Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros











Intervalo de año de publicación
1.
BMC Plant Biol ; 24(1): 699, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39044149

RESUMEN

BACKGROUND: Proteins harboring the SPX domain are crucial for the regulation of phosphate (Pi) homeostasis in plants. This study aimed to identify and analyze the entire SPX gene family within the cucumber genome. RESULTS: The cucumber genome encompassed 16 SPX domain-containing genes, which were distributed across six chromosomes and categorized into four distinct subfamilies: SPX, SPX-MFS, SPX-EXS and SPX-RING, based on their structure characteristics. Additionally, gene duplications and synteny analysis were conducted for CsSPXs, revealing that their promoter regions were enriched with a variety of hormone-responsive, biotic/abiotic stress and typical P1BS-related elements. Tissue expression profiling of CsSPX genes revealed that certain members were specifically expressed in particular organs, suggesting essential roles in cucumber growth and development. Under low Pi stress, CsSPX1 and CsSPX2 exhibited a particularly strong response to Pi starvation. It was observed that the cucumber cultivar Xintaimici displayed greater tolerance to low Pi compared to black-spined cucumber under low Pi stress conditions. Protein interaction networks for the 16 CsSPX proteins were predicted, and yeast two-hybrid assay revealed that CsPHR1 interacted with CsSPX2, CsSPX3, CsSPX4 and CsSPX5, implying their involvement in the Pi signaling pathway in conjunction with CsPHR1. CONCLUSION: This research lays the foundation for further exploration of the function of the CsSPX genes in response to low Pi stress and for elucidating the underlying mechanism.


Asunto(s)
Cucumis sativus , Familia de Multigenes , Fósforo , Proteínas de Plantas , Cucumis sativus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fósforo/metabolismo , Fósforo/deficiencia , Genoma de Planta , Genes de Plantas , Regulación de la Expresión Génica de las Plantas , Filogenia
2.
Front Plant Sci ; 15: 1379562, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708390

RESUMEN

To cope with phosphate (Pi) starvation, plants trigger an array of adaptive responses to sustain their growth and development. These responses are largely controlled at transcriptional levels. In Arabidopsis (Arabidopsis thaliana), PHOSPHATE RESPONSE 1 (PHR1) is a key regulator of plant physiological and transcriptional responses to Pi starvation. PHR1 belongs to a MYB-CC-type transcription factor family which contains 15 members. In this PHR1 family, PHR1/PHR1-like 1(PHL1) and PHL2/PHL3 form two distinct modules in regulating plant development and transcriptional responses to Pi starvation. PHL4 is the most closely related member to PHR1. Previously, using the phr1phl4 mutant, we showed that PHL4 is also involved in regulating plant Pi responses. However, the precise roles of PHL1 and PHL4 in regulating plant Pi responses and their functional relationships with PHR1 have not been clearly defined. In this work, we further used the phl1phl4 and phr1phl1phl4 mutants to perform comparative phenotypic and transcriptomic analyses with phr1, phr1phl1, and phr1phl4. The results showed that both PHL1 and PHL4 act redundantly and equally with PHR1 to regulate leaf senescence, Pi starvation induced-inhibition of primary root growth, and accumulation of anthocyanins in shoots. Unlike PHR1 and PHL1, however, the role of PHL4 in maintaining Pi homeostasis is negligible. In regulating transcriptional responses to Pi starvation at genomic levels, both PHL1 and PHL4 play minor roles when acts alone, however, they act synergistically with PHR1. In regulating Pi starvation-responsive genes, PHL4 also function less than PHL1 in terms of the number of the genes it regulates and the magnitude of gene transcription it affects. Furthermore, no synergistic interaction was found between PHL1 and PHL4 in regulating plant response to Pi starvation. Therefore, our results clarified the roles of PHL1 and PHL4 in regulating plant responses to Pi starvation. In addition, this work revealed a new function of these three transcription factors in regulating flowering time.

3.
Plant Commun ; 5(5): 100821, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38229439

RESUMEN

Anthocyanin accumulation is acknowledged as a phenotypic indicator of phosphate (Pi) starvation. However, negative regulators of this process and their molecular mechanisms remain largely unexplored. In this study, we demonstrate that WRKY33 acts as a negative regulator of phosphorus-status-dependent anthocyanin biosynthesis. WRKY33 regulates the expression of the gene encoding dihydroflavonol 4-reductase (DFR), a rate-limiting enzyme in anthocyanin production, both directly and indirectly. WRKY33 binds directly to the DFR promoter to repress its expression and also interferes with the MBW complex through interacting with PAP1 to indirectly influence DFR transcriptional activation. Under -Pi conditions, PHR1 interacts with WRKY33, and the protein level of WRKY33 decreases; the repression of DFR expression by WRKY33 is thus attenuated, leading to anthocyanin accumulation in Arabidopsis. Further genetic and biochemical assays suggest that PHR1 is also involved in regulating factors that affect WRKY33 protein turnover. Taken together, our findings reveal that Pi starvation represses WRKY33, a repressor of anthocyanin biosynthesis, to finely tune anthocyanin biosynthesis. This "double-negative logic" regulation of phosphorus-status-dependent anthocyanin biosynthesis is required for the maintenance of plant metabolic homeostasis during acclimation to Pi starvation.


Asunto(s)
Antocianinas , Regulación de la Expresión Génica de las Plantas , Fosfatos , Factores de Transcripción , Aclimatación , Oxidorreductasas de Alcohol/metabolismo , Oxidorreductasas de Alcohol/genética , Antocianinas/biosíntesis , Antocianinas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosfatos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Cell Commun Signal ; 21(1): 237, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723578

RESUMEN

As one of the most important human fungal pathogens, Candida albicans senses and adapts to host niches with different pH values through the pH-responsive Rim101 pathway. Its transcription factor Rim101 activates the expression of alkaline pH-induced genes including PHR1 that encodes a glycosylphosphatidylinsitol-anchored ß(1,3)-glucanosyltransferase critical for hyphal wall formation. The calcium/calcineurin signaling pathway is mediated by the transcription factor Crz1 in yeasts and other lower eukaryotes. Here we report that deletion of PHR1 leads to calcium sensitivity of C. albicans cells. In addition, expression of Phr1 is induced by calcium stress and under the control of Crz1 in C. albicans. EMSA assay demonstrates that Crz1 binds to one CDRE element in the PHR1 promoter. Alkaline treatment induces two species of glycosylated Phr1 proteins with different degrees of glycosylation, which is independent of Crz1. In contrast, only one species of Phr1 protein with a low degree of glycosylation is induced by calcium stress in a Crz1-dependent fashion. Therefore, we have provided an evidence that regulation of cell wall remodeling is integrated through differential degrees of Phr1 glycosylation by both the pH-regulated Rim101 pathway and the calcium/calcineurin signaling pathway in C. albicans. Video Abstract.


Asunto(s)
Calcio , Candida albicans , Proteínas Fúngicas , Factores de Transcripción , Calcineurina , Regulación de la Expresión Génica
5.
Int J Mol Sci ; 24(16)2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37628968

RESUMEN

Enhancing the absorption and utilization of phosphorus by crops is an important aim for ensuring food security worldwide. However, the gene regulatory network underlying phosphorus use in foxtail millet remains unclear. In this study, the molecular mechanism underlying low-phosphorus (LP) responsiveness in foxtail millet was evaluated using a comparative transcriptome analysis. LP reduced the chlorophyll content in shoots, increased the anthocyanin content in roots, and up-regulated purple acid phosphatase and phytase activities as well as antioxidant systems (CAT, POD, and SOD). Finally, 13 differentially expressed genes related to LP response were identified and verified using transcriptomic data and qRT-PCR. Two gene co-expression network modules related to phosphorus responsiveness were positively correlated with POD, CAT, and PAPs. Of these, SiPHR1, functionally annotated as PHOSPHATE STARVATION RESPONSE 1, was identified as an MYB transcription factor related to phosphate responsiveness. SiPHR1 overexpression in Arabidopsis significantly modified the root architecture. LP stress caused cellular, physiological, and phenotypic changes in seedlings. SiPHR1 functioned as a positive regulator by activating downstream genes related to LP tolerance. These results improve our understanding of the molecular mechanism underlying responsiveness to LP stress, thereby laying a theoretical foundation for the genetic modification and breeding of new LP-tolerant foxtail millet varieties.


Asunto(s)
Arabidopsis , Setaria (Planta) , Transcriptoma , Setaria (Planta)/genética , Fitomejoramiento , Perfilación de la Expresión Génica , Antocianinas
6.
J Integr Plant Biol ; 65(9): 2175-2193, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37272713

RESUMEN

PHR1 (PHOSPHATE STARVATION RESPONSE1) plays key roles in the inorganic phosphate (Pi) starvation response and in Pi deficiency-induced anthocyanin biosynthesis in plants. However, the post-translational regulation of PHR1 is unclear, and the molecular basis of PHR1-mediated anthocyanin biosynthesis remains elusive. In this study, we determined that MdPHR1 was essential for Pi deficiency-induced anthocyanin accumulation in apple (Malus × domestica). MdPHR1 interacted with MdWRKY75, a positive regulator of anthocyanin biosynthesis, to enhance the MdWRKY75-activated transcription of MdMYB1, leading to anthocyanin accumulation. In addition, the E3 ubiquitin ligase SEVEN IN ABSENTIA1 (MdSINA1) negatively regulated MdPHR1-promoted anthocyanin biosynthesis via the ubiquitination-mediated degradation of MdPHR1. Moreover, the protein kinase apple BRASSINOSTEROID INSENSITIVE2 (MdBIN2) phosphorylated MdPHR1 and positively regulated MdPHR1-mediated anthocyanin accumulation by attenuating the MdSINA1-mediated ubiquitination degradation of MdPHR1. Taken together, these findings not only demonstrate the regulatory role of MdPHR1 in Pi starvation induced anthocyanin accumulation, but also provide an insight into the post-translational regulation of PHR1.


Asunto(s)
Malus , Malus/genética , Malus/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Antocianinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitinación , Regulación de la Expresión Génica de las Plantas
7.
Plant Physiol Biochem ; 200: 107801, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37269822

RESUMEN

Phosphate (Pi) deficiency is a common stress that limits plant growth and development. Plants exhibit a variety of Pi starvation responses (PSRs), including anthocyanin accumulation. The transcription factors of the PHOSPHATE STARVATION RESPONSE (PHR) family, such as AtPHR1 in Arabidopsis, play central roles in the regulation of Pi starvation signaling. Solanum lycopersicum PHR1-like 1 (SlPHL1) is a recently identified PHR involved in PSR regulation in tomato, but the detailed mechanism of its participation in Pi starvation-inducing anthocyanin accumulation remains unclear. Here we found that overexpression of SlPHL1 in tomato increases the expression of genes associated with anthocyanin biosynthesis, thereby promoting anthocyanin biosynthesis, but silencing SlPHL1 with Virus Induced Gene Silencing (VIGS) attenuated low phosphate (LP) stress-induced anthocyanin accumulation and expression of the biosynthesis-related genes. Notably, SlPHL1 is able to bind the promoters of genes Flavanone 3-Hydroxylase (SlF3H), Flavanone 3'-Hydroxylase (SlF3'H), and Leucoanthocyanidin Dioxygenase (SlLDOX) by yeast one-hybrid (Y1H) analysis. Furthermore, Electrophoretic Mobility Shift Assay (EMSA) and transient transcript expression assay showed that PHR1 binding t (sequence (P1BS) motifs located on the promoters of these three genes are critical for SlPHL1 binding and enhancing the gene transcription. Additionally, allogenic overexpression of SlPHL1 could promote anthocyanin biosynthesis in Arabidopsis under LP conditions through the similar mechanism to AtPHR1, suggesting that SlPHL1 might be functionally conserved with AtPHR1 in this process. Taken together, SlPHL1 positively regulates LP-induced anthocyanin accumulation by directly promoting the transcription of SlF3H, SlF3'H and SlLDOX. These findings will contribute to understanding the molecular mechanism of PSR in tomato.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Solanum lycopersicum , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Solanum lycopersicum/genética , Antocianinas/metabolismo , Regulación hacia Arriba , Fosfatos/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética
8.
J Exp Bot ; 74(6): 1784-1805, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36708176

RESUMEN

The soil contributes to the main pool of essential mineral nutrients for plants. These mineral nutrients are critical elements for the building blocks of plant biomolecules, play fundamental roles in cell processes, and act in various enzymatic reactions. The roots are the main entry point for mineral nutrients used within the plant to grow, develop, and produce seeds. In this regard, a suite of plant nutrient transport systems, sensors, and signaling proteins function in acquiring mineral nutrients through the roots. Mineral nutrients from chemical fertilizers, composed mainly of nitrogen, phosphorus, and potassium (NPK), are added to agricultural land to maximize crop yields, worldwide. However, improving nutrient uptake and use within crops is critical for economically and environmentally sustainable agriculture. Therefore, we review the molecular basis for N, P, and K nutrient uptake into the roots. Remarkably, plants are responsive to heterogeneous nutrient distribution and align root growth and nutrient uptake with nutrient-rich patches. We highlight the relationship between nutrient distribution in the growth environment and root system architecture. We discuss the exchange of information between the root and shoot systems through the xylem and phloem, which coordinates nutrient uptake with photosynthesis. The size and structure of the root system, along with the abundance and activity of nutrient transporters, largely determine the nutrient acquisition rate. Lastly, we discuss connections between N, P, and K uptake and signaling.


Asunto(s)
Raíces de Plantas , Suelo , Raíces de Plantas/metabolismo , Transporte Biológico , Minerales/metabolismo , Productos Agrícolas/metabolismo
9.
J Exp Bot ; 74(6): 2083-2111, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36629302

RESUMEN

Phosphorus (P) limitation in the majority of world soils is a major constraint for plant growth and crop productivity. RNA sequencing was used to discover novel P-responsive gene transcripts (PRGTs) in leaves and roots of Arabidopsis. Hisat StringTie and the Cufflinks TopHat transcript assembler were used to analyze reads and identify 1074 PRGTs with a >5-fold altered abundance during P limitation. Interestingly, 60% of these transcripts were not previously reported. Among the novel PRGTs, 106 were from unannotated genes, and some were among the most P-responsive, including At2g36727 which encodes a novel miRNA. Annotated novel PRGTs encode transcription factors, miRNAs, small signaling peptides, long non-coding RNAs, defense-related proteins, and transporters, along with proteins involved in many biological processes. We identified several genes that undergo alternative splicing during P limitation, including a novel miR399-resistant splice variant of PHOSPHATE2 (PHO2.2). Several novel P-responsive genes were regulated by PHOSPHATE STARVATION RESPONSE1 (PHR1), PHR1-LIKE 1 (PHL1), and PHO2. We discovered that P-limited plants show increased resistance to pathogens and drought stress mediated by PHR1-PHL1. Identification of novel P-responsive transcripts and the discovery of the influence of P limitation on biotic and abiotic stress adds a significant component to our understanding of plant P signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fósforo/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Fosfatos/metabolismo , Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
10.
Plant Physiol Biochem ; 196: 121-129, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36706691

RESUMEN

Anthocyanins, flavonoid compounds derived from secondary metabolic pathways, play important roles in various biological processes. Phosphorus (P) is an essential macroelement for plant growth and development, and P-starvation usually results in anthocyanin accumulation. However, the molecular mechanism of P deficiency promotes anthocyanin biosynthesis has not been well characterized. Here, we provided evidence that the P signaling core protein PHOSPHATE STARVATION RESPONSE1 (PHR1) is physically associate with transcription factors (TFs) involved in anthocyanidin biosynthesis, including PRODUCTION OF ANTHOCYANIN PIGMENTS1 (PAP1/MYB75), MYB DOMAIN PROTEIN 113 (MYB113) and TRANSPARENT TESTA 8 (TT8). PHR1 and its homologies positively regulated anthocyanin accumulation in Arabidopsis seedlings under P-deficient conditions. Disruption of PHR1 simultaneously rendered seedlings hyposensitive to limiting P, whereas the overexpression of PHR1 enhanced P- deficiency-induced anthocyanin accumulation. Genetic analysis demonstrated that 35S:PHR1-2HA-5 seedlings partially recovers the P deficiency insensitive phenotype of myb-RNAi and tt8 mutants. In summary, our study indicated that protein complexes formed by PHR1 and MBW complex directly mediate the process of P-deficiency-induced anthocyanin accumulation, providing a new mechanistic understanding of how P-deficient signaling depends on the endogenous anthocyanin synthesis pathway to promote anthocyanin accumulation in Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Antocianinas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Fósforo/metabolismo , Plantones/genética , Plantones/metabolismo , Regulación de la Expresión Génica de las Plantas
11.
New Phytol ; 237(4): 1215-1228, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36377104

RESUMEN

Phosphate (Pi) availability is a major factor limiting plant growth and development. The key transcription factor controlling Pi-starvation response (PSR) is PHOSPHATE STARVATION RESPONSE 1 (PHR1) whose transcript levels do not change with changes in Pi levels. However, how PHR1 stability is regulated at the post-translational level is relatively unexplored in Arabidopsis thaliana. Inositol polyphosphates (InsPn) are important signal molecules that promote the association of stand-alone SPX domain proteins with PHR1 to regulate PSR. Here, we show that NITROGEN LIMITATION ADAPTATION (NLA) E3 ligase can associate with PHR1 through its conserved SPX domain and polyubiquitinate PHR1 in vitro. The association with PHR1 and its ubiquitination is enhanced by InsP6 but not by InsP5. Analysis of InsPn-related mutants and an overexpression plant shows PHR1 levels are more stable in itpk4-1 and vih2-4/VIH1amiRNA but less stable in ITPK4 overexpression plants. Under Pi-deficient conditions, nla seedlings contain high PHR1 levels, display long root hair and accumulate anthocyanin in shoots phenocopying PHR1 overexpression plants. By contrast, NLA overexpression plants phenocopy phr1 whose phenotypes are opposite to those of nla. Our results suggest NLA functions as a negative regulator of Pi response by modulating PHR1 stability and the NLA/PHR1 association depends on InsPn levels.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Fosfatos/metabolismo , Polifosfatos/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
12.
Brain ; 146(4): 1373-1387, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-36200388

RESUMEN

The corpus callosum is a bundle of axon fibres that connects the two hemispheres of the brain. Neurodevelopmental disorders that feature dysgenesis of the corpus callosum as a core phenotype offer a valuable window into pathology derived from abnormal axon development. Here, we describe a cohort of eight patients with a neurodevelopmental disorder characterized by a range of deficits including corpus callosum abnormalities, developmental delay, intellectual disability, epilepsy and autistic features. Each patient harboured a distinct de novo variant in MYCBP2, a gene encoding an atypical really interesting new gene (RING) ubiquitin ligase and signalling hub with evolutionarily conserved functions in axon development. We used CRISPR/Cas9 gene editing to introduce disease-associated variants into conserved residues in the Caenorhabditis elegans MYCBP2 orthologue, RPM-1, and evaluated functional outcomes in vivo. Consistent with variable phenotypes in patients with MYCBP2 variants, C. elegans carrying the corresponding human mutations in rpm-1 displayed axonal and behavioural abnormalities including altered habituation. Furthermore, abnormal axonal accumulation of the autophagy marker LGG-1/LC3 occurred in variants that affect RPM-1 ubiquitin ligase activity. Functional genetic outcomes from anatomical, cell biological and behavioural readouts indicate that MYCBP2 variants are likely to result in loss of function. Collectively, our results from multiple human patients and CRISPR gene editing with an in vivo animal model support a direct link between MYCBP2 and a human neurodevelopmental spectrum disorder that we term, MYCBP2-related developmental delay with corpus callosum defects (MDCD).


Asunto(s)
Proteínas de Caenorhabditis elegans , Discapacidad Intelectual , Animales , Humanos , Cuerpo Calloso/patología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Discapacidad Intelectual/genética , Fenotipo , Ligasas/genética , Ubiquitinas/genética , Agenesia del Cuerpo Calloso/genética , Agenesia del Cuerpo Calloso/patología , Ubiquitina-Proteína Ligasas/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Factores de Intercambio de Guanina Nucleótido/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo
13.
New Phytol ; 236(5): 1871-1887, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36111350

RESUMEN

Phosphorus (P) is a limiting nutrient for plant growth and productivity. Thus, a deep understanding of the molecular mechanisms of plants' response to phosphate starvation is significant when breeding crops with higher phosphorus-use efficiency. Here, we found that GARP-type transcription factor GLK1 acted as a positive regulator for phosphate-starvation response (PSR) via the PHR1-dependent pathway in Arabidopsis thaliana. GLK1 increased the transcription activity of PHR1 through the direct physical interaction and regulated the multiple responses to inorganic orthophosphate (Pi) starvation. Nitrogen (N) is a key factor in the regulation of PSR. We also found that the N status controlled the function of the GLK1-PHR1 signaling module under Pi-deficient (LP) conditions by regulating the accumulation of GLK1 and PHR1. Ultimately, we showed that the presence of GLK1 effectively promoted the protein accumulation of PHR1 at low N concentrations, and this action was helpful to maintain the activation of PSR. According to these findings, we establish the working model for GLK1 in PSR and propose that GLK1 mediates the interaction between N and P by influencing the effect of N on PHR1 in Arabidopsis thaliana.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fosfatos/metabolismo , Nitrógeno/metabolismo , Fitomejoramiento , Fósforo/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/metabolismo
14.
Plant Cell Rep ; 41(10): 1975-1985, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35829752

RESUMEN

KEY MESSAGE: An efficient Agrobacterium-mediated transient expression method was developed, which contributed to the functional characterization of the transcription factor CqPHR1, and demonstrates the potential application of gene editing in quinoa. Chenopodium quinoa is a crop expected to ensure global food security in future due to its high resistance to multiple abiotic stresses and nutritional value. We cloned one of the paralogous genes of the Arabidopsis homolog PHR1 (PHOSPHATE STARVATION RESPONSE 1) in quinoa-inbred lines by reverse genetic approach. Overexpression of CqPHR1 driven by the constitutive CaMV 35S promoter in Arabidopsis phr1 mutant can complement its phenotypes, including the induction of phosphate starvation-induced (PSI) genes and anthocyanin accumulation in leaves. By Agrobacterium-mediated gene transient expression, we found that CqPHR1 localized in the nucleus of quinoa cells, and overexpression of CqPHR1 in quinoa cells promoted PSI genes expression, which further revealed the function of CqPHR1 as a transcription factor. We have also shown that the transient expression system can be used to express Cas9 protein in various quinoa-inbred lines and perform effective gene editing in quinoa tissue. The method developed in this study will be useful for verifying the effectiveness of gene-editing systems in quinoa cells and has potential application in the generation of gene-edited quinoa with heritable traits.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Chenopodium quinoa , Agrobacterium/genética , Agrobacterium/metabolismo , Antocianinas/genética , Antocianinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteína 9 Asociada a CRISPR/genética , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Edición Génica , Fosfatos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Planta ; 256(2): 42, 2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35842503

RESUMEN

MAIN CONCLUSION: Phosphate deficiency promotes anthocyanin accumulation in Arabidopsis through direct binding of PHR1 to the P1BS motifs on the promoters of F3'H and LDOX and thereby upregulating their expression. Phosphorus is one of the essential elements for plants, and plants mainly absorb inorganic phosphate (Pi) from soil. But Pi deficiency is a common factor limiting plant growth and development. Anthocyanin accumulation in green tissues (such as leaves) is one of the characteristics of many plants in response to Pi starvation. However, little is known about the mechanism by which Pi starvation induces anthocyanin accumulation. Here, we found that the mutation of the gene PHOSPHATE STARVATION RESPONSE1 (PHR1), which encodes a key factor involved in Pi starvation signaling in Arabidopsis, significantly attenuates anthocyanin accumulation under Pi-limiting conditions. Moreover, the expression of several Pi deficiency-upregulated genes that are involved in anthocyanin biosyntheses, such as flavanone 3'-hydroxylase (F3'H), dihydroflavonol 4-reductase (DFR), leucoanthocyanidin dioxygenase (LDOX), and production of anthocyanin pigment 1 (PAP1), was significantly lower in the phr1-1 mutant than in the wild type (WT). Both yeast one-hybrid (Y1H) analysis and chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) showed that PHR1 can interact with the promoters of F3'H and LDOX, but not DFR and PAP1. By electrophoretic mobility shift assay (EMSA), it was further confirmed that the PHR1-binding sequence (P1BS) motifs located on the F3'H and LDOX promoters are required for the PHR1 bindings. Also, in Arabidopsis protoplasts, PHR1 enhanced the transcriptional activity of the F3'H and LDOX promoters, but these effects were markedly impaired when the P1BS motifs were mutated. Taken together, these results indicate that PHR1 positively regulates Pi starvation-induced anthocyanin accumulation in Arabidopsis, at least in part, by directly binding the P1BS motifs located on the promoters to upregulate the transcription of anthocyanin biosynthetic genes F3'H and LDOX.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Antocianinas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxigenasas , Fosfatos/metabolismo , Factores de Transcripción/metabolismo , Regulación hacia Arriba/genética
16.
Mol Biol Rep ; 49(8): 8071-8086, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35318578

RESUMEN

Phosphorus (P), an essential nutrient required by plants often becomes the limiting factor for plant growth and development. Plants employ various mechanisms to sense the continuously changing P content in the soil. Transcription factors, such as SHORT ROOT (SHR), AUXIN RESPONSE FACTOR19 (ARF19), and ETHYLENE-INSENSITIVE3 (EIN3) regulate the growth of primary roots, root hairs, and lateral roots under low P. Crop improvement strategies under low P depend either on improving P acquisition efficiency or increasing P utilization. The various phosphate transporters (PTs) are involved in the uptake and transport of P from the soil to various plant cellular organelles. A plethora of regulatory elements including transcription factors, microRNAs and several proteins play a critical role in the regulation of coordinated cellular P homeostasis. Among these, the well-established P starvation signaling pathway comprising of central transcriptional factor phosphate starvation response (PHR), microRNA399 (miR399) as a long-distance signal molecule, and PHOSPHATE 2 (PHO2), an E2 ubiquitin conjugase is crucial in the regulation of phosphorus starvation responsive genes. Under PHR control, several classes of PHTs, microRNAs, and proteins modulate root architecture, and metabolic processes to enable plants to adapt to low P. Even though sucrose and inositol phosphates are known to influence the phosphorus starvation response genes, the exact mechanism of regulation is still unclear. In this review, a basic understanding of P homeostasis under low P in plants and all the above aspects are discussed.


Asunto(s)
Arabidopsis , MicroARNs , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Homeostasis , MicroARNs/genética , MicroARNs/metabolismo , Fosfatos , Fósforo/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas/genética , Transducción de Señal , Suelo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
EMBO J ; 41(6): e109102, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35146778

RESUMEN

The microbiome plays an important role in shaping plant growth and immunity, but few plant genes and pathways impacting plant microbiome composition have been reported. In Arabidopsis thaliana, the phosphate starvation response (PSR) was recently found to modulate the root microbiome upon phosphate (Pi) starvation through the transcriptional regulator PHR1. Here, we report that A. thaliana PHR1 directly binds to the promoters of rapid alkalinization factor (RALF) genes, and activates their expression under phosphate-starvation conditions. RALFs in turn suppress complex formation of pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) receptor through FERONIA, a previously-identified PTI modulator that increases resistance to certain detrimental microorganisms. Suppression of immunity via the PHR1-RALF-FERONIA axis allows colonization by specialized root microbiota that help to alleviate phosphate starvation by upregulating the expression of PSR genes. These findings provide a new paradigm for coordination of host-microbe homeostasis through modulating plant innate immunity after environmental perturbations.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Microbiota , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Fosfatos/metabolismo , Inmunidad de la Planta/genética , Plantas/metabolismo , Factores de Transcripción/metabolismo
18.
Plant Cell Rep ; 41(5): 1329-1332, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35220470

RESUMEN

KEY MESSAGE: We highlight the newly emerged roles of plant SPX-PHR proteins beyond phosphate starvation responses in controlling arbuscular mycorrhizal colonization success in roots.


Asunto(s)
Micorrizas , Simbiosis , Regulación de la Expresión Génica de las Plantas , Micorrizas/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Simbiosis/fisiología
19.
Stress Biol ; 2(1): 9, 2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-37676515

RESUMEN

Arsenic is a metalloid toxic to plants, animals and human beings. Small ubiquitin-like modifier (SUMO) conjugation is involved in many biological processes in plants. However, the role of SUMOylation in regulating plant arsenic response is still unclear. In this study, we found that dysfunction of SUMO E3 ligase SIZ1 improves arsenite resistance in Arabidopsis. Overexpression of the dominant-negative SUMO E2 variant resembled the arsenite-resistant phenotype of siz1 mutant, indicating that SUMOylation plays a negative role in plant arsenite detoxification. The siz1 mutant accumulated more glutathione (GSH) than the wild type under arsenite stress, and the arsenite-resistant phenotype of siz1 was depressed by inhibiting GSH biosynthesis. The transcript levels of the genes in the GSH biosynthetic pathway were increased in the siz1 mutant comparing with the wild type in response to arsenite treatment. Taken together, our findings revealed a novel function of SIZ1 in modulating plant arsenite response through regulating the GSH-dependent detoxification.

20.
Mol Plant ; 15(1): 104-124, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34954444

RESUMEN

Phosphorus (P) is an essential nutrient for plant growth and reproduction. Plants preferentially absorb P as orthophosphate (Pi), an ion that displays low solubility and that is readily fixed in the soil, making P limitation a condition common to many soils and Pi fertilization an inefficient practice. To cope with Pi limitation, plants have evolved a series of developmental and physiological responses, collectively known as the Pi starvation rescue system (PSR), aimed to improve Pi acquisition and use efficiency (PUE) and protect from Pi-starvation-induced stress. Intensive research has been carried out during the last 20 years to unravel the mechanisms underlying the control of the PSR in plants. Here we review the results of this research effort that have led to the identification and characterization of several core Pi starvation signaling components, including sensors, transcription factors, microRNAs (miRNAs) and miRNA inhibitors, kinases, phosphatases, and components of the proteostasis machinery. We also refer to recent results revealing the existence of intricate signaling interplays between Pi and other nutrients and antagonists, N, Fe, Zn, and As, that have changed the initial single-nutrient-centric view to a more integrated view of nutrient homeostasis. Finally, we discuss advances toward improving PUE and future research priorities.


Asunto(s)
Adaptación Fisiológica/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Fósforo/deficiencia , Fósforo/metabolismo , Desarrollo de la Planta/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal/efectos de los fármacos , Genes de Plantas , Desarrollo de la Planta/genética , Reguladores del Crecimiento de las Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA