RESUMEN
Introduction: The rhizosphere is the zone of soil surrounding plant roots that is directly influenced by root exudates released by the plant, which select soil microorganisms. The resulting rhizosphere microbiota plays a key role in plant health and development by enhancing its nutrition or immune response and protecting it from biotic or abiotic stresses. In particular, plant growth-promoting rhizobacteria (PGPR) are beneficial members of this microbiota that represent a great hope for agroecology, since they could be used as bioinoculants for sustainable crop production. Therefore, it is necessary to decipher the molecular dialog between roots and PGPR in order to promote the establishment of bioinoculants in the rhizosphere, which is required for their beneficial functions. Methods: Here, the ability of root exudates from rapeseed (Brassica napus), pea (Pisum sativum), and ryegrass (Lolium perenne) to attract and feed three PGPR (Bacillus subtilis, Pseudomonas fluorescens, and Azospirillum brasilense) was measured and compared, as these responses are directly involved in the establishment of the rhizosphere microbiota. Results: Our results showed that root exudates differentially attracted and fed the three PGPR. For all beneficial bacteria, rapeseed exudates were the most attractive and induced the fastest growth, while pea exudates allowed the highest biomass production. The performance of ryegrass exudates was generally lower, and variable responses were observed between bacteria. In addition, P. fluorescens and A. brasilense appeared to respond more efficiently to root exudates than B. subtilis. Finally, we proposed to evaluate the compatibility of each plant-PGPR couple by assigning them a "love match" score, which reflects the ability of root exudates to enhance bacterial rhizocompetence. Discussion: Taken together, our results provide new insights into the specific selection of PGPR by the plant through their root exudates and may help to select the most effective exudates to promote bioinoculant establishment in the rhizosphere.
RESUMEN
The use of pesticides, such as glyphosate, has increased due to population growth and the rising demand for food. Plant growth-promoting rhizobacteria (PGPR), such as Streptomyces, offer a more ecologically friendly alternative to the excessive use of pesticides. However, these bacteria undergo a complex life cycle involving the formation of hyphae, mycelia, and spores, which makes standardizing laboratory cultures challenging. In this context, we tested three methods for cultivating a Streptomyces isolate (CLV322) in the presence of the stressor agent glyphosate, denoted as M1, M2, and M3. These methods involved the simultaneous addition of the herbicide 24-48 h after the start of cultivation. We evaluated the growth and cell viability of CLV322 using the 2,3,5-triphenyl tetrazolium chloride (TTC) assay under glyphosate-based herbicide stress (Roundup® Original DI) at concentrations ranging from 0.002 to 7.2 mg mL- 1. We also assessed the ability of CLV322 to maintain PGPR characteristics in the presence of the herbicide by quantifying indolic compounds, siderophores, and phenazines. The cultivation method significantly influenced the production of metabolites by CLV322, with M3 yielding more consistent results across the evaluated parameters. Our findings suggest that germinating Streptomyces spores for 48 h before introducing glyphosate (M3) enables the analysis of bacterial tolerance to herbicide stress. This methodology may also apply to evaluate other abiotic stresses on Streptomyces strains.
RESUMEN
Plant growth-promoting rhizobacteria (PGPR) are a group of bacteria that associate with the rhizosphere of plants; one of the most abundant bacterial genera in this ecological niche is Pseudomonas, which is constantly expanding due to the emergence of new species such as Pseudomonas atacamensis, whose discovery in 2019 has led to the characterization of several strains from different environments but taxonomically related. The objective of this work was to phenotypically and molecularly characterize P. atacamensis strain EMP42, isolated from the rhizosphere of Echinocactus platyacanthus. The strain EMP42 is able to use different substrates and reduce oxidative stress in plants. It is capable of improving growth parameters such as the number of inflorescences and the height of the aerial body of Arabidopsis thaliana, as well as the germination and seedling survival of the cacti Echinocactus platyacanthus and Astrophytum capricorne. The genetic structure of P. atacamensis EMP42 consists of a closed chromosome of 6.14 Mbp, and 61.1% GC content. It has 5572 genes, including those associated with PGPR activities, such as the trpABCDE, SAP, phoABPRU and acsABC genes, among others, and three ncRNA loci, nine regulatory regions, five complete rRNA operons and three CRISPR-Cas loci, showing phylogenomic similarities with the reference strain P. atacamensis B21-026. Therefore, this study contributes to the understanding of genomic diversity within P. atacamensis and, particularly, highlights the potential application of strain EMP42 as a PGPR.
RESUMEN
Saline soils pose significant challenges to global agricultural productivity, hindering crop growth and efficiency. Despite various mitigation strategies, the issue persists, underscoring the need for innovative and sustainable solutions. One promising approach involves leveraging microorganisms and their plant interactions to reclaim saline soils and bolster crop yields. This review highlights pioneering and recent advancements in utilizing multi-traits Trichoderma and Bacillus species as potent promoters of plant growth and health. It examines the multifaceted impacts of saline stress on plants and microbes, elucidating their physiological and molecular responses. Additionally, it delves into the role of ACC deaminase in mitigating plant ethylene levels by Trichoderma and Bacillus species. Although there are several studies on Trichoderma-Bacillus, much remains to be understood about their synergistic relationships and their potential as auxiliaries in the phytoremediation of saline soils, which is why this work addresses these challenges.
RESUMEN
This study aimed to isolate and characterize Pseudomonas native strains from the rhizospheric soil of Minthostachys verticillata plants to evaluate their potential as plant growth-promoting rhizobacteria (PGPR). A total of 22 bacterial isolates were obtained and subjected to various biochemical tests, as well as assessments of plant growth-promoting traits such as phosphate solubilization, hydrogen cyanide production, biocontrol properties through antibiosis, and indole acetic production. Genotypic analysis via 16S rRNA gene sequencing and phylogenetic tree construction identified the strains, with one particular strain named SM 33 showing significant growth-promoting effects on M. verticillata seedlings. This strain, SM 33, showed high similarity to Stutzerimonas stutzeri based on 16S rRNA gene sequencing and notably increased both shoot fresh weight and root dry weight of the plants. These findings underscore the potential application of native Pseudomonas strains in enhancing plant growth and health, offering promising avenues for sustainable agricultural practices.
RESUMEN
Maize (Zea mays L.) is an essential commodity for global food security and the agricultural economy, particularly in regions such as San Martin, Peru. This study investigated the plant growth-promoting characteristics of native rhizobacteria isolated from maize crops in the San Martin region of Peru with the aim of identifying microorganisms with biotechnological potential. Soil and root samples were collected from maize plants in four productive zones in the region: Lamas, El Dorado, Picota, and Bellavista. The potential of twelve bacterial isolates was evaluated through traits, such as biological nitrogen fixation, indole acetic acid (IAA) production, phosphate solubilization, and siderophore production, and a completely randomized design was used for these assays. A completely randomized block design was employed to assess the effects of bacterial strains and nitrogen doses on maize seedlings. The B3, B5, and NSM3 strains, as well as maize seeds of the yellow hard 'Advanta 9139' variety, were used in this experiment. Two of these isolates, B5 and NSM3, exhibited outstanding characteristics as plant growth promoters; these strains were capable of nitrogen fixation, IAA production (35.65 and 26.94 µg mL-1, respectively), phosphate solubilization (233.91 and 193.31 µg mL-1, respectively), and siderophore production (34.05 and 89.19%, respectively). Furthermore, molecular sequencing identified the NSM3 isolate as belonging to Sporosarcina sp. NSM3 OP861656, while the B5 isolate was identified as Peribacillus sp. B5 OP861655. These strains show promising potential for future use as biofertilizers, which could promote more sustainable agricultural practices in the region.
RESUMEN
Motile plant-associated bacteria use chemotaxis and dedicated chemoreceptors to navigate gradients in their surroundings and to colonize host plant surfaces. Here, we characterize a chemoreceptor that we named Tlp2 in the soil alphaproteobacterium Azospirillum brasilense. We show that the Tlp2 ligand-binding domain is related to the 4-helix bundle family and is conserved in chemoreceptors found in the genomes of many soil- and sediment-dwelling alphaproteobacteria. The promoter of tlp2 is regulated in an NtrC- and RpoN-dependent manner and is most upregulated under conditions of nitrogen fixation or in the presence of nitrate. Using fluorescently tagged Tlp2 (Tlp2-YFP), we show that this chemoreceptor is present in low abundance in chemotaxis-signaling clusters and is prone to degradation. We also obtained evidence that the presence of ammonium rapidly disrupts Tlp2-YFP localization. Behavioral experiments using a strain lacking Tlp2 and variants of Tlp2 lacking conserved arginine residues suggest that Tlp2 mediates chemotaxis in gradients of nitrate and nitrite, with the R159 residue being essential for Tlp2 function. We also provide evidence that Tlp2 is essential for root surface colonization of some plants (teff, red clover, and cowpea) but not others (wheat, sorghum, alfalfa, and pea). These results highlight the selective role of nitrate sensing and chemotaxis in plant root surface colonization and illustrate the relative contribution of chemoreceptors to chemotaxis and root surface colonization.IMPORTANCEBacterial chemotaxis mediates host-microbe associations, including the association of beneficial bacteria with the roots of host plants. Dedicated chemoreceptors specify sensory preferences during chemotaxis. Here, we show that a chemoreceptor mediating chemotaxis to nitrate is important in the beneficial soil bacterium colonization of some but not all plant hosts tested. Nitrate is the preferred nitrogen source for plant nutrition, and plants sense and tightly control nitrate transport, resulting in varying nitrate uptake rates depending on the plant and its physiological state. Nitrate is thus a limiting nutrient in the rhizosphere. Chemotaxis and dedicated chemoreceptors for nitrate likely provide motile bacteria with a competitive advantage to access this nutrient in the rhizosphere.
Asunto(s)
Azospirillum brasilense , Proteínas Bacterianas , Quimiotaxis , Nitratos , Raíces de Plantas , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Azospirillum brasilense/fisiología , Nitratos/metabolismo , Raíces de Plantas/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismoRESUMEN
BACKGROUND: Bacillus subtilis is well known for promoting plant growth and reducing abiotic and biotic stresses. Mutant gene-defective models can be created to understand important traits associated with rhizosphere fitness. This study aimed to analyze the role of exopolymeric genes in modulating tomato rhizosphere microbiome assembly under a gradient of soil microbiome diversities using the B. subtilis wild-type strain UD1022 and its corresponding mutant strain UD1022eps-TasA, which is defective in exopolysaccharide (EPS) and TasA protein production. RESULTS: qPCR revealed that the B. subtilis UD1022eps-TasA- strain has a diminished capacity to colonize tomato roots in soils with diluted microbial diversity. The analysis of bacterial ß-diversity revealed significant differences in bacterial and fungal community structures following inoculation with either the wild-type or mutant B. subtilis strains. The Verrucomicrobiota, Patescibacteria, and Nitrospirota phyla were more enriched with the wild-type strain inoculation than with the mutant inoculation. Co-occurrence analysis revealed that when the mutant was inoculated in tomato, the rhizosphere microbial community exhibited a lower level of modularity, fewer nodes, and fewer communities compared to communities inoculated with wild-type B. subtilis. CONCLUSION: This study advances our understanding of the EPS and TasA genes, which are not only important for root colonization but also play a significant role in shaping rhizosphere microbiome assembly. Future research should concentrate on specific microbiome genetic traits and their implications for rhizosphere colonization, coupled with rhizosphere microbiome modulation. These efforts will be crucial for optimizing PGPR-based approaches in agriculture.
RESUMEN
Plant growth promoting rhizobacteria (PGPR) are also known to colonize in the soil rhizosphere and prevent the development of other soil borne pathogens residing in the root surface. These microorganisms play a vital role in growth and development of the plant and also enhances the soil fertility by enriching the soil with different beneficial nutrients. This study was aimed at isolation of different rhizobacteria and their molecular characterization in search of efficient bacterial strains with multiple growth regulating activities. A total 36 bacteria were isolated from lentil root nodule as well as soil from different lentil growing fields with a view to screen/evaluate their plant growth promoting potential. Morphological characterization of isolated rhizobacterial candidates were done by observing the colonies on YEMA and nutrient agar media. Determination of CFU, Congo red test and gram staining tests were done to further screen them according to their morphology. All the isolates were then undergone molecular phylogenetic analysis using the partial sequences of the 16 S rDNA. Based upon the Gram staining test, all the isolates were negative in gram reaction except six Bacillus isolates, PSB2 and AB3. Results of Ribosomal Database Project (RDP) and Basic Local Alignment Search Tool for Nucleotide Sequences (BLASTn) from 16 S rDNA gene sequences showed that these isolates are genetically diverse. A total of 15 isolates of Rhizobium, 6 isolates of Bacillus, 3 isolates of Pseudomonas, 2 isolates of Phosphate Solubilizing Bacteria, 4 isolates of actinomycetes were identified by molecular sequencing of their 16 S rDNA region and comparing them with the other isolates enlisted in the database of NCBI for the similarity percentage, query coverage. The purpose of the present study was to select native rhizosphere bacteria from the lentil nodule and soil of Lentil field and to evaluate their plant growth promoting potential as an alternative of chemical fertilizer for sustainable, environment friendly agriculture and assessment of their phylogenetic characterization.
Asunto(s)
Bacterias , ADN Bacteriano , Lens (Planta) , Filogenia , ARN Ribosómico 16S , Rizosfera , Microbiología del Suelo , Lens (Planta)/microbiología , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Raíces de Plantas/microbiología , India , ADN Ribosómico/genéticaRESUMEN
Milpa is an agroecological production system based on the polyculture of plant species, with corn featuring as a central component. Traditionally, the milpa system does not require the application of chemicals, and so pest attacks and poor growth in poor soils can have adverse effects on its production. Therefore, the application of bioinoculants could be a strategy for improving crop growth and health; however, the effect of external inoculant agents on the endemic microbiota associated with corn has not been extensively studied. Here, the objective of this work was to fertilize a maize crop under a milpa agrosystem with the PGPR Pseudomonas fluorescens UM270, evaluating its impact on the diversity of the rhizosphere (rhizobiome) and root endophytic (root endobiome) microbiomes of maize plants. The endobiome of maize roots was evaluated by 16S rRNA and internal transcribed spacer region (ITS) sequencing, and the rhizobiome was assessed by metagenomic sequencing upon inoculation with the strain UM270. The results showed that UM270 inoculation of the rhizosphere of P. fluorescens UM270 did not increase alpha diversity in either the monoculture or milpa, but it did alter the endophytic microbiome of maize plant roots by stimulating the presence of bacterial operational taxonomic units (OTUs) of the genera Burkholderia and Pseudomonas (in a monoculture), whereas, in the milpa system, the PGPR stimulated greater endophytic diversity and the presence of genera such as Burkholderia, Variovorax, and N-fixing rhizobia genera, including Rhizobium, Mesorhizobium, and Bradyrhizobium. No clear association was found between fungal diversity and the presence of strain UM270, but beneficial fungi, such as Rizophagus irregularis and Exophiala pisciphila, were detected in the Milpa system. In addition, network analysis revealed unique interactions with species such as Stenotrophomonas sp., Burkholderia xenovorans, and Sphingobium yanoikuyae, which could potentially play beneficial roles in the plant. Finally, the UM270 strain does not seem to have a strong impact on the microbial diversity of the rhizosphere, but it does have a strong impact on some functions, such as trehalose synthesis, ammonium assimilation, and polyamine metabolism. The inoculation of UM270 biofertilizer in maize plants modifies the rhizo- and endophytic microbiomes with a high potential for stimulating plant growth and health in agroecological crop models.
RESUMEN
The study aimed to develop a solid biofertilizer using Bacillus pumilus, focusing on auxin production to enhance plant drought tolerance. Methods involved immobilising B. pumilus in alginate-starch beads, focusing on microbial concentration, biopolymer types, and environmental conditions. The optimal formulation showed a diameter of 3.58 mm ± 0.18, a uniform size distribution after 15 h of drying at 30 °C, a stable bacterial concentration (1.99 × 109 CFU g-1 ± 1.03 × 109 over 180 days at room temperature), a high auxin production (748.8 µg g-1 ± 10.3 of IAA in 7 days), and a water retention capacity of 37% ± 4.07. In conclusion, this new formulation of alginate + starch + L-tryptophan + B. pumilus has the potential for use in crops due to its compelling water retention, high viability in storage at room temperature, and high auxin production, which provides commercial advantages.
Asunto(s)
Bacillus pumilus , Ácidos Indolacéticos , Microesferas , Alginatos , Almidón , AguaRESUMEN
This study tested the hypothesis that cocoa monoculture (MS) and cocoa-açai agroforestry systems (AFS) may influence the microbial community structure and populations of plant growth-promoting bacteria (PGPR). Accordingly, the aim was to analyze the microbial community structure and PGPR populations in different agroecosystems in the Brazilian Amazon. To achieve this, the rhizosphere microbial community of cocoa and açai plants in both Amazonian seasons (dry and rainy) was analyzed using culture-dependent (PGPR screening) and -independent methods [PCR-DGGE based on rrs, alp, nifH gene, and intergenic region (ITS) of fungi]. Concerning PGPR screening, out of 48 isolated bacterial strains, 25% were capable of siderophore production, 29% of mineralized organic phosphate, 8% of inorganic phosphate solubilization, and 4% of indole acetic acid production. Moreover, 17% of isolates could inhibit the growth of various phytopathogenic fungi. Statistical analyses of DGGE fingerprints (p < 0.05) showed that bacterial and fungal community structures in the rhizosphere were influenced by the seasons, supporting the results of the physicochemical analysis of the environment. Furthermore, as hypothesized, microbial communities differed statistically when comparing the MS and AFS. These findings provide important insights into the influence of climate and cultivation systems on soil microbial communities to guide the development of sustainable agricultural practices.
RESUMEN
Soil contamination by heavy metals is one of the major problems that adversely decrease plant growth and biomass production. Inoculation with the plant growth-promoting rhizobacteria (PGPR) can attenuate the toxicity of heavy metals and enhancing the plant growth. In this study, we evaluated the potential of a novel extremotolerant strain (IS-2 T) isolated from date palm rhizosphere to improve barley seedling growth under heavy metal stress. The species-level identification was carried out using morphological and biochemical methods combined with whole genome sequencing. The bacterial strain was then used in vitro for inoculating Hordeum vulgare L. exposed to three different Cr, Zn, and Ni concentrations (0.5, 1, and 2 mM) in petri dishes and different morphological parameters were assessed. The strain was identified as Bacillus glycinifermentans species. This strain showed high tolerance to pH (6-11), salt stress (0.2-2 M), and heavy metals. Indeed, the minimum inhibitory concentrations at which bacterium was unable to grow were 4 mM for nickel, 3 mM for zinc, more than 8 mM for copper, and 40 mM for chromium, respectively. It was observed that inoculation of Hordeum vulgare L. under metal stress conditions with Bacillus glycinifermentans IS-2 T stain improved considerably the growth parameters. The capacity of the IS-2 T strain to withstand a range of abiotic stresses and improve barley seedling development under lab conditions makes it a promising candidate for use as a PGPR in zinc, nickel, copper, and chromium bioremediation.
Asunto(s)
Bacillus , Hordeum , Metales Pesados , Phoeniceae , Contaminantes del Suelo , Cobre/farmacología , Níquel/toxicidad , Rizosfera , Metales Pesados/toxicidad , Bacterias , Cromo/toxicidad , Biodegradación Ambiental , Semillas , Zinc , Suelo , Raíces de Plantas/microbiologíaRESUMEN
Drought is a major challenge for agriculture worldwide, being one of the main causes of losses in plant production. Various studies reported that some soil's bacteria can improve plant tolerance to environmental stresses by the enhancement of water and nutrient uptake by plants. The Atacama Desert in Chile, the driest place on earth, harbors a largely unexplored microbial richness. This study aimed to evaluate the ability of various Bacillus sp. from the hyper arid Atacama Desert in the improvement in tolerance to drought stress in lettuce (Lactuca sativa L. var. capitata, cv. "Super Milanesa") plants. Seven strains of Bacillus spp. were isolated from the rhizosphere of the Chilean endemic plants Metharme lanata and Nolana jaffuelii, and then identified using the 16s rRNA gene. Indole acetic acid (IAA) production, phosphate solubilization, nitrogen fixation, and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase activity were assessed. Lettuce plants were inoculated with Bacillus spp. strains and subjected to two different irrigation conditions (95% and 45% of field capacity) and their biomass, net photosynthesis, relative water content, photosynthetic pigments, nitrogen and phosphorus uptake, oxidative damage, proline production, and phenolic compounds were evaluated. The results indicated that plants inoculated with B. atrophaeus, B. ginsengihumi, and B. tequilensis demonstrated the highest growth under drought conditions compared to non-inoculated plants. Treatments increased biomass production and were strongly associated with enhanced N-uptake, water status, chlorophyll content, and photosynthetic activity. Our results show that specific Bacillus species from the Atacama Desert enhance drought stress tolerance in lettuce plants by promoting several beneficial plant traits that facilitate water absorption and nutrient uptake, which support the use of this unexplored and unexploited natural resource as potent bioinoculants to improve plant production under increasing drought conditions.
RESUMEN
Salinity inhibits plant growth by affecting physiological processes, but soil microorganisms like plant growth-promoting rhizobacteria (PGPR) can alleviate abiotic stress and enhance crop productivity. However, it should be noted that rhizobacteria employ different approaches to deal with salt stress conditions and successfully colonize roots. The objective of this study was to investigate the effect of salt stress on bacterial survival mechanisms such as mobility, biofilm formation, and the autoaggregation capacity of three plant growth-promoting strains: Pseudomonas putida SJ04, Pseudomonas simiae WCS417r, and Bacillus amyloliquefaciens GB03. These strains were grown in diluted LB medium supplemented with 0, 100, 200, or 300 mM NaCl. Swimming and swarming mobility were evaluated in media supplemented with 0.3 and 0.5% agar, respectively. Biofilm formation capacity was quantified using the crystal violet method, and the autoaggregation capacity was measured spectrophotometrically. In addition, we evaluated in vitro the capacity of the strains to ameliorate the effects of saline stress in Mentha piperita. The study found that the GB03 strain exhibited enhanced swarming mobility when the salt concentration in the medium increased, resulting in a two-fold increase in the halo diameter at 300 mM. However, high concentrations of NaCl did not affect the swimming mobility. In contrast, swimming motility was reduced in WCS417r and SJ04 under salt stress. On the other hand, exposure to 300 mM NaCl resulted in a 180% increase in biofilm formation and a 30% rise in the percentage of autoaggregation in WCS417r. Conversely, the autoaggregation percentage of the strains SJ04 and GB03 remained unaffected by saline stress. However, for GB03, biofilm formation decreased by 80% at 300 mM. Simultaneously, inoculation with the three evaluated strains alleviated the detrimental effects of salinity on plant growth. Under 150 mM salt stress, all strains showed increased fresh weight, with GB03 and WCS417r improving by 40% and SJ04 exhibiting the most remarkable effect with a 70% rise compared to non-inoculated plants. Despite their different strategies for mitigating salt stress, the application of these strains presents a promising strategy for effectively mitigating the negative consequences of salt stress on plant cultivation.
RESUMEN
Introduction: This work investigates whether rhizosphere microorganisms that colonize halophyte plants thriving in saline habitats can tolerate salinity and provide beneficial effects to their hosts, protecting them from environmental stresses, such as aromatic compound (AC) pollution. Methods: To address this question, we conducted a series of experiments. First, we evaluated the effects of phenol, tyrosine, 4-hydroxybenzoic acid, and 2,4-dichlorophenoxyacetic (2,4-D) acids on the soil rhizosphere microbial community associated with the halophyte Allenrolfea vaginata. We then determined the ability of bacterial isolates from these microbial communities to utilize these ACs as carbon sources. Finally, we assessed their ability to promote plant growth under saline conditions. Results: Our study revealed that each AC had a different impact on the structure and alpha and beta diversity of the halophyte bacterial (but not archaeal) communities. Notably, 2,4-D and phenol, to a lesser degree, had the most substantial decreasing effects. The removal of ACs by the rhizosphere community varied from 15% (2,4-D) to 100% (the other three ACs), depending on the concentration. Halomonas isolates were the most abundant and diverse strains capable of degrading the ACs, with strains of Marinobacter, Alkalihalobacillus, Thalassobacillus, Oceanobacillus, and the archaea Haladaptatus also exhibiting catabolic properties. Moreover, our study found that halophile strains Halomonas sp. LV-8T and Marinobacter sp. LV-48T enhanced the growth and protection of Arabidopsis thaliana plants by 30% to 55% under salt-stress conditions. Discussion: These results suggest that moderate halophile microbial communities may protect halophytes from salinity and potential adverse effects of aromatic compounds through depurative processes.
RESUMEN
Resumen El déficit hídrico constituye una severa limitación a la productividad agrícola. En el marco de la producción sostenible de cultivos, la biotecnología microbiana está cobrando relevancia para aumentar la tolerancia a la sequía y mejorar el rendimiento de los cultivos en condiciones adversas. El propósito de este trabajo fue comparar la acción de la cepa de Azospirillum argentinense Az19, con tolerancia in vitro a estresores abióticos, con la cepa Az39, utilizada ampliamente para la formulación de inoculantes comerciales, al inocularlas en plantas sometidas a déficit hídrico. Se realizaron ensayos de invernadero y de campo. En invernadero, la cepa Az19 evitó el impacto adverso del déficit hídrico en el estadio V2 sobre el crecimiento del maíz. Además, el porcentaje de plantas con espigas y el peso de la espiga disminuyó significativamente con la restricción hídrica aplicada en V2 y en floración en plantas inoculadas con la cepa Az39, pero no en las inoculadas con Az19. En el primer ensayo de campo con el maíz híbrido comercial DOW DS 515 PW las plantas inoculadas con Az19 fueron las que mejor toleraron la deficiencia hídrica. En el segundo ensayo de campo se utilizaron dos genotipos de maíz con sensibilidad diferencial a la sequía. La inoculación con Az19 condujo a una mayor tolerancia al déficit hídrico, con un efecto detectable en algunos componentes del rendimiento en el genotipo sensible. Sobre la base de estos resultados, proponemos el empleo de A. argentinense Az19 para la formulación de inoculantes basados en Azospirillum especialmente indicados para áreas agroecológicas que experimenten períodos de déficit hídrico.
RESUMEN
The growing human population has a greater demand for food; however, the care and preservation of nature as well as its resources must be considered when fulfilling this demand. An alternative employed in recent decades is the use and application of microbial inoculants, either individually or in consortium. The transplantation of rhizospheric microbiomes (rhizobiome) recently emerged as an additional proposal to protect crops from pathogens. In this review, rhizobiome transplantation was analyzed as an ecological alternative for increasing plant protection and crop production. The differences between single-strain/species inoculation and dual or consortium application were compared. Furthermore, the feasibility of the transplantation of other associated micro-communities, including phyllosphere and endosphere microbiomes, were evaluated. The current and future challenges surrounding rhizobiome transplantation were additionally discussed. In conclusion, rhizobiome transplantation emerges as an attractive alternative that goes beyond single/group inoculation of microbial agents; however, there is still a long way ahead before it can be applied in large-scale agriculture.
RESUMEN
An underutilized experimental design was employed to isolate adapted mutants of the model bacterium Pseudomonas putida KT2440. The design involved subjecting a random pool of mini-Tn5 mutants of P. putida KT2440 to multiple rounds of selection in the rhizosphere of soybean plants irrigated with a NaCl solution. The isolated adapted mutants, referred to as MutAd, exhibited a mutation in the gene responsible for encoding the membrane-binding protein LapA, which plays a role in the initial stages of biofilm formation on abiotic surfaces. Two MutAd bacteria, MutAd160 and MutAd185, along with a lapA deletion mutant, were selected for further investigation to examine the impact of this gene on salt tolerance, rhizosphere fitness, production of extracellular polymeric substances (EPS), and promotion of plant growth. Despite the mutants' inability to form biofilms, they were able to attach to soybean seeds and roots. The MutAd bacteria demonstrated an elevated production of EPS when cultivated under saline conditions, which likely compensated for the absence of biofilm formation. MutAd185 bacteria exhibited enhanced root attachment and promoted the growth of soybean plants in slightly saline soils. The proposed experimental design holds promise for expediting bacterial adaptation to the rhizosphere of plants under specific environmental conditions, identifying genetic mutations that enhance bacterial fitness in those conditions, and thereby increasing their capacity to promote plant growth.
Asunto(s)
Pseudomonas putida , Pseudomonas putida/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Estrés Salino , Desarrollo de la Planta , Raíces de Plantas/microbiología , RizosferaRESUMEN
Inoculation with phosphate-solubilizing bacteria (PSB) and the application of phosphorus (P) sources can improve soil P availability, enhancing the sustainability and efficiency of agricultural systems. The implementation of this technology in perennial grasses, such as Kikuyu grass, for cattle feed in soils with high P retention, such as Andisols, has been little explored. The objective of this study was to evaluate the productive response of Kikuyu grass and soil P dynamics to BSF inoculation with different P sources. The experiment was conducted on a Kikuyu pasture, which was evaluated for 18 months (September 2020 to March 2022). Three P fertilizers with different solubility levels were applied: diammonium phosphate (DAP) (high-solubility), rock phosphate (RP), and compost (OM) (low-solubility). Moreover, the inoculation of a PSB consortium (Azospirillum brasilense D7, Rhizobium leguminosarum T88 and Herbaspirillum sp. AP21) was tested. Inoculation with PSB and fertilization with rock phosphate (RP) increased soil labile P and acid phosphomonoesterase activity. Increased grass yield and quality were related with higher soil inorganic P (Pi) availability. This study validated, under field conditions, the benefits of PSB inoculation for soil P availability and Kikuyu grass productivity.