Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Int J Biol Macromol ; 277(Pt 3): 134517, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39111497

RESUMEN

Fucoidan-coated pH sensitive liposomes were designed for targeted delivery of gemcitabine (FU-GEM PSL) to treat pancreatic cancer (PC). FU-GEM PSL had a particle size of 175.3 ± 4.9 nm, zeta potential of -19.0 ± 3.7 mV, encapsulation efficiency (EE) of 74.05 ± 0.17 %, and drug loading (DL) of 21.27 ± 0.05 %. Cell experiments in vitro showed that FU-GEM PSL could increase the release of GEM and drug concentration, and could inhibit tumor cell proliferation by affecting the cell cycle. FU-GEM PSL entered cells through macropinocytosis and caveolin-mediated endocytosis to exert effects. Meanwhile, the expression of P-selectin was detected in human tissues, demonstrating the feasibility of targeting FU. Moreover, combined with animal experiments in vivo, FU-GEM PSL could inhibit the development of PC. Furthermore, anti-tumor experiments in vivo carried on BALB/c mice indicated that FU-GEM PSL had tumor suppression abilities and safety. Therefore, FU-GEM PSL is a promising formulation for PC therapy.


Asunto(s)
Proliferación Celular , Desoxicitidina , Gemcitabina , Liposomas , Neoplasias Pancreáticas , Polisacáridos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Desoxicitidina/química , Desoxicitidina/administración & dosificación , Animales , Polisacáridos/química , Polisacáridos/farmacología , Liposomas/química , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Ratones , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Ratones Endogámicos BALB C , Liberación de Fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Sistemas de Liberación de Medicamentos , Endocitosis/efectos de los fármacos
2.
Bioengineering (Basel) ; 11(8)2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39199757

RESUMEN

The advent of pH-sensitive liposomes (pHLips) has opened new opportunities for the improved and targeted delivery of antitumor drugs as well as gene therapeutics. Comprising fusogenic dioleylphosphatidylethanolamine (DOPE) and cholesteryl hemisuccinate (CHEMS), these nanosystems harness the acidification in the tumor microenvironment and endosomes to deliver drugs effectively. pH-responsive liposomes that are internalized through endocytosis encounter mildly acidic pH in the endosomes and thereafter fuse or destabilize the endosomal membrane, leading to subsequent cargo release into the cytoplasm. The extracellular tumor matrix also presents a slightly acidic environment that can lead to the enhanced drug release and improved targeting capabilities of the nano-delivery system. Recent studies have shown that folic acid (FA) and iRGD-coated nanocarriers, including pH-sensitive liposomes, can preferentially accumulate and deliver drugs to breast tumors that overexpress folate receptors and αvß3 and αvß5 integrins. This study focuses on the development and characterization of 5-Fluorouracil (5-FU)-loaded FA and iRGD surface-modified pHLips (FA-iRGD-5-FU-pHLips). The novelty of this research lies in the dual targeting mechanism utilizing FA and iRGD peptides, combined with the pH-sensitive properties of the liposomes, to enhance selective targeting and uptake by cancer cells and effective drug release in the acidic tumor environment. The prepared liposomes were small, with an average diameter of 152 ± 3.27 nm, uniform, and unilamellar, demonstrating efficient 5-FU encapsulation (93.1 ± 2.58%). Despite surface functionalization, the liposomes maintained their pH sensitivity and a neutral zeta potential, which also conferred stability and reduced aggregation. Effective pH responsiveness was demonstrated by the observation of enhanced drug release at pH 5.5 compared to physiological pH 7.4. (84.47% versus 46.41% release at pH 5.5 versus pH 7.4, respectively, in 72 h). The formulations exhibited stability for six months and were stable when subjected to simulated biological settings. Blood compatibility and cytotoxicity studies on MDA-MB-231 and SK-BR3 breast cancer cell lines revealed an enhanced cytotoxicity of the liposomal formulation that was modified with FA and iRGD compared to free 5-FU and minimal hemolysis. Collectively, these findings support the potential of FA and iRGD surface-camouflaged, pH-sensitive liposomes as a promising drug delivery strategy for breast cancer treatment.

3.
J Microencapsul ; 41(4): 269-283, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38618699

RESUMEN

AIMS: Myricetin (MYR) was incorporated into pH-sensitive liposomes in order to improve its bioavailability and anti-hyperuricemic activity. METHODS: The MYR pH-sensitive liposomes (MYR liposomes) were prepared using thin film dispersion method, and assessed by particle size (PS), polydispersed index (PDI), zeta potential (ZP), encapsulation efficiency, drug loading, and in vitro release rate. Pharmacokinetics and anti-hyperuricemic activities were also evaluated. RESULTS: The PS, PDI, ZP, encapsulation efficiency, and drug loading of MYR liposomes were 184.34 ± 1.05 nm, 0.215 ± 0.005, -38.46 ± 0.30 mV, 83.42 ± 1.07%w/w, and 6.20 ± 0.31%w/w, respectively. The release rate of MYR liposomes was higher than free MYR, wherein the cumulative value responded to pH. Besides, the Cmax of MYR liposomes was 4.92 ± 0.20 µg/mL. The level of uric acid in the M-L-H group (200 mg/kg) was reduced by 54.74%w/v in comparison with the model group. CONCLUSION: MYR liposomes exhibited pH sensitivity and could potentially enhance the oral bioavailability and anti-hyperuricemic efficacy of MYR.


Asunto(s)
Flavonoides , Liposomas , Liposomas/química , Flavonoides/farmacocinética , Flavonoides/química , Flavonoides/administración & dosificación , Flavonoides/farmacología , Concentración de Iones de Hidrógeno , Animales , Masculino , Ácido Úrico , Disponibilidad Biológica , Tamaño de la Partícula , Ratas Sprague-Dawley , Liberación de Fármacos , Ratas
4.
J Control Release ; 360: 630-646, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37414221

RESUMEN

Immune checkpoint blockade, especially the programmed cell death ligand 1 (PD-L1) blockade, has revolutionized the treatment of melanoma. However, PD-1/PD-L1 monotherapy leads to unsatisfactory therapeutic outcomes. The immunotherapy of melanoma could be improved by adding doxorubicin (DOX), which triggers immunogenic cell death (ICD) effect to activate anti-tumor immunity. Additionally, microneedles, especially dissolving microneedles (dMNs), can further enhance outcomes of chemo-immunotherapy due to the physical adjuvant effect of dMNs. Herein, we developed the dMNs-based programmed delivery system that incorporated pH-sensitive and melanoma-targeting liposomes to co-deliver DOX and siPD-L1, achieving enhanced chemo-immunotherapy of melanoma (si/DOX@LRGD dMNs). The incorporated si/DOX@LRGD LPs demonstrated uniform particle size, pH-sensitive drug release, high in vitro cytotoxicity and targeting ability. Besides, si/DOX@LRGD LPs effectively downregulated the expression of PD-L1, induced tumor cell apoptosis and triggered ICD effect. The si/DOX@LRGD LPs also showed deep penetration (approximately 80 µm) in 3D tumor spheroids. Moreover, si/DOX@LRGD dMNs dissolved rapidly into the skin and had sufficient mechanical strength to penetrate skin, reaching a depth of approximately 260 µm in mice skin. In mice model of melanoma tumor, si/DOX@LRGD dMNs exhibited better anti-tumor efficacy than monotherapy by dMNs and tail intravenous injection at the same dose. This was due to the higher cytotoxic CD8+ T cells and the secreted cytotoxic cytokine IFN-γ evoked by si/DOX@LRGD dMNs, thereby eliciting strong T-cell mediated immune response and resulted in enhanced anti-tumor effects. In conclusion, these findings suggested that si/DOX@LRGD dMNs provided a promising and effective strategy for enhanced chemo-immunotherapy of melanoma.


Asunto(s)
Antígeno B7-H1 , Melanoma , Ratones , Animales , Linfocitos T CD8-positivos , Lipopolisacáridos , Doxorrubicina , Melanoma/tratamiento farmacológico , Inmunoterapia , Línea Celular Tumoral
5.
Biomed Pharmacother ; 165: 115034, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37356372

RESUMEN

Liposomes composed of a rigid bilayer have high plasma stability; however, they can be challenged in efficacy due to complications in releasing the encapsulated drug as well as being internalized by the tumor cell. On the other hand, fusogenic liposomes may fuse with the plasmatic membrane and release encapsulated material directly into the cytoplasm. In a previous study, fusogenic liposomes composed of alpha-tocopheryl succinate (TS) and doxorubicin (DOX) were developed (pHSL-TS-DOX). These stabilized tumor growth and reduced toxicity compared to a commercial formulation. In the present study, we investigated whether cellular uptake or DOX accumulation in the tumor could justify the better performance of the pHSL-TS-DOX formulation. Release, deformability, and DOX plasmatic concentration studies were also carried out. pHSL-TS-DOX showed an adequate release profile and demonstrated characteristics of a deformable formulation. Data from apoptosis, cell cycle, and nuclear morphology studies have shown that the induction of cell death caused by pHSL-TS-DOX occurred more quickly. Higher DOX cellular uptake and tumor accumulation were observed when pHSL-TS-DOX was administered, demonstrating better drug delivery capacity. Therefore, better DOX uptake as well as tumor accumulation explain the great antitumor activity previously demonstrated for this formulation.


Asunto(s)
Neoplasias de la Mama , Liposomas , Ratones , Animales , Humanos , Femenino , Línea Celular Tumoral , Doxorrubicina/farmacología , alfa-Tocoferol/farmacología , Succinatos , Neoplasias de la Mama/tratamiento farmacológico
6.
Pharmaceutics ; 15(4)2023 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-37111668

RESUMEN

Lipid nanoparticles (LNP) have gained much attention after the approval of mRNA COVID-19 vaccines. The considerable number of currently ongoing clinical studies are testament to this fact. These efforts towards the development of LNPs warrant an insight into the fundamental developmental aspects of such systems. In this review, we discuss the key design aspects that confer efficacy to a LNP delivery system, i.e., potency, biodegradability, and immunogenicity. We also cover the underlying considerations regarding the route of administration and targeting of LNPs to hepatic and non-hepatic targets. Furthermore, since LNP efficacy is also a function of drug/nucleic acid release within endosomes, we take a holistic view of charged-based targeting approaches of LNPs not only in the context of endosomal escape but also in relation to other comparable target cell internalization strategies. Electrostatic charge-based interactions have been used in the past as a potential strategy to enhance the drug release from pH-sensitive liposomes. In this review, we cover such strategies around endosomal escape and cell internalization in low pH tumor micro-environments.

7.
Pharmaceutics ; 15(2)2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36839690

RESUMEN

Doxorubicin (DOX) is a potent chemotherapeutic drug used as the first line in breast cancer treatment; however, cardiotoxicity is the main drawback of the therapy. Preclinical studies evidenced that the association of simvastatin (SIM) with DOX leads to a better prognosis with reduced side effects and deaths. In this work, a novel pH-sensitive liposomal formulation capable of co-encapsulating DOX and SIM at different molar ratios was investigated for its potential in breast tumor treatment. Studies on physicochemical characterization of the liposomal formulations were carried out. The cytotoxic effects of DOX, SIM, and their combinations at different molar ratios (1:1; 1:2 and 2:1), free or co-encapsulated into pH-sensitive liposomes, were evaluated against three human breast cancer cell lines (MDA-MB-231, MCF-7, and SK-BR-3). Experimental protocols included cell viability, combination index, nuclear morphological changes, and migration capacity. The formulations showed a mean diameter of less than 200 nm, with a polydispersity index lower than 0.3. The encapsulation content was ~100% and ~70% for DOX and SIM, respectively. A more pronounced inhibitory effect on breast cancer cell lines was observed at a DOX:SIM molar ratio of 2:1 in both free and encapsulated drugs. Furthermore, the 2:1 ratio showed synergistic combination rates for all concentrations of cell inhibition analyzed (50, 75, and 90%). The results demonstrated the promising potential of the co-encapsulated liposome for breast tumor treatment.

8.
Int J Pharm ; 626: 122153, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36055444

RESUMEN

Small extracellular vesicles (sEVs) have emerged as attractive drug delivery systems. However, the intracellular release of their cargoes is restricted. This study aimed to develop an efficient approach to re-engineer sEVs by hybridisation with pH-sensitive liposomes (PSLs) and investigate their endosome escape potential. MIA PaCa-2 cell-derived sEVs and PSLs were fused via three methods, and fusion efficiency (FE) was measured using a fluorescence resonance energy transfer assay and nanoparticle tracking analysis. Cellular uptake, intracellular trafficking, and cytotoxicity of doxorubicin-loaded vesicles (Dox@hybrids, Dox@sEVs, and Dox@PSLs) were investigated on MIA PaCa-2 cells. Among the three methods, Ca2+-mediated fusion was the simplest and led to a comparable FE with freeze-thaw method, which was significantly higher than PEG8000-mediated fusion. sEVs were more stable after hybridisation with PSLs. Confocal microscopy revealed that the hybrids internalised more efficiently than natural sEVs. While the internalised Dox@sEVs were primarily co-localised with endo/lysosomes even after 8 h, Dox from Dox@hybrids was found to escape from endosomes by 2 h and homogenously distributed in the cytosol before accumulated at nucleus, corresponding to the in vitro pH-responsive release profile. Consequently, Dox@hybrids enhanced cytotoxicity compared with Dox@sEVs, Dox@PSLs, or free drugs. Overall, the biomimetic nanosystem generated by simple Ca2+-mediated fusion was more stable and demonstrated higher efficiencies of cellular uptake and endosome escape compared to natural sEVs.


Asunto(s)
Vesículas Extracelulares , Liposomas , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos , Endosomas
9.
ACS Biomater Sci Eng ; 8(8): 3473-3484, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35896042

RESUMEN

Triple-negative breast cancer (TNBC) belongs to the category of the most destructive forms of breast cancer. Being a highly potent chemotherapeutic agent, paclitaxel (PTX) is extensively utilized in the management of various cancers. Commercially available PTX formulations contain non-targeted drug carriers that result in low antitumor activity because of non-specific tissue distribution. Thus, to resolve this issue, we designed PTX-loaded pH-sensitive liposomes (pH Lipos) in the present investigation and used adenosine (ADN) as a targeting ligand. Further, d-α-tocopheryl polyethylene glycol succinate (TPGS) was incorporated into the liposomes to impart a stealth effect to the system. For the development of these pH Lipos, different conjugates were synthesized (ADN-CHEMS and TPGS-ADN) and further utilized for the preparation of ADN-PEG-pH Lipo and ADN-pH Lipo by a thin-film hydration method. DOPE:HSPC:CHEMS:cholesterol at a molar ratio of 3:3:2:2 was selected for the preparation of pH-Lipo possessing 7.5% w/w drug loading. They showed a particle size below 140 nm, a PDI below 0.205, and a % EE greater than 60%. All of the pH Lipos displayed a biphasic pattern of PTX release at pH 7.4 and 5.5. However, the percent drug release at pH 5.5 was substantially greater because of the pH-sensitive nature of the liposomes. The MDA MB 231 and 4T1 cell lines depicted improvement in the qualitative as well as quantitative cellular uptake of PTX ADN-PEG-pH Lipo with a substantial decrease in the IC50 value. Moreover, a higher apoptotic index was observed with pH Lipo compared to free PTX. PTX ADN-PEG-pH Lipo revealed a 3.98- and 3.41-fold rise in the AUC and t1/2 values of PTX compared to Intaxel, respectively. Overall, characteristic decreases in tumor volume and serum toxicity marker levels were observed, which confirmed the development of an efficient and safe formulation.


Asunto(s)
Paclitaxel , Neoplasias de la Mama Triple Negativas , Adenosina/farmacología , Humanos , Concentración de Iones de Hidrógeno , Liposomas , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico
10.
J Inflamm Res ; 15: 2263-2280, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35422652

RESUMEN

Purpose: Thymoquinone (TQ), a phytoconstituent of Nigella sativa seeds, has been studied extensively in various cancer models. However, TQ's limited water solubility restricts its therapeutic applicability. Our work aims to prepare the novel formulation of TQ and assess its chemopreventive potential in chemically induced lung cancer animal model. Methods: The polyethylene glycol coated DOPE/CHEMS incorporating TQ-loaded pH-sensitive liposomes (TQPSL) were prepared and characterized. Mice were exposed to benzo[a]pyrene (BaP) thrice a week for 4 weeks to induce lung cancer. TQPSL was administered three times a week for 21 weeks, starting 2 weeks before the first dose of BaP. Results: The prepared TQPSL revealed 85% entrapment efficiency with 128 nm size and -19.5 mv ζ-potential showing high stability of the formulation. The pretreatment of TQPSL showed the recovery in BaP-modulated relative organ weight of lungs, cancer marker enzymes, and antioxidant enzymes in the serum. The histopathological analysis of the tissues showed that TQPSL protected the malignancy in the lungs. The flow cytometry data revealed the induction of apoptosis and decreased intracellular ROS by TQPSL. Molecular docking was performed to predict the TQ's affinity for eight possible anticancer drug targets linked to lung cancer etiology. The data assisted to identify the serine/threonine-protein kinase BRAF as the most suitable target of TQ with binding energy -6.8 kcal/mol. Conclusion: The current findings demonstrated the potential of TQPSL and its possible therapeutic targets of lung cancer. To our knowledge, this is the first research to outline the development of TQ formulation against lung cancer considering its low solubility as well as pulmonary delivery challenges.

11.
Pharm Res ; 39(6): 1181-1195, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35229237

RESUMEN

While delivery of chemotherapeutics to cancer cells by nanomedicines can improve therapeutic outcomes, many fail due to the low drug loading (DL), poor cellular uptake and endosomal entrapment. This study investigated the potential to overcome these limitations using pH-sensitive liposomes (PSL) empowered by the use of calcium acetate. An acidic dinitrobenzamide mustard prodrug SN25860 was used as a model drug, with non pH-sensitive liposomes (NPSL) as a reference. Calcium acetate as a remote loading agent allowed to engineer PSL- and NPSL-SN25860 with DL of > 31.1% (w/w). The IC50 of PSL-SN25860 was 21- and 141-fold lower than NPSL and free drug, respectively. At 48 h following injection of PSL-SN25860, NPSL-SN25860 and the free drug, drug concentrations in EMT6-nfsB murine breast tumors were 56.3 µg/g, 6.76 µg/g and undetectable (< 0.015 µg/g), respectively (n = 3). Meanwhile, the ex vivo tumor clonogenic assay showed 9.1%, 19.4% and 42.7% cell survival in the respective tumors. Live-cell imaging and co-localization analysis suggested endosomal escape was accomplished by destabilization of PSL followed by release of Ca2+ in endosomes allowing induction of a proton sponge effect. Subsequent endosomal rupture was observed approximately 30 min following endocytosis of PSL containing Ca2+. Additionally, calcium in liposomes promoted internalization of both PSL and NPSL. Taken together, this study demonstrated multifaceted functions of calcium acetate in promoting drug loading into liposomes, cellular uptake, and endosomal escape of PSL for efficient cytoplasmic drug delivery. The results shed light on designing nano-platforms for cytoplasmic delivery of various therapeutics.


Asunto(s)
Liposomas , Neoplasias , Animales , Calcio , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Endosomas , Concentración de Iones de Hidrógeno , Liposomas/farmacología , Ratones , Protones
12.
Mol Pharm ; 18(7): 2612-2621, 2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-34096310

RESUMEN

Liposome-based drug delivery systems composed of DOPE stabilized with cholesteryl hemisuccinate (CHMS) have been proposed as a drug delivery mechanism with pH-triggered release as the anionic form (CHSa) is protonated (CHS) at reduced pH; PEGylation is known to decrease this pH sensitivity. In this manuscript, we set out to use molecular dynamics (MD) simulations with a model with all-atom resolution to provide insight into why incorporation of poly(ethyleneglycol) (PEG) into DOPE-CHMS liposomes reduces their pH sensitivity; we also address two additional questions: (1) How CHSa stabilizes DOPE bilayers into a lamellar conformation at a physiological pH of 7.4? and (2) how the change from CHSa to CHS at acidic pH triggers the destabilization of DOPE bilayers? We found that (A) CHSa stabilizes the DOPE lipid membrane by increasing the hydrophilicity of the bilayer surface, (B) when CHSa changes to CHS by pH reduction, DOPE bilayers are destabilized due to a reduction in bilayer hydrophilicity and a reduction in the area per lipid, and (C) PEG stabilizes DOPE bilayers into the lamellar phase, thus reducing the pH sensitivity of the liposomes by increasing the area per lipid through penetration into the bilayer, which is our main focus.


Asunto(s)
Ésteres del Colesterol/química , Membrana Dobles de Lípidos/química , Liposomas/química , Simulación de Dinámica Molecular , Fosfatidiletanolaminas/química , Polietilenglicoles/química , Concentración de Iones de Hidrógeno , Fusión de Membrana
13.
Int J Pharm ; 599: 120463, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33711474

RESUMEN

Colorectal carcinoma is a complex malignancy and current therapies are hampered by systemic toxicity and tumor resistance to treatment. In the field of cancer therapy, copper (Cu) compounds hold great promise, with some reaching clinical trials. However, the anticancer potential of Cu complexes has not yet been fully disclosed due to speciation in biological systems, leading to inactivation and/or potential side effects. This is the case of the widely studied Cu(II) complexes featuring phenanthroline ligands, with potent antiproliferative effects in vitro, but often failing in vivo. Aiming to overcome these limitations and maximize its anticancer effects in vivo, the Cu(II) complex (Cu(1,10-phenanthroline)Cl2) (Cuphen), displaying IC50 values <6 µM against different tumor cell lines, was loaded in long circulating liposomes with pH-sensitive properties (F1, DMPC:CHEMS:DSPE-PEG; F2, DOPE:CHEMS:DMPC:DSPE-PEG). This enabled a pH-dependent Cuphen release, with F1 and F2 releasing 36/78% and 47/94% of Cuphen at pH 6/4.5, respectively. The so formed nanoformulations preserved Cuphen effects towards cancer cell lines, with F2 presenting IC50 of 2.7 µM and 4.9 µM towards colon cancer CT-26 and HCT-116 cells, respectively. Additional in vitro studies confirmed that Cuphen antiproliferative activity towards colon cancer cells does not rely on cell cycle effect. Furthermore, in these cells, Cuphen reduced glycerol permeation and impaired cell migration. At 24 h incubation, wound closure was reduced by Cuphen, with migration values of 29% vs 54% (control) and 45% (1,10-phenanthroline) in CT-26 cells, and 33% vs ~44% (control and 1,10-phenanthroline) in HCT-116 cells. These effects were probably due to inhibition of aquaglyceroporins, membrane water and glycerol channels that are often abnormally expressed in tumors. In a syngeneic murine colon cancer model, F2 significantly reduced tumor progression, compared to the control group and to mice treated with free Cuphen or with the ligand, 1,10-phenanthroline, without eliciting toxic side effects. F2 led to a tumor volume reduction of ca. 50%. This was confirmed by RTV analysis, where F2 reached a value of 1.3 vs 4.4 (Control), 5.8 (Phen) and 3.8 (free Cuphen). These results clearly demonstrated the important role of the Cu(II) for the observed biological activity that was maximized following the association to a lipid-based nanosystem. Overall, this study represents a step forward in the development of pH-sensitive nanotherapeutic strategies of metallodrugs for colon cancer management.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Cobre/uso terapéutico , Concentración de Iones de Hidrógeno , Liposomas , Ratones
14.
Mater Sci Eng C Mater Biol Appl ; 120: 111664, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33545830

RESUMEN

Combining the bio-therapeutics with chemotherapeutic drugs can assist in augmenting the therapeutic standards by increasing the efficacy and decreasing the toxicity. Hence, in the present investigation Docetaxel (DTX) loaded pH-sensitive SIRT1 shRNA complexed lipoplex (DTX-lipoplex) were developed and explored for their improved breast cancer potential. The DTX-lipoplex were prepared by solvent evaporation and rehydration method and were evaluated for various quality attributes (particle size, % entrapment efficiency, hemotoxicity, DNA stability efficiency etc.), in vitro drug release, cell culture assays, antitumor efficacy and in vivo toxicity. The DTX-lipoplex exhibited a size of ~200 nm and zeta-potential of ~20 mV with ~70% encapsulation. Through systematic in vitro and in vivo examinations, DTX-lipoplex showed ~3 fold higher DTX titre within the tumor cells thereby significantly reducing the tumor burden (~78%) when compared to the marketed non pH sensitive lipid transfection agent and clinical counterpart i.e. Taxotere®. Thus, to conclude it can be said that co-delivering DTX and SIRT1 shRNA in a single tumor-specific nano-platform can improve the therapeutic potential of current therapy.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Nanopartículas , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Línea Celular Tumoral , Docetaxel/farmacología , Portadores de Fármacos/uso terapéutico , Humanos , Concentración de Iones de Hidrógeno , Liposomas , Tamaño de la Partícula , ARN Interferente Pequeño , Sirtuina 1/genética
15.
Biomed Pharmacother ; 134: 110952, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33348307

RESUMEN

pH-sensitive liposomes are interesting carriers for drug-delivery, undertaking rapid bilayer destabilization in response to pH changes, allied to tumor accumulation, a desirable behavior in the treatment of cancer cells. Previously, we have shown that pH-sensitive liposomes accumulate in tumor tissues of mice, in which an acidic environment accelerates drug delivery. Ultimately, these formulations can be internalized by tumor cells and take the endosome-lysosomal route. However, the mechanism of doxorubicin release and intracellular traffic of pH-sensitive liposomes remains unclear. To investigate the molecular mechanisms underlying the intracellular release of doxorubicin from pH-sensitive liposomes, we followed HeLa cells viability, internalization, intracellular trafficking, and doxorubicin's intracellular delivery mechanisms from pH-sensitive (SpHL-DOX) and non-pH-sensitive (nSpHL-DOX) formulations. We found that SpHL-DOX has faster internalization kinetics and intracellular release of doxorubicin, followed by strong nuclear accumulation compared to nSpHL-DOX. The increased nuclear accumulation led to the activation of cleaved caspase-3, which efficiently induced apoptosis. Remarkably, we found that chloroquine and E64d enhanced the cytotoxicity of SpHL-DOX. This knowledge is paramount to improve the efficiency of pH-sensitive liposomes or to be used as a rational strategy for developing new formulations to be applied in vivo.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Doxorrubicina/farmacología , Sistemas de Liberación de Medicamentos/métodos , Liposomas/química , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Supervivencia Celular/efectos de los fármacos , Cloroquina/farmacología , Composición de Medicamentos , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Espacio Intracelular/metabolismo , Leucina/análogos & derivados , Leucina/farmacología , Ratones
16.
Int J Nanomedicine ; 15: 5575-5589, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32801705

RESUMEN

PURPOSE: The overexpression of Her-2 in 25-30% breast cancer cases and the crosstalk between Her-2 and fatty acid synthase (FASN) establishes Her-2 as a promising target for site-directed delivery. The present study aimed to develop the novel lipid base formulations to target and inhibit the cellular proliferation of Her-2-expressing breast cancer cells through the silencing of FASN. In order to achieve this goal, we prepared DSPC/Chol and DOPE/CHEMS immunoliposomes, conjugated with the anti-Her-2 fab' and encapsulated FASN siRNA against breast cancer cells. METHODS: We evaluated the size, stability, cellular uptake and internalization of various formulations of liposomes. The antiproliferative gene silencing potential was investigated by the cell cytotoxicity, crystal violet, wound healing and Western blot analyses in Her-2+ and Her-2¯ breast cancer cells. RESULTS: The data revealed that both nanosized FASN-siRNA-encapsulated liposomes showed significantly higher cellular uptake and internalization with enhanced stability. The cell viability of Her-2+ SK-BR3 cells treated with the targeted formulation of DSPC/Chol- and DOPE/CHEMS-encapsulating FASN-siRNA reduced to 30% and 20%, respectively, whereas it was found to be 45% and 36% in MCF-7 cells. The wounds were not only failed to close but they became broader in Her-2+ cells treated with targeted liposomes of siRNA. Consequently, the amount of FASN decreased by 80% in SK-BR3 cells treated with non-targeted liposomes and it was 30% and 60% in the MCF-7 cells treated with DSPC/Chol and DOPE/CHEMS liposomes, respectively. CONCLUSION: In this study, we developed the formulation that targeted Her-2 for the suppression of FASN and, therefore, inhibited the proliferation of breast cancer cells.


Asunto(s)
Neoplasias de la Mama/genética , Acido Graso Sintasa Tipo I/genética , Terapia Molecular Dirigida/métodos , Receptor ErbB-2/metabolismo , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Supervivencia Celular/genética , Femenino , Silenciador del Gen , Humanos , Concentración de Iones de Hidrógeno , Fragmentos Fab de Inmunoglobulinas/química , Lípidos/química , Liposomas/administración & dosificación , Liposomas/química , Liposomas/inmunología , Células MCF-7 , ARN Interferente Pequeño/genética , Receptor ErbB-2/inmunología
17.
Int J Pharm ; 587: 119680, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32712250

RESUMEN

Along with the malignant proliferation of tumor requiring nutrients, the expression of L-type amino acid transporter 1(LAT1) and amino acid transporter B0,+ (ATB0,+) in cancer cells is up-regulated that can be used as new targets for active targeting of tumor. However, since normal cells also express amino acid transporters in small amounts, traditional ligand-exposure drug delivery systems are potentially toxic to the body. Therefore, we designed a smart-response drug delivery system that buries the tyrosine ligand in PEG hydration layer at normal tissues and exposes the ligand by cleaving the pH-sensitive bond of PEG at the tumor site. Irinotecan (CPT-11) is actively loaded into the inner aqueous phase of liposomes via a copper ion gradient mechanism which has high encapsulation efficiency and stable drug release profile. Smart-response liposomes showed the strongest cytotoxicity and the maximum cellular uptake in vitro, the largest amount of tumor site accumulation and the best antitumor effect in vivo, compared with non-targeted liposomes and non-sensitive liposomes. It is worth noting that smart-response liposomes not only achieved enhanced antitumor effect but also attenuated side effects compared to ligand-exposure liposomes. This provides a smart responsive drug delivery system for precise treatment and shows a good application prospect.


Asunto(s)
Liposomas , Neoplasias , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Humanos , Concentración de Iones de Hidrógeno , Irinotecán , Ligandos , Neoplasias/tratamiento farmacológico
18.
Nanomaterials (Basel) ; 10(4)2020 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-32268611

RESUMEN

Cancer is a major health concern and the prognosis is often poor. Significant advances in nanotechnology are now driving a revolution in cancer detection and treatment. The goal of this study was to develop a novel hybrid nanosystem for melanoma treatment, integrating therapeutic and magnetic targeting modalities. Hence, we designed long circulating and pH-sensitive liposomes loading both dichloro(1,10-phenanthroline) copper (II) (Cuphen), a cytotoxic metallodrug, and iron oxide nanoparticles (IONPs). The synthetized IONPs were characterized by transmission electron microscopy and dynamic light scattering. Lipid-based nanoformulations were prepared by the dehydration rehydration method, followed by an extrusion step for reducing and homogenizing the mean size. Liposomes were characterized in terms of incorporation parameters and mean size. High Cuphen loadings were obtained and the presence of IONPs slightly reduced Cuphen incorporation parameters. Cuphen antiproliferative properties were preserved after association to liposomes and IONPs (at 2 mg/mL) did not interfere on cellular proliferation of murine and human melanoma cell lines. Moreover, the developed nanoformulations displayed magnetic properties. The absence of hemolytic activity for formulations under study demonstrated their safety for parenteral administration. In conclusion, a lipid-based nanosystem loading the cytotoxic metallodrug, Cuphen, and displaying magnetic properties was successfully designed.

19.
Polymers (Basel) ; 12(3)2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32168824

RESUMEN

Blending amphiphilic copolymers and lipids constitutes a novel approach to combine the advantages of polymersomes and liposomes into a new single hybrid membrane. Efforts have been made to design stimuli-responsive vesicles, in which the membrane's dynamic is modulated by specific triggers. In this investigation, we proposed the design of pH-responsive hybrid vesicles formulated with poly(dimethylsiloxane)-block-poly(ethylene oxide) backbone (PDMS36-b-PEO23) and cationic switchable lipid (CSL). The latter undergoes a pH-triggered conformational change and induces membrane destabilization. Using confocal imaging and DLS measurements, we interrogated the structural changes in CSL-doped lipid and hybrid polymer/lipid unilamellar vesicles at the micro- and nanometric scale, respectively. Both switchable giant unilamellar lipid vesicles (GUV) and hybrid polymer/lipid unilamellar vesicles (GHUV) presented dynamic morphological changes, including protrusions and fission upon acidification. At the submicron scale, scattered intensity decreased for both switchable large unilamellar vesicles (LUV) and hybrid vesicles (LHUV) under acidic pH. Finally, monitoring the fluorescence leakage of encapsulated calcein, we attested that CSL increased the permeability of GUV and GHUV in a pH-specific fashion. Altogether, these results show that switchable lipids provide a pH-sensitive behavior to hybrid polymer/lipid vesicles that could be exploited for the triggered release of drugs, cell biomimicry studies, or as bioinspired micro/nanoreactors.

20.
Int J Pharm ; 573: 118889, 2020 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-31765778

RESUMEN

The present investigation explores the potential of pH sensitive cationic liposomes for its in vivo tumor targeted gene transfection in comparison to its marketed transfecting reagent Lipofectamine® 2000. The lipoplexes were prepared by varying the molar mass ratio of cationic pH-sensitive liposomes with respect to pDNA and were evaluated for optimum size, zeta potential and for complete gel retardation. Similarly, the stability of lipoplexes in the presence of DNase I and serum was evaluated by using gel retardation and heparin displacement assay. The in vitro hemocompatibility assessment of pDNA lipoplexes revealed < 8.5% of hemolysis which was lower than the hemolysis observed for Lipofectamine® lipoplexes (15.9%). The internalization and pH dependent uptake inhibition using ammonium chloride in MCF-7 cells revealed higher internalization and pH sensitive nature of the prepared pH-sensitive system. The pDNA lipoplexes displayed > 80% of cell viability along with 4.42, 5.18 and 5.00 fold higher transfection efficiency than Lipofectamine® lipoplexes in MCF-7, HeLa and HEK-293 cells respectively. Also the in vivo toxicity assessment exhibited no significant change in the levels of biomarkers and no histopathological deformations in case of pDNA lipoplexes treated animals in comparison to control group (PBS). Further, pDNA lipoplexes demonstrated ~1.3 fold higher tumor transfection over Lipofectamine® lipoplexes indicating superior in vivo gene deliverable capabilities. Thus, the developed pH sensitive lipoplexes promises to be a potential tumor targeting and safe delivery system than Lipofectamine® 2000.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Terapia Genética/métodos , Neoplasias Experimentales/tratamiento farmacológico , Plásmidos/administración & dosificación , Transfección/métodos , Animales , Antracenos/toxicidad , Bovinos , Supervivencia Celular/efectos de los fármacos , Femenino , Células HEK293 , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Lípidos/toxicidad , Liposomas , Células MCF-7 , Ensayo de Materiales , Ratones , Neoplasias Experimentales/inducido químicamente , Piperidinas/toxicidad , Ratas , Pruebas de Toxicidad Aguda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA