTM) to estimate hourly ground-level PM2.5 concentrations in 2017 in Wuhan Urban Agglomeration (WUA). We conducted contrast experiments to verify the effectiveness of our model and explored the optimal modeling strategy. It turned out that Geoi-LSTM with TOA reflectance, meteorological conditions, and NDVI as inputs performs best. The station-based cross-validation R2, root mean squared error and mean absolute error are 0.82, 15.44 µg/m3, 10.63 µg/m3, respectively. Based on model results, we revealed spatiotemporal characteristics of PM2.5 in WUA. Generally speaking, during the day, PM2.5 concentration remained stable at a relatively high level in the morning and decreased continuously in the afternoon. While during the year, PM2.5 concentrations were highest in winter, lowest in summer, and in-between in spring and autumn. Combined with meteorological conditions, we further analyzed the whole process of a PM2.5 pollution event. Finally, we discussed the loss in removing clouds-covered pixels and compared our model with several popular models. Overall, our results can reflect hourly PM2.5 concentrations seamlessly and accurately with a spatial resolution of 5 km, which benefits PM2.5 exposure evaluations and policy regulations.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , China , Monitoreo del Ambiente , Humanos , Memoria a Corto Plazo , Material Particulado/análisis
5.
Proc Natl Acad Sci U S A ; 117(41): 25601-25608, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32958653

RESUMEN

Investigations on the chronic health effects of fine particulate matter (PM2.5) exposure in China are limited due to the lack of long-term exposure data. Using satellite-driven models to generate spatiotemporally resolved PM2.5 levels, we aimed to estimate high-resolution, long-term PM2.5 and associated mortality burden in China. The multiangle implementation of atmospheric correction (MAIAC) aerosol optical depth (AOD) at 1-km resolution was employed as a primary predictor to estimate PM2.5 concentrations. Imputation techniques were adopted to fill in the missing AOD retrievals and provide accurate long-term AOD aggregations. Monthly PM2.5 concentrations in China from 2000 to 2016 were estimated using machine-learning approaches and used to analyze spatiotemporal trends of adult mortality attributable to PM2.5 exposure. Mean coverage of AOD increased from 56 to 100% over the 17-y period, with the accuracy of long-term averages enhanced after gap filling. Machine-learning models performed well with a random cross-validation R2 of 0.93 at the monthly level. For the time period outside the model training window, prediction R2 values were estimated to be 0.67 and 0.80 at the monthly and annual levels. Across the adult population in China, long-term PM2.5 exposures accounted for a total number of 30.8 (95% confidence interval [CI]: 28.6, 33.2) million premature deaths over the 17-y period, with an annual burden ranging from 1.5 (95% CI: 1.3, 1.6) to 2.2 (95% CI: 2.1, 2.4) million. Our satellite-based techniques provide reliable long-term PM2.5 estimates at a high spatial resolution, enhancing the assessment of adverse health effects and disease burden in China.


Asunto(s)
Contaminación del Aire/estadística & datos numéricos , Exposición a Riesgos Ambientales , Mortalidad Prematura/tendencias , Material Particulado/análisis , Adulto , China , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Monitoreo del Ambiente , Sistemas de Información Geográfica , Humanos , Aprendizaje Automático , Modelos Estadísticos , Análisis Espacio-Temporal
6.
J Environ Manage ; 272: 111061, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32669259

RESUMEN

Previous studies that have used remote sensing data to estimate the PM2.5 concentrations mainly focused on the retrieval of aerosol optical depth (AOD) with moderate-to-low spatial resolution. However, the complex process of retrieving AOD from satellite Top-of-Atmosphere (TOA) reflectance always generates the missingness of AOD values due to the limitation of AOD retrieval algorithms. This study validated the possibility of using satellite TOA reflectance for estimating PM2.5 concentrations, rather than using conventional AOD products retrieved from remote sensing imageries. Given that the TOA-PM2.5 relationship cannot be accurately expressed by simple linear correlation, we developed a random forest model that integrated satellite TOA reflectance from Moderate Resolution Imaging Spectroradiometer (MODIS) Level 1B product, meteorological fields and land-use variables to estimate the ground-level PM2.5 concentrations. The highly-polluted Yangtze River Delta (YRD) region of eastern China was employed as our study case. The results showed that our model performed well with a site-based and a time-based CV R2 of 0.92 and 0.88, respectively. The derived annual and seasonal distributions of PM2.5 concentrations exhibited high PM2.5 values in northern YRD region (i.e., Jiangsu province) and relatively low values in southern region (i.e., Zhejiang province), which shared a similar distribution trend with the observed PM2.5 concentrations. This study demonstrated the outstanding performance of random forest model using satellite TOA reflectance, and also provided an effective method for remotely sensed PM2.5 estimation in regions where AOD retrievals are unavailable.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Aerosoles/análisis , Atmósfera , China , Monitoreo del Ambiente , Material Particulado/análisis
7.
J Am Coll Cardiol ; 75(7): 707-717, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-32081278

RESUMEN

BACKGROUND: Evidence of the effects of long-term fine particulate matter (PM2.5) exposure on cardiovascular diseases (CVDs) is rare for populations exposed to high levels of PM2.5 in China and in other countries with similarly high levels. OBJECTIVES: The aim of this study was to assess the CVD risks associated with long-term exposure to PM2.5 in China. METHODS: A nationwide cohort study, China-PAR (Prediction for Atherosclerotic Cardiovascular Disease Risk in China), was used, with 116,972 adults without CVD in 2000 being included. Participants were followed until 2015. Satellite-based PM2.5 concentrations at 1-km spatial resolution during the study period were used for exposure assessment. A Cox proportional hazards model with time-varying exposures was used to estimate the CVD risks associated with PM2.5 exposure, adjusting for individual risk factors. RESULTS: Annual mean concentrations of PM2.5 at the China-PAR sites ranged from 25.5 to 114.0 µg/m3. For each 10 µg/m3 increase in PM2.5 exposures, the multivariate-adjusted hazard ratio was 1.251 (95% confidence interval: 1.220 to 1.283) for CVD incidence and 1.164 (95% confidence interval: 1.117 to 1.213) for CVD mortality. The slopes of concentration-response functions of PM2.5 exposure and CVD risks were steeper at high PM2.5 levels. In addition, older residents, rural residents, and never smokers were more prone to adverse effects of PM2.5 exposure. CONCLUSIONS: This study provides evidence that elevated long-term PM2.5 exposures lead to increased CVD risk in China. The effects are more pronounced at higher PM2.5 levels. These findings expand the current knowledge on adverse health effects of severe air pollution and highlight the potential cardiovascular benefits of air quality improvement in China and other low- and middle-income countries.


Asunto(s)
Enfermedades Cardiovasculares/mortalidad , Material Particulado/efectos adversos , Adulto , Enfermedades Cardiovasculares/etiología , China/epidemiología , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Material Particulado/administración & dosificación , Factores de Tiempo
8.
Environ Int ; 134: 105297, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31785527

RESUMEN

High spatiotemporal resolution fine particulate matter (PM2.5) simulations can provide important exposure data for the assessment of long-term and short-term health effects. Satellite-based aerosol optical depth (AOD) data, meteorological data, and topographic data have become key variables for PM2.5 estimation. In this study, a random forest model was developed and used to estimate the highest resolution (0.01°â€¯× 0.01°) daily PM2.5 concentrations in the Beijing-Tianjin-Hebei region. Our model had a suitable performance (cv-R2 = 0.83 and test-R2 = 0.86). The regional test-R2 value in southern Beijing-Tianjin-Hebei was higher than that in northern Beijing-Tianjin-Hebei. The model performance was excellent at medium to high PM2.5 concentrations. Our study considered meteorological lag effects and found that the boundary layer height of the one-day lag had the most important contribution to the model. AOD and elevation factors were also important factors in the modeling process. High spatiotemporal resolution PM2.5 concentrations in 2010-2016 were estimated using a random forest model, which was based on PM2.5 measurements from 2013 to 2016.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Beijing , Análisis Espacio-Temporal
9.
Huan Jing Ke Xue ; 41(1): 1-13, 2020 Jan 08.
Artículo en Chino | MEDLINE | ID: mdl-31854898

RESUMEN

We use measured aerosol fine particulate matter (PM2.5) data, moderate resolution imaging spectroradiometer (MODIS) aerosol optical depth (AOD) data, and meteorological parameters (temperature, wind speed, wind direction, boundary layer height, and relative humidity) from the Chinese national control monitoring network, to consider seasonal and regional differences in the relationship between AOD and PM2.5. We propose a two-stage combined estimation model of PM2.5 concentrations based on the ε-support vector regression (ε-SVR/Epsilon-SVR) and the Mind Evolutionary Computation-BP neural network (MEC-BP) for analyzing spatiotemporal variations in PM2.5 concentrations in China between 2000 and 2017. The results showed that the two-stage combined estimation model provided a reliable estimation of the monthly ground-level PM2.5 concentrations at a spatial resolution of 1°×1° during 2000-2017 in China. This effectively offsets the time and space gaps in the current data sets of the ground monitoring network (R2=0.838, root mean square errors (RMSE)=11.512 µg·m-3, mean absolute percentage error (MAPE)=14.905%, mean squared percentage error (MSPE)=0.243%, mean absolute error (MAE)=6.476 µg·m-3, mean squared error (MSE)=132.519 µg·m-3). The preliminary spatiotemporal analysis results showed that:① Over the period 2000-2017, 2014 represented an important demarcation point for the annual PM2.5 concentration, as its trend changed from one of continuous increase to one of rapid decrease. The PM2.5 concentration decreases more rapidly in areas with high concentrations of PM2.5 in particular, including the northern coastal area, the eastern coastal area, and the middle reaches of the Changjiang River. ② During the studied period, the annual average PM2.5 concentration exceeded the second level criterion of the Chinese national air quality standard (35 µg·m-3) over more than 65% of China. Although the PM2.5 pollution situation in China improved to a certain extent in the latter years of the studied period, the air pollution situation remained poor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA