Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Intervalo de año de publicación
1.
Atherosclerosis ; 391: 117487, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38492245

RESUMEN

BACKGROUND AND AIMS: Therapeutic arteriogenesis is a promising direction for the treatment of ischemic disease caused by atherosclerosis. However, pharmacological or biological approaches to stimulate functional collateral vessels are not yet available. Identifying new drug targets to promote and explore the underlying mechanisms for therapeutic arteriogenesis is necessary. METHODS: Peptide OM-LV20 (20 ng/kg) was administered for 7 consecutive days on rat hindlimb ischemia model, collateral vessel growth was assessed by H&E staining, liquid latex perfusion, and specific immunofluorescence. In vitro, we detected the effect of OM-LV20 on human umbilical vein endothelial cells (HUVEC) proliferation and migration. After transfection, we performed quantitative real-time polymerase chain reaction, in situ-hybridization and dual luciferase reporters to assessed effective miRNAs and target genes. The proteins related to downstream signaling pathways were detected by Western blot. RESULTS: OM-LV20 significantly increased visible collateral vessels and endothelial nitric oxide synthase (eNOS), together with enhanced inflammation cytokine and monocytes/macrophage infiltration in collateral vessels. In vitro, we defined a novel microRNA (miR-29b-3p), and its inhibition enhanced proliferation and migration of HUVEC, as well as the expression of vascular endothelial growth factor A (VEGFA). OM-LV20 also promoted migration and proliferation of HUVEC, and VEGFA expression was mediated via inhibition of miR-29b-3p. Furthermore, OM-LV20 influenced the protein levels of VEGFR2 and phosphatidylinositol3-kinase (PI3K)/AKT and eNOS in vitro and invivo. CONCLUSIONS: Our data indicated that OM-LV20 enhanced arteriogenesis via the miR-29b-3p/VEGFA/VEGFR2-PI3K/AKT/eNOS axis, and highlighte the application potential of exogenous peptide molecular probes through miRNA, which could promote effective therapeutic arteriogenesis in ischemic conditions.


Asunto(s)
MicroARNs , Péptidos , Factor A de Crecimiento Endotelial Vascular , Humanos , Ratas , Animales , Arteria Femoral/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Isquemia/genética , Proliferación Celular
2.
Int J Cardiol ; 404: 131943, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38458386

RESUMEN

BACKGROUND: Previous studies have demonstrated the efficacy of ultrasound-targeted microbubble destruction (UTMD) in the treatment of ischemic heart failure (HF). The purpose of this study was to explore the mechanism by which UTMD improves ischemic HF. METHODS: An ischemic heart failure model was established using Sprague-Dawley rats. Rats were randomly divided into 7 groups: sham group, HF group, HF + MB group, HF + ultrasound (US) group, HF + UTMD group, HF + UTMD+LY294002 group, and HF + LY294002 group. Serum BNP level and echocardiographic parameters were measured to evaluate cardiac function. PI3K/Akt/eNOS signaling pathway protein levels were detected by immunohistochemistry (IHC) and western blotting. The concentrations of nitrous oxide (NO) and ATP were detected by ELISA, and hematoxylin and eosin (HE) staining was used to evaluate myocardial tissue. RESULTS: UTMD rapidly improved ejection fraction (EF) (HF: 37.16 ± 1.21% vs. HF + UTMD: 46.31 ± 3.00%, P < 0.01) and fractional shortening (FS) (HF: 18.53 ± 0.58% vs. HF + UTMD: 24.05 ± 1.84%, P < 0.01) in rats with ischemic HF. UTMD activated the PI3K/AKT/eNOS signaling pathway (HF vs. HF + UTMD, P < 0.01) and promoted the release of NO and ATP (HF vs. HF + UTMD, both, P < 0.05). Inhibition of the PI3K/AKT/eNOS signaling pathway by LY294002 worsened EF (HF: 37.16 ± 1.21% vs. HF + LY294002: 32.73 ± 3.05%, P < 0.05), and the release of NO and ATP by UTMD (HF + UTMD vs. HF + UTMD+LY294002, P < 0.05). CONCLUSIONS: UTMD can rapidly improve cardiac function in ischemic HF by activating the PI3K/Akt/eNOS signaling pathway and promoting the release of NO and ATP.


Asunto(s)
Insuficiencia Cardíaca , Proteínas Proto-Oncogénicas c-akt , Ratas , Animales , Ratas Sprague-Dawley , Proteínas Proto-Oncogénicas c-akt/metabolismo , Función Ventricular Izquierda , Microburbujas , Fosfatidilinositol 3-Quinasas , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/tratamiento farmacológico , Adenosina Trifosfato
4.
Redox Biol ; 68: 102946, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37924663

RESUMEN

Diabetic tubulopathy (DT) is a recently recognized key pathology of diabetic kidney disease (DKD). The mitochondria-centric view of DT is emerging as a vital pathological factor in different types of metabolic diseases, such as DKD. Finerenone (FIN), a novel non-steroidal mineralocorticoid receptor antagonist, attenuates kidney inflammation and fibrosis in DKD, but the precise pathomechanisms remain unclear. The role of mineralocorticoid receptor (MR) in perturbing mitochondrial function via the PI3K/Akt/eNOS signaling pathway, including mitochondrial dynamics and mitophagy, was investigated under a diabetic state and high glucose (HG) ambiance. To elucidate how the activation of MR provokes mitochondrial dysfunction in DT, human kidney proximal tubular epithelial (HK-2) cells were exposed to HG, and then mitochondrial dynamics, mitophagy, mitochondrial ROS (mitoROS), signaling molecules PI3K, Akt, Akt phosphorylation and eNOS were probed. The above molecules or proteins were also explored in the kidneys of diabetic and FIN-treated mice. FIN treatment reduced oxidative stress, mitochondrial fragmentation, and apoptosis while restoring the mitophagy via PI3K/Akt/eNOS signaling pathway in HK-2 cells exposed to HG ambiance and tubular cells of DM mice. These findings linked MR activation to mitochondrial dysfunction via PI3K/Akt/eNOS signaling pathway in DT and highlight a pivotal but previously undiscovered role of FIN in alleviating renal tubule injury for the treatment of DKD.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Humanos , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antagonistas de Receptores de Mineralocorticoides/metabolismo , Antagonistas de Receptores de Mineralocorticoides/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Nefropatías Diabéticas/metabolismo , Mitocondrias/metabolismo , Diabetes Mellitus/metabolismo
5.
Aging (Albany NY) ; 15(19): 10540-10548, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37815888

RESUMEN

BACKGROUND: Pressure ulcer is a severe disease in the paralyzed and aging populations. Endothelial progenitor cells (EPCs) are able to regulate ulcer healing by modulating angiogenesis, but the molecular mechanism is still obscure. Sonic hedgehog (SHH) signaling contributes to angiogenesis in various diseases and has been identified to modulate EPCs function. Here, we aimed to explore the significance of SHH signaling in EPCs function during pressure ulcers. METHODS: The EPCs were isolated and characterized by the expression of DiI-acLDL and bind fluorescein iso-thiocyanate UEA-1. Cell proliferation was detected by cell counting kit 8 (CCK-8). The DiI-acLDL and bind fluorescein iso-thiocyanate UEA-1 were analyzed by immunofluorescent analysis. The angiogenesis of EPCs was analyzed by tube formation assay. The pressure ulcers rat model was constructed, the wound injury was analyzed by H&E staining and angiogenesis was analyzed by the accumulation of CD31 based on immunofluorescent analysis. RESULTS: The expression of patched-1 and Gli-1 was enhanced by SHH activator SAG but reduced by SHH inhibitor cyclopamine in the EPCsThe PI3K, Akt, eNOS expression and the Akt phosphorylation were induced by SAG, while the treatment of cyclopamine presented a reversed result. The proliferation and migration of EPCs were enhanced by SAG but repressed by cyclopamine or PI3K/AKT/eNOS signaling inhibitor Y294002, in which the co-treatment of Y294002 could reverse the effect of SAG. CONCLUSIONS: Thus, we found that SHH signaling activated angiogenesis properties of EPCs to improve pressure ulcers healing by PI3K/AKT/eNOS signaling. SHH signaling may serve as the potential target for attenuating pressure ulcers.


Asunto(s)
Células Progenitoras Endoteliales , Úlcera por Presión , Ratas , Animales , Células Progenitoras Endoteliales/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Hedgehog/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Úlcera por Presión/metabolismo , Tiocianatos/metabolismo , Tiocianatos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Fluoresceínas/metabolismo , Fluoresceínas/farmacología , Movimiento Celular , Células Cultivadas
6.
J Ethnopharmacol ; 316: 116749, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37295575

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Fructus Tribuli (FT), a traditional Chinese medicinal herbal, has been used for the clinical treatment of cardiovascular diseases for many years and affects vascular endothelial dysfunction (ED) in patients with hypertension. AIM OF THE STUDY: This study aimed to demonstrate the pharmacodynamic basis and mechanisms of FT for the treatment of ED. MATERIALS AND METHODS: The present study used ultra-high-performance liquid chromatography coupled with quadruple-time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) to analyze and identify the chemical components of FT. The active components in blood were determined after the oral administration of FT by comparative analysis to blank plasma. Then, based on the active components in vivo, network pharmacology was performed to predict the potential targets of FT in treating ED. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were also performed, and component-target-pathway networks were constructed. Interactions between the major active components and main targets were verified by molecular docking. Moreover, spontaneously hypertensive rats (SHRs) were divided into the normal, model, valsartan, low-dose FT, medium-dose FT, and high-dose FT experimental groups. In pharmacodynamic verification studies, treatment effects on blood pressure, serum markers (nitric oxide [NO], endothelin-1 [ET-1,], and angiotensin Ⅱ [Ang Ⅱ)]) of ED, and endothelial morphology of the thoracic aorta were evaluated and compared between groups. Finally, the PI3K/AKT/eNOS pathway was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot of the thoracic aorta of rats in each group to detect the mRNA expression of PI3K, AKT, and eNOS and the protein expression of PI3K, AKT, p-AKT, eNOS, and p-eNOS. RESULTS: A total of 51 chemical components were identified in FT, and 49 active components were identified in rat plasma. Thirteen major active components, 22 main targets, and the PI3K/AKT signaling pathway were screened by network pharmacology. The animal experiment results showed that FT reduced systolic blood pressure and ET-1 and Ang Ⅱ levels and increased NO levels in SHRs to varying degrees. The therapeutic effects were positively correlated with the oral dose of FT. Hematoxylin-eosin (HE) staining confirmed that FT could alleviate the pathological damage of the vascular endothelium. qRT-PCR and Western blot analysis confirmed that up-regulated expression of the PI3K/AKT/eNOS signaling pathway could improve ED. CONCLUSIONS: In this study, the material basis of FT was comprehensively identified, and the protective effect on ED was confirmed. FT had a treatment effect on ED through multi-component, multi-target, and multi-pathways. It also played a role by up-regulating the PI3K/AKT/eNOS signaling pathway.


Asunto(s)
Medicamentos Herbarios Chinos , Hipertensión , Animales , Ratas , Simulación del Acoplamiento Molecular , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Hipertensión/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
7.
Biomed Pharmacother ; 162: 114654, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37018988

RESUMEN

Accidental exposure to phosgene can cause acute lung injury (ALI), characterized by uncontrolled inflammation and impaired lung blood-gas barrier. CD34+CD45+ cells with high pituitary tumor transforming gene 1 (PTTG1) expression were identified around rat pulmonary vessels through single-cell RNA sequencing, and have been shown to attenuate P-ALI by promoting lung vascular barrier repair. As a transcription factor closely related to angiogenesis, whether PTTG1 plays a role in CD34+CD45+ cell repairing the pulmonary vascular barrier in rats with P-ALI remains unclear. This study provided compelling evidence that CD34+CD45+ cells possess endothelial differentiation potential. Rats with P-ALI were intratracheally administered with CD34+CD45+ cells transfected with or without PTTG1-overexpressing and sh-PTTG1 lentivirus. It was found that CD34+CD45+ cells reduced the pulmonary vascular permeability and mitigated the lung inflammation, which could be reversed by knocking down PTTG1. Although PTTG1 overexpression enhanced the ability of CD34+CD45+ cells to attenuate P-ALI, no significant difference was found. PTTG1 was found to regulate the endothelial differentiation of CD34+CD45+ cells. In addition, knocking down of PTTG1 significantly reduced the protein levels of VEGF and bFGF, as well as their receptors, which in turn inhibited the activation of the PI3K/AKT/eNOS signaling pathway in CD34+CD45+ cells. Moreover, LY294002 (PI3K inhibitor) treatment inhibited the endothelial differentiation of CD34+CD45+ cells, while SC79 (AKT activator) yielded the opposite effect. These findings suggest that PTTG1 can promote the endothelial differentiation of CD34+CD45+ cells by activating the VEGF-bFGF/PI3K/AKT/eNOS signaling pathway, leading to the repair of the pulmonary vascular barrier in rats with P-ALI.


Asunto(s)
Lesión Pulmonar Aguda , Fosgeno , Ratas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Transducción de Señal
8.
J Integr Med ; 20(5): 432-441, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35850968

RESUMEN

OBJECTIVE: To investigate the influence of electroacupuncture (EA) on ghrelin and the phosphoinositide 3-kinase/protein kinase B/endothelial nitric oxide synthase (PI3K/Akt/eNOS) signaling pathway in spontaneously hypertensive rats (SHRs). METHODS: Eight Wistar-Kyoto rats were used as the healthy blood pressure (BP) control (normal group), and 32 SHRs were randomized into model group, EA group, EA plus ghrelin group (EA + G group), and EA plus PF04628935 group (a potent ghrelin receptor blocker; EA + P group) using a random number table. Rats in the normal group and model group did not receive treatment, but were immobilized for 20 min per day, 5 times a week, for 4 continuous weeks. SHRs in the EA group, EA + G group and EA + P group were immobilized and given EA treatment in 20 min sessions, 5 times per week, for 4 weeks. Additionally, 1 h before EA, SHRs in the EA + G group and EA + P group were intraperitoneally injected with ghrelin or PF04628935, respectively, for 4 weeks. The tail-cuff method was used to measure BP. After the 4-week intervention, the rats were sacrificed by cervical dislocation, and pathological morphology of the abdominal aorta was observed using hematoxylin-eosin (HE) staining. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of ghrelin, nitric oxide (NO), endothelin-1 (ET-1) and thromboxane A2 (TXA2) in the serum. Isolated thoracic aortic ring experiment was performed to evaluate vasorelaxation. Western blot was used to measure the expression of PI3K, Akt, phosphorylated Akt (p-Akt) and eNOS proteins in the abdominal aorta. Further, quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to measure the relative levels of mRNA expression for PI3K, Akt and eNOS in the abdominal aorta. RESULTS: EA significantly reduced the systolic BP (SBP) and diastolic BP (DBP) (P < 0.05). HE staining showed that EA improved the morphology of the vascular endothelium to some extent. Results of ELISA indicated that higher concentrations of ghrelin and NO, and lower concentrations of ET-1 and TXA2 were presented in the EA group (P < 0.05). The isolated thoracic aortic ring experiment demonstrated that the vasodilation capacity of the thoracic aorta increased in the EA group. Results of Western blot and qRT-PCR showed that EA increased the abundance of PI3K, p-Akt/Akt and eNOS proteins, as well as expression levels of PI3K, Akt and eNOS mRNAs (P < 0.05). In the EA + G group, SBP and DBP decreased (P < 0.05), ghrelin concentrations increased (P < 0.05), and the concentrations of ET-1 and TXA2 decreased (P < 0.05), relative to the EA group. In addition, the levels of PI3K and eNOS proteins, the p-Akt/Akt ratio, and the expression of PI3K, Akt and eNOS mRNAs increased significantly in the EA + G group (P < 0.05), while PF04628935 reversed these effects. CONCLUSION: EA effectively reduced BP and protected the vascular endothelium, and these effects may be linked to promoting the release of ghrelin and activation of the PI3K/Akt/eNOS signaling pathway.


Asunto(s)
Electroacupuntura , Óxido Nítrico Sintasa de Tipo III , Animales , Ghrelina/farmacología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico Sintasa de Tipo III/farmacología , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasa/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/farmacología , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Transducción de Señal
9.
Front Pharmacol ; 13: 894812, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35645804

RESUMEN

Endotoxins and other harmful substances may cause an increase in permeability in endothelial cells (ECs) monolayers, as well as ECs shrinkage and death to induce lung damage. Lipopolysaccharide (LPS) can impair endothelial progenitor cells (EPCs) functions, including proliferation, migration, and tube formation. EPCs can migrate to the damaged area, differentiate into ECs, and participate in vascular repair, which improves pulmonary capillary endothelial dysfunction and maintains the integrity of the endothelial barrier. Hydrogen (H2) contributes to the repairment of lung injury and the damage of ECs. We therefore speculate that H2 protects the EPCs against LPS-induced damage, and it's mechanism will be explored. The bone marrow-derived EPCs from ICR Mice were treated with LPS to establish a damaged model. Then EPCs were incubated with H2, and treated with PI3K inhibitor LY294002 and endothelial nitric oxide synthase (eNOS) inhibitor L-NAME. MTT assay, transwell assay and tube formation assay were used to detect the proliferation, migration and angiogenesis of EPCs. The expression levels of target proteins were detected by Western blot. Results found that H2 repaired EPCs proliferation, migration and tube formation functions damaged by LPS. LY294002 and L-NAME significantly inhibited the repaired effect of H2 on LPS-induced dysfunctions of EPCs. H2 also restored levels of phosphor-AKT (p-AKT), eNOS and phosphor-eNOS (p-eNOS) suppressed by LPS. LY294002 significantly inhibited the increase of p-AKT and eNOS and p-eNOS expression exposed by H2. L-NAME significantly inhibited the increase of eNOS and p-eNOS expression induced by H2. H2 repairs the dysfunctions of EPCs induced by LPS, which is mediated by PI3K/AKT/eNOS signaling pathway.

10.
Phytomedicine ; 104: 154242, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35728385

RESUMEN

BACKGROUND: Blood stasis syndrome (BSS) is a severe disorder involving disturbances in glycerophosphocholine metabolism. Ilex pubescens (IP) can regulate the levels of lipids, such as lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE); however, the main active constituent of IP and its corresponding mechanism in BSS treatment are still unclear. PURPOSE: To explore the mechanisms by which triterpenoid saponins of IP (IPTS) promote blood circulation using system pharmacology-based approaches. METHODS: Sprague-Dawley (SD) rat BSS model was prepared by oral administration of IPTS for 7 days followed by adrenaline hydrochloride injection before immersion in ice water. Coagulation parameters in plasma and thromboxane B2 (TXB2), endothelin (ET) and 6-keto-PGF1α in serum were measured. The possible influence on abdominal aortas was evaluated by histopathology assessment. Human vein endothelial cells (HUVECs) were incubated with ox-LDL, and the effects of IPTS on cell viability and LDH release were investigated. UPLC-QTOF-MS/MS was used for metabolic profile analysis of lipid-soluble components in rat plasma and intracellular metabolites in HUVECs. Network pharmacology was used to predict the relevant targets and model pathways of BSS and the main components of IPTS. Molecular docking, molecular dynamics (MD) simulation and biochemical assays were used to predict molecular interactions between the active components of IPTS and target proteins. RT-PCR was used to detect the mRNA level of target proteins. Western blotting and immunohistochemistry (IHC) were used to verify the mechanisms by which IPTS promotes blood circulation in BSS. RESULTS: IPTS improved blood biochemical function in the process of BSS and played a role in vascular protection and maintenance of the normal morphology of blood vessels. Furthermore, metabolite pathways involved in steroid biosynthesis and sphingolipid metabolism were significantly perturbed. Both metabolomics analysis and network pharmacology results showed that IPTS ameliorates vascular injury and that lipid accumulation may be mediated by PI3K/AKT signaling pathway activation. MD simulation and enzyme inhibitory activity results suggested that the main components of IPTS can form stable complexes with PI3K, AKT and eNOS and that the complexes have significant binding affinity. PI3K, AKT, p-AKT, and eNOS mRNA and protein levels were considerably elevated in the IPTS-treated group. Thus, IPTS protects the vasculature by regulating the PI3K/AKT signaling pathway, activating eNOS and increasing the release of NO. CONCLUSION: A possible mechanism by which IPTS prevents BSS is proposed: IPTS can promote blood circulation by modulating sphingolipid metabolism and activating the PI3K/AKT/eNOS signaling pathways.


Asunto(s)
Ilex , Saponinas , Triterpenos , Animales , Células Endoteliales/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero , Ratas , Ratas Sprague-Dawley , Saponinas/farmacología , Transducción de Señal , Esfingolípidos/farmacología , Espectrometría de Masas en Tándem , Triterpenos/farmacología
11.
Journal of Integrative Medicine ; (12): 432-441, 2022.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-939903

RESUMEN

OBJECTIVE@#To investigate the influence of electroacupuncture (EA) on ghrelin and the phosphoinositide 3-kinase/protein kinase B/endothelial nitric oxide synthase (PI3K/Akt/eNOS) signaling pathway in spontaneously hypertensive rats (SHRs).@*METHODS@#Eight Wistar-Kyoto rats were used as the healthy blood pressure (BP) control (normal group), and 32 SHRs were randomized into model group, EA group, EA plus ghrelin group (EA + G group), and EA plus PF04628935 group (a potent ghrelin receptor blocker; EA + P group) using a random number table. Rats in the normal group and model group did not receive treatment, but were immobilized for 20 min per day, 5 times a week, for 4 continuous weeks. SHRs in the EA group, EA + G group and EA + P group were immobilized and given EA treatment in 20 min sessions, 5 times per week, for 4 weeks. Additionally, 1 h before EA, SHRs in the EA + G group and EA + P group were intraperitoneally injected with ghrelin or PF04628935, respectively, for 4 weeks. The tail-cuff method was used to measure BP. After the 4-week intervention, the rats were sacrificed by cervical dislocation, and pathological morphology of the abdominal aorta was observed using hematoxylin-eosin (HE) staining. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of ghrelin, nitric oxide (NO), endothelin-1 (ET-1) and thromboxane A2 (TXA2) in the serum. Isolated thoracic aortic ring experiment was performed to evaluate vasorelaxation. Western blot was used to measure the expression of PI3K, Akt, phosphorylated Akt (p-Akt) and eNOS proteins in the abdominal aorta. Further, quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to measure the relative levels of mRNA expression for PI3K, Akt and eNOS in the abdominal aorta.@*RESULTS@#EA significantly reduced the systolic BP (SBP) and diastolic BP (DBP) (P < 0.05). HE staining showed that EA improved the morphology of the vascular endothelium to some extent. Results of ELISA indicated that higher concentrations of ghrelin and NO, and lower concentrations of ET-1 and TXA2 were presented in the EA group (P < 0.05). The isolated thoracic aortic ring experiment demonstrated that the vasodilation capacity of the thoracic aorta increased in the EA group. Results of Western blot and qRT-PCR showed that EA increased the abundance of PI3K, p-Akt/Akt and eNOS proteins, as well as expression levels of PI3K, Akt and eNOS mRNAs (P < 0.05). In the EA + G group, SBP and DBP decreased (P < 0.05), ghrelin concentrations increased (P < 0.05), and the concentrations of ET-1 and TXA2 decreased (P < 0.05), relative to the EA group. In addition, the levels of PI3K and eNOS proteins, the p-Akt/Akt ratio, and the expression of PI3K, Akt and eNOS mRNAs increased significantly in the EA + G group (P < 0.05), while PF04628935 reversed these effects.@*CONCLUSION@#EA effectively reduced BP and protected the vascular endothelium, and these effects may be linked to promoting the release of ghrelin and activation of the PI3K/Akt/eNOS signaling pathway.


Asunto(s)
Animales , Ratas , Electroacupuntura , Ghrelina/farmacología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/farmacología , Fosfatidilinositol 3-Quinasa/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/farmacología , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Transducción de Señal
12.
Front Cardiovasc Med ; 8: 747497, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34708093

RESUMEN

Background: Extracorporeal cardiac shock waves (ECSW) have great potential in the treatment of coronary heart disease. Endothelial progenitor cells (EPCs) are a class of pluripotent progenitor cells derived from bone marrow or peripheral blood, which have the capacity to migrate to ischemic myocardium and differentiate into mature endothelial cells and play an important role in neovascularization and endothelial repair. In this study, we investigated whether ECSW therapy can improve EPCs dysfunction and apoptosis induced by hypoxia and explored the underlying mechanisms. Methods: EPCs were separated from ApoE gene knockout rat bone marrow and identified using flow cytometry and fluorescence staining. EPCs were used to produce in vitro hypoxia-injury models which were then divided into six groups: Control, Hypoxia, Hypoxia + ECSW, Hypoxia + LY294002 + ECSW, Hypoxia + MK-2206 + ECSW, and Hypoxia + L-NAME + ECSW. EPCs from the Control, Hypoxia, and Hypoxia + ECSW groups were used in mRNA sequencing reactions. mRNA and protein expression levels were analyzed using qRT-PCR and western blot analysis, respectively. Proliferation, apoptosis, adhesion, migration, and angiogenesis were measured using CCK-8, flow cytometry, gelatin, transwell, and tube formation, respectively. Nitric oxide (NO) levels were measured using an NO assay kit. Results: Kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis showed that differentially expressed genes were enriched in cancer signaling, PI3K-Akt signaling, and Rap1 signaling pathways. We selected differentially expressed genes in the PI3K-Akt signaling pathway and verified them using a series of experiments. The results showed that ECSW therapy (500 shots at 0.09 mJ/mm2) significantly improved proliferation, adhesion, migration, and tube formation abilities of EPCs following hypoxic injury, accompanied by upregulation of p-PI3K, p-Akt, p-eNOS, Bcl-2 protein and NO, PI3K, and Akt mRNA expression, and downregulation of Bax and Caspase3 protein expression. All these effects of ECSW were eliminated using inhibitors specific to PI3K (LY294002), Akt (MK-2206), and eNOS (L-NAME). Conclusion: ECSW exerted a strong repaired effect on EPCs suffering inhibited hypoxia injury by inhibiting cell apoptosis and promoting angiogenesis, mainly through activating the PI3K/Akt/eNOS signaling pathway, which provide new evidence for ECSW therapy in CHD.

13.
Chinese Journal of Endemiology ; (12): 953-956, 2021.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-931468

RESUMEN

Objective:To explore the effect of fluoride exposure on the gene expression of phosphatidylinositol-3-kinase/protein kinase B/endothelial nitric oxide synthase (PI3K/Akt/eNOS) in rat aortic tissue, and to provide a theoretical basis for studying the mechanism of cardiovascular injury caused by endemic fluorosis.Methods:A total of 40 male Wistar rats were divided into 4 groups (10 rats in each group) via the random number table method according to body weight (80 - 100 g), namely control group (drinking distilled water), low-dose, medium-dose and high-dose groups [drinking distilled water containing 50, 100 and 150 mg/L sodium fluoride (NaF), respectively]. The rats were free to drink and eat. After feeding for 90 days, rats were sacrificed and the aortic tissue was taken. Three aortic tissue samples from the control group and the high-dose group were taken for mRNA sequencing, the differential genes were screened, and the differential genes were analyzed by GO function enrichment analysis and KEGG function enrichment analysis. At the same time, the mRNA expression levels of PI3K, Akt and eNOS in the aortic tissue of rats in each group were determined by real-time fluorescence quantitative PCR.Results:Compared with control group, there were 756 differential genes in high-dose group, including 654 up-regulated genes and 102 down-regulated genes. These differential genes were mainly related to biological processes such as muscle contraction, muscle regulation, muscle tissue development, striated muscle cell development, muscle cell differentiation, blood circulation regulation and striated muscle tissue development. They were mainly enriched in cyclic guanosine phosphate (cGMP-PKG) signaling pathway, relaxin signaling pathway and PI3K/Akt signaling pathway, etc. Compared with control group, the mRNA expression levels of PI3K and eNOS in aortic tissue of rats in low-dose, medium-dose and high-dose groups were significantly reduced ( P < 0.05); the mRNA expression level of Akt in low-dose group was significantly increased ( P < 0.05). Conclusion:Fluoride exposure has certain effects on the function and gene expression of rat aortic tissue, and PI3K/Akt/eNOS signaling pathway may play an important role in the process of fluoride induced aortic tissue injury in rats.

16.
BMC Complement Altern Med ; 19(1): 110, 2019 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-31126276

RESUMEN

BACKGROUND: Many studies on the effect of saponin-rich Codonopsis lanceolata as a bioactive source for improving physical health have been performed. C. lanceolata contains triterpenoid saponins, including lancemasides. These saponins are known to be particularly involved in the regulation of blood pressure or hypertension. This study investigated whether lancemaside A (LA), a major triterpenoid saponin from C. lanceolata, regulates nitric oxide (NO) production via the activation of endothelial NO synthase (eNOS) in human umbilical vein endothelial cells. METHODS: Upon separation with petroleum ether, ethyl acetate, and n-butanol, LA was found to be abundant in the n-butanol-soluble portion. For further purification of LA, HPLC was performed to collect fraction, and LA was identified using analysis of LC/MSMS and 13C-NMR values. In in vitro, the effects of LA on NO release mechanism in HUVECs were investigated by Griess assay, quantitative real-time reverse-transcription PCR, and Western blotting. RESULTS: Our results showed that NO production was efficiently improved by treatment with LA in a dose-dependent manner. In addition, the LA treatment resulted in extensive recovery of the NO production suppressed by the eNOS inhibitor, L-NAME, compared with that in the control group. Additionally, the level of eNOS mRNA was increased by this treatment in a dose-dependent manner. These results suggested that LA is an inducer of NO synthesis via eNOS mRNA expression. Also, the study indicated that LA is involved in activating the PI3K/Akt/eNOS signaling pathway. CONCLUSION: These results suggested that LA is an inducer of NO synthesis via eNOS mRNA expression. Also, the study indicated that LA is involved in activating the PI3K/Akt/eNOS signaling pathway. These findings suggest the value of using LA as a component of functional foods and natural pharmaceuticals.


Asunto(s)
Codonopsis/química , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico/metabolismo , Saponinas/farmacología , Transducción de Señal/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana , Humanos , Extractos Vegetales/química , Saponinas/química
17.
J Am Heart Assoc ; 7(2)2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29358197

RESUMEN

BACKGROUND: Myocardial infarction increases the risk of heart failure (HF) and atrial fibrillation. Renal denervation (RDN) might suppress the development of atrial remodeling. This study aimed to elucidate the molecular mechanism of RDN in the suppression of atrial fibrillation in a HF model after myocardial infarction. METHODS AND RESULTS: HF rabbits were created 4 weeks after coronary ligation. Rabbits were classified into 3 groups: normal control (n=10), HF (n=10), and HF-RDN (n=6). Surgical and chemical RDN were approached through midabdominal incisions in HF-RDN. Left anterior descending coronary artery in HF and HF-RDN was ligated to create myocardial infarction. After electrophysiological study, the rabbits were euthanized and the left atrial appendage was harvested for real-time polymerase chain reaction analysis and Trichrome stain. Left atrial dimension and left ventricular mass were smaller in HF-RDN by echocardiography compared with HF. Attenuated atrial fibrosis and tyrosine hydroxylase levels were observed in HF-RDN compared with HF. The mRNA expressions of Cav1.2, Nav1.5, Kir2.1, KvLQT1, phosphoinositide 3-kinase, AKT, and endothelial nitric oxide synthase in HF-RDN were significantly higher compared with HF. The effective refractory period and action potential duration of HF-RDN were significantly shorter compared with HF. Decreased atrial fibrillation inducibility was noted in HF-RDN compared with HF (50% versus 100%, P<0.05). CONCLUSIONS: RDN reversed atrial electrical and structural remodeling, and suppressed the atrial fibrillation inducibility in an ischemic HF model. The beneficial effect of RDN may be related to prevention of the downregulation of the phosphoinositide 3-kinase/AKT/endothelial nitric oxide synthase signaling pathway.


Asunto(s)
Apéndice Atrial/fisiopatología , Fibrilación Atrial/prevención & control , Función del Atrio Izquierdo , Remodelación Atrial , Desnervación Autonómica/métodos , Insuficiencia Cardíaca/cirugía , Riñón/inervación , Potenciales de Acción , Animales , Apoptosis , Apéndice Atrial/enzimología , Apéndice Atrial/patología , Fibrilación Atrial/enzimología , Fibrilación Atrial/etiología , Fibrilación Atrial/fisiopatología , Modelos Animales de Enfermedad , Fibrosis , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/fisiopatología , Frecuencia Cardíaca , Canales Iónicos/genética , Canales Iónicos/metabolismo , Masculino , Infarto del Miocardio/complicaciones , Infarto del Miocardio/fisiopatología , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosfatidilinositol 3-Quinasa/genética , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Conejos , Transducción de Señal
18.
Zhongguo Zhong Yao Za Zhi ; 43(23): 4692-4697, 2018 Dec.
Artículo en Chino | MEDLINE | ID: mdl-30717560

RESUMEN

The aim of this paper was to study the effect of total flavones of Clematis filamentosa Dunn(TFCD) post-conditioning against myocardial ischemia-reperfusion injury (MIRI) and the role of PI3K/Akt-eNOS signaling pathway. Forty male SD rats were divided randomly into five groups: Sham group, model group (I/R), TFCD post-conditioning group (TFCD), TFCD post-condition-ing+LY294002 (a PI3K/Akt signaling pathway inhibitor) group (TFCD+LY), and LY294002 group (LY). At the end of reperfusion, hemodynamic parameters were recorded, morphology changes of myocardial tissue were evaluated by using HE staining, and myocardial infarct size were observed, blood samples were obtained to determine plasma activation of lactate dehydrogenase (LDH), creatine kinase (CK) nitric oxide (NO), endothelial nitric oxide synthase (eNOS), superoxide dismutase (SOD), maleic dialdehyde (MDA) and glutathione peroxidase (GSH-Px). The expressions of Akt, p-Akt, eNOS and p-eNOS proteins were assessed by using Western blot, and eNOS and inducible nitric oxide synthase (iNOS) mRNA was measured by RT-PCR. The results showed that, compared with the model group, TFCD post-conditioning remarkably improved hemodynamics function and myocardial structure, reduced myocardial infarct size and enhanced the contents of NO, eNOS, SOD and GSH-Px, and decreased the contents of LDH, CK and MDA, increased the levels of phosphorylation of Akt and eNOS protein expression, eNOS and iNOS mRNA expression significantly(P<0.05 or P<0.01). These effects were inhibited by LY294002, a blocker of PI3K/Akt signaling pathway. The above experiments indicated that TFCD post-conditioning could significantly reduce MIRI in rats, the mechanism of which may be associated with increasing antioxidation, scavenging oxygen free radicals, regulating NO generation and activating PI3K/Akt-eNOS signaling pathway.


Asunto(s)
Clematis , Flavonas , Daño por Reperfusión Miocárdica , Animales , Masculino , Óxido Nítrico Sintasa de Tipo III , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Ratas , Ratas Sprague-Dawley , Transducción de Señal
19.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-701226

RESUMEN

AIM:To study the effect of Lycium barbarum polysaccharides (LBP) on oxidative stress injury of human endothelium-like EA. Hy926 cells induced by hydrogen peroxide (H2O2). METHODS:The EA. Hy926 cell model of oxidative stress injury was established by H2O2 treatment. The EA. Hy926 cells were divided into 5 groups:control group, damage (H2O2 at 50 mmol/L) group, LBP (100 mg/L) group, anti-damage groups (LBP at 50 mg/L, 100 mg/L or 200 mg/L+50 mol/L H2O2), and LY294002 (20 μmol/L) group. The effect of LBP at different concentrations on the cell viability of EA. Hy926 cells was measured by CCK-8 assay, and the optimum concentration of LBP was screened out. The apoptotic of EA. Hy926 cells was analyzed by flow cytometry. Acridine orange/ethidium bromide ( AO/EB) staining was used to observe the morphological characteristics of the apoptotic cells. The cell migration ability was detected by scratch method. The levels of nitric oxide (NO) and vascular endothelial growth factor (VEGF) in the cell culture medium were examined. The protein levels of cleaved caspase-3, Bax, Bcl-2, endothelial NO synthase (eNOS), p-eNOS and p-Akt were determined by Western blot. RESULTS:LBP at concentration of 100 mg/L significantly attenuated the injury of EA. Hy926 cells induced by H2O2, as indicated by improved cell viability ( P <0.05 ) and decreased apoptosis ( P <0.05). Pretreatment with LBP elevated the levels of NO and VEGF (P<0.05), and promoted the migration ability of EA. Hy926 cells. LBP also increased the Bcl-2/Bax ratio, down-regulated the protein level of cleaved caspase-3, and up-regulated the protein levels of eNOS and p-eNOS. The protective effect of LBP were abolished by pretreatment of the EA. Hy926 cells with the inhibitor of PI3K (P<0.05). As a result, the protein level of p-Akt was down-regulated, and the level of NO was also significantly reduced. CONCLUSION:LBP has protective effect on H2O2-induced EA. Hy926 cells by attenuating apoptosis of the cells. The mechanism is closely related to the activation of PI3K/Akt/eNOS signaling pathway.

20.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-771531

RESUMEN

The aim of this paper was to study the effect of total flavones of Clematis filamentosa Dunn(TFCD) post-conditioning against myocardial ischemia-reperfusion injury (MIRI) and the role of PI3K/Akt-eNOS signaling pathway. Forty male SD rats were divided randomly into five groups: Sham group, model group (I/R), TFCD post-conditioning group (TFCD), TFCD post-condition-ing+LY294002 (a PI3K/Akt signaling pathway inhibitor) group (TFCD+LY), and LY294002 group (LY). At the end of reperfusion, hemodynamic parameters were recorded, morphology changes of myocardial tissue were evaluated by using HE staining, and myocardial infarct size were observed, blood samples were obtained to determine plasma activation of lactate dehydrogenase (LDH), creatine kinase (CK) nitric oxide (NO), endothelial nitric oxide synthase (eNOS), superoxide dismutase (SOD), maleic dialdehyde (MDA) and glutathione peroxidase (GSH-Px). The expressions of Akt, p-Akt, eNOS and p-eNOS proteins were assessed by using Western blot, and eNOS and inducible nitric oxide synthase (iNOS) mRNA was measured by RT-PCR. The results showed that, compared with the model group, TFCD post-conditioning remarkably improved hemodynamics function and myocardial structure, reduced myocardial infarct size and enhanced the contents of NO, eNOS, SOD and GSH-Px, and decreased the contents of LDH, CK and MDA, increased the levels of phosphorylation of Akt and eNOS protein expression, eNOS and iNOS mRNA expression significantly(P<0.05 or P<0.01). These effects were inhibited by LY294002, a blocker of PI3K/Akt signaling pathway. The above experiments indicated that TFCD post-conditioning could significantly reduce MIRI in rats, the mechanism of which may be associated with increasing antioxidation, scavenging oxygen free radicals, regulating NO generation and activating PI3K/Akt-eNOS signaling pathway.


Asunto(s)
Animales , Masculino , Ratas , Clematis , Flavonas , Daño por Reperfusión Miocárdica , Óxido Nítrico Sintasa de Tipo III , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Ratas Sprague-Dawley , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA