Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Appl Physiol Nutr Metab ; 49(4): 526-538, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38113478

RESUMEN

We tested the hypothesis that AMPK activation and peroxisome proliferator gamma coactivator 1 alpha (PGC-1α) expression are not augmented as exercise intensity (power output) increases from maximal to supramaximal intensities and conducted an exploratory analysis comparing AMPK activation and PGC-1α expression in males and females. Seventeen (n = 9 males; n = 8 females) recreationally active, healthy, young individuals volunteered to participate in the current study. Participants completed work matched interval exercise at 100% (Max) and 133% (Supra) of peak work rate (WRpeak). Intervals were 1 min in duration and participants were prescribed 6 and 8 intervals of Max and Supra, respectively, to equate external work across protocols. PGC-1α mRNA expression and activation of AMPK (p-ACC) were examined in muscle biopsy samples. Interval WR (watts; W), intensity (%WRpeak) and average HR (bpm), blood lactate (mmol/L) and rating of perceived exertion were all higher (all p < 0.05) in Supra. Fatigue was greater (p < 0.05) in Supra. PGC-1α mRNA expression significantly increased after exercise in Max (p < 0.01) and Supra (p < 0.01), but was not significantly different (p = 0.71) between intensities. A main effect of time (Pre - 0 h) (p < 0.01) was observed for p-ACC; however, no effect of intensity (p = 0.08) or interaction (p = 0.97) was observed. No significant effects of time (p = 0.05) intensity (p = 0.42), or interaction (p = 0.97) were observed for p-AMPK (Thr172). Exploratory sex analysis demonstrated a main effect of sex for p-ACC (greater p-ACC in males; p < 0.05) but not for p-AMPK or PGC-1α expression. Our results confirm that AMPK-PGC-1α signalling is not augmented following supramaximal exercise and provide novel data demonstrating a decrease in AMPK activation (p-ACC) in females compared to men. Trial registration: https://doi.org/10.17605/OSF.IO/U7PX9.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Músculo Esquelético , Masculino , Humanos , Femenino , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Estudios Cruzados , Músculo Esquelético/fisiología , Ejercicio Físico/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
2.
bioRxiv ; 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37808866

RESUMEN

The brain is a high energy tissue, and the cell types of which it is comprised are distinct in function and in metabolic requirements. The transcriptional co-activator PGC-1a is a master regulator of mitochondrial function and is highly expressed in the brain; however, its cell-type specific role in regulating metabolism has not been well established. Here, we show that PGC-1a is responsive to aging and that expression of the neuron specific PGC-1a isoform allows for specialization in metabolic adaptation. Transcriptional profiles of the cortex from male mice show an impact of age on immune, inflammatory, and neuronal functional pathways and a highly integrated metabolic response that is associated with decreased expression of PGC-1a. Proteomic analysis confirms age-related changes in metabolism and further shows changes in ribosomal and RNA splicing pathways. We show that neurons express a specialized PGC-1a isoform that becomes active during differentiation from stem cells and is further induced during the maturation of isolated neurons. Neuronal but not astrocyte PGC-1a responds robustly to inhibition of the growth sensitive kinase GSK3b, where the brain specific promoter driven dominant isoform is repressed. The GSK3b inhibitor lithium broadly reprograms metabolism and growth signaling, including significantly lower expression of mitochondrial and ribosomal pathway genes and suppression of growth signaling, which are linked to changes in mitochondrial function and neuronal outgrowth. In vivo, lithium treatment significantly changes the expression of genes involved in cortical growth, endocrine, and circadian pathways. These data place the GSK3b/PGC-1a axis centrally in a growth and metabolism network that is directly relevant to brain aging.

3.
Theranostics ; 13(14): 5057-5074, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37771767

RESUMEN

Background: Recently years have seen the increasing evidence identifying that OXPHOS is involved in different processes of tumor progression and metastasis and has been proposed to be a potential therapeutical target for cancer treatment. However, the exploration in oxidative phosphorylation-mediated chemoresistance is still scarce. In our study, we identify exosomal transfer leads to chemoresistance by reprogramming metabolic phenotype in recipient cells. Methods: RNA sequencing analysis was used to screen altered targets mediating exosome transfer-induced chemoresistance. Seahorse assay allowed us to measure mitochondrial respiration. Stemness was measured by spheroids formation assay. Serum exosomes were isolated for circ_0001610 quantification. Results: The induced oxidative phosphorylation leads to more stem-like properties, which is dependent on the transfer of exosomal circ_0001610. Exosome transfer results in the removal of miR-30e-5p-mediated suppression of PGC-1a, a master of mitochondrial biogenesis and function. Consequently, increased PGC-1a reshapes cellular metabolism towards oxidative phosphorylation, leading to chemoresistance. Inhibition of OXPHOS or exosomal si-circ_0001610 increases the sensitivity of chemotherapy by decreasing cell stemness in vitro and in vivo. Conclusion: Our data suggests that exosomal circ_0001610-induced OXPHOS plays an important role in chemoresistance and supports a therapeutical potential of circ_0001610 inhibitors in the treatment of oxaliplatin-resistant colorectal cancer by manipulating cell stemness.


Asunto(s)
Neoplasias Colorrectales , Exosomas , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Fosforilación Oxidativa , Resistencia a Antineoplásicos/genética , Oxaliplatino , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Exosomas/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética
4.
Antioxidants (Basel) ; 12(2)2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36829944

RESUMEN

Initially discovered by Makuto Kuro-o in 1997, Klotho is a putative aging-suppressor gene when overexpressed and accelerates aging when deleted in mice. Previously, we showed that α-Klotho regulates retinal pigment epithelium (RPE) functions and protects against oxidative stress. However, the mechanisms by which Klotho influences RPE and retinal homeostasis remain elusive. Here, by performing a series of in vitro and in vivo experiments, we demonstrate that Klotho regulates cell viability under oxidative stress, mitochondrial gene expression and activity by inducing the phosphorylation of AMPK and p38MAPK, which in turn phosphorylate and activate CREB and ATF2, respectively, triggering PGC-1α transcription. The inhibition of Klotho in human RPE cells using CRISPR-Cas9 gene editing confirmed that a lack of Klotho negatively affects RPE functions, including mitochondrial activity and cell viability. Proteomic analyses showed that myelin sheath and mitochondrial-related proteins are downregulated in the RPE/retina of Kl-/- compared to WT mice, further supporting our biochemical observations. We conclude that Klotho acts upstream of the AMPK/PGC-1α pathway and regulates RPE/retinal resistance to oxidative stress, mitochondrial function, and gene and protein expressions. Thus, KL decline during aging could negatively impact retinal health, inducing age-related retinal degeneration.

5.
Semin Cell Dev Biol ; 143: 17-27, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35680515

RESUMEN

The purpose of this review is to explore and discuss the impacts of augmented training volume, intensity, and duration on the phosphorylation/activation of key signaling protein - AMPK, CaMKII and PGC-1α - involved in the initiation of mitochondrial biogenesis. Specifically, we explore the impacts of augmented exercise protocols on AMP/ADP and Ca2+ signaling and changes in post exercise PGC - 1α gene expression. Although AMP/ADP concentrations appear to increase with increasing intensity and during extended durations of higher intensity exercise AMPK activation results are varied with some results supporting and intensity/duration effect and others not. Similarly, CaMKII activation and signaling results following exercise of different intensities and durations are inconsistent. The PGC-1α literature is equally inconsistent with only some studies demonstrating an effect of intensity on post exercise mRNA expression. We present a novel meta-analysis that suggests that the inconsistency in the PGC-1α literature may be due to sample size and statistical power limitations owing to the effect of intensity on PGC-1α expression being small. There is little data available regarding the impact of exercise duration on PGC-1α expression. We highlight the need for future well designed, adequately statistically powered, studies to clarify our understanding of the effects of volume, intensity, and duration on the induction of mitochondrial biogenesis by exercise.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Ejercicio Físico/fisiología , Músculo Esquelético/metabolismo , Fosforilación , ARN Mensajero/genética , Humanos
6.
Res Sq ; 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38196574

RESUMEN

Background: Myocarditis is an inflammation of the heart muscle most often caused by an immune response to viral infections. Sex differences in the immune response during myocarditis have been well described but upstream mechanisms in the heart that might influence sex differences in disease are not completely understood. Methods: Male and female BALB/c wild type mice received an intraperitoneal injection of heart-passaged coxsackievirus B3 (CVB3) or vehicle control. Bulk-tissue RNA-sequencing was conducted to better understand sex differences in CVB3 myocarditis. We performed enrichment analysis to understand sex differences in the transcriptional landscape of myocarditis and identify candidate transcription factors that might drive sex differences in myocarditis. Results: The hearts of male and female mice with myocarditis were significantly enriched for pathways related to an innate and adaptive immune response compared to uninfected controls. When comparing females to males with myocarditis, males were enriched for inflammatory pathways and gene changes that suggested worse mitochondrial transcriptional support (e.g., mitochondrial electron transport genes). In contrast, females were enriched for pathways related to mitochondrial respiration and bioenergetics, which were confirmed by higher transcript levels of master regulators of mitochondrial function including peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1α), nuclear respiratory factor 1 (NRF1) and estrogen-related receptor alpha (ERRα). TRANSFAC analysis identified ERRa as a transcription factor that may mediate sex differences in mitochondrial function during myocarditis. Conclusions: Master regulators of mitochondrial function were elevated in females with myocarditis compared to males and may promote sex differences in mitochondrial respiratory transcript expression during viral myocarditis resulting in less severe myocarditis in females following viral infection.

7.
Cells ; 11(18)2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36139423

RESUMEN

Emerging evidence suggests that the proper control of mitochondrial dynamics provides a window for therapeutic intervention for Alzheimer's disease (AD) progression. The transcriptional coactivator peroxisome proliferator activated receptor gamma coactivator 1 (PGC-1a) has been shown to regulate mitochondrial biogenesis in neurons. Thus far, the roles of PGC-1a in Alzheimer's disease and its potential value for restoring mitochondrial dysfunction remain largely unknown. In the present study, we explored the impacts of PGC-1a on AD pathology and neurobehavioral dysfunction and its potential mechanisms with a particular focus on mitochondrial dynamics. Paralleling AD-related pathological deposits, neuronal apoptosis, abnormal mitochondrial dynamics and lowered membrane potential, a remarkable reduction in the expression of PGC-1a was shown in the cortex of APP/PS1 mice at 6 months of age. By infusing AAV-Ppargc1α into the lateral parietal association (LPtA) cortex of the APP/PS1 brain, we found that PGC-1a ameliorated AD-like behavioral abnormalities, such as deficits in spatial reference memory, working memory and sensorimotor gating. Notably, overexpressed PGC-1a in LPtA rescued mitochondrial swelling and damage in neurons, likely through correcting the altered balance in mitochondrial fission-fusion and its abnormal distribution. Our findings support the notion that abnormal mitochondrial dynamics is likely an important mechanism that leading to mitochondrial dysfunction and AD-related pathological and cognitive impairments, and they indicate the potential value of PGC-1a for restoring mitochondrial dynamics as an innovative therapeutic target for AD.


Asunto(s)
Enfermedad de Alzheimer , Dinámicas Mitocondriales , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Enfermedad de Alzheimer/metabolismo , Animales , Ratones , Biogénesis de Organelos , PPAR gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
8.
Diabetologia ; 65(7): 1222-1236, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35488925

RESUMEN

AIMS/HYPOTHESIS: It was shown that maternal endothelial nitric oxide synthase (eNOS) deficiency causes fatty liver disease and numerically lower fasting glucose in female wild-type offspring, suggesting that parental genetic variants may influence the offspring's phenotype via epigenetic modifications in the offspring despite the absence of a primary genetic defect. The aim of the current study was to analyse whether paternal eNOS deficiency may cause the same phenotype as seen with maternal eNOS deficiency. METHODS: Heterozygous (+/-) male eNOS (Nos3) knockout mice or wild-type male mice were bred with female wild-type mice. The phenotype of wild-type offspring of heterozygous male eNOS knockout mice was compared with offspring from wild-type parents. RESULTS: Global sperm DNA methylation decreased and sperm microRNA pattern altered substantially. Fasting glucose and liver glycogen storage were increased when analysing wild-type male and female offspring of +/- eNOS fathers. Wild-type male but not female offspring of +/- eNOS fathers had increased fasting insulin and increased insulin after glucose load. Analysing candidate genes for liver fat and carbohydrate metabolism revealed that the expression of genes encoding glucocorticoid receptor (Gr; also known as Nr3c1) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (Pgc1a; also known as Ppargc1a) was increased while DNA methylation of Gr exon 1A and Pgc1a promoter was decreased in the liver of male wild-type offspring of +/- eNOS fathers. The endocrine pancreas in wild-type offspring was not affected. CONCLUSIONS/INTERPRETATION: Our study suggests that paternal genetic defects such as eNOS deficiency may alter the epigenome of the sperm without transmission of the paternal genetic defect itself. In later life wild-type male offspring of +/- eNOS fathers developed increased fasting insulin and increased insulin after glucose load. These effects are associated with increased Gr and Pgc1a gene expression due to altered methylation of these genes.


Asunto(s)
Glucosa , Glucógeno Hepático , Óxido Nítrico Sintasa de Tipo III , Animales , Femenino , Glucosa/metabolismo , Homeostasis , Insulina/metabolismo , Glucógeno Hepático/metabolismo , Masculino , Ratones , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo III/deficiencia , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo
9.
Elife ; 112022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35297761

RESUMEN

The loss of skeletal muscle function with age, known as sarcopenia, significantly reduces independence and quality of life and can have significant metabolic consequences. Although exercise is effective in treating sarcopenia it is not always a viable option clinically, and currently, there are no pharmacological therapeutic interventions for sarcopenia. Here, we show that chronic treatment with pan-adiponectin receptor agonist AdipoRon improved muscle function in male mice by a mechanism linked to skeletal muscle metabolism and tissue remodeling. In aged mice, 6 weeks of AdipoRon treatment improved skeletal muscle functional measures in vivo and ex vivo. Improvements were linked to changes in fiber type, including an enrichment of oxidative fibers, and an increase in mitochondrial activity. In young mice, 6 weeks of AdipoRon treatment improved contractile force and activated the energy-sensing kinase AMPK and the mitochondrial regulator PGC-1a (peroxisome proliferator-activated receptor gamma coactivator one alpha). In cultured cells, the AdipoRon induced stimulation of AMPK and PGC-1a was associated with increased mitochondrial membrane potential, reorganization of mitochondrial architecture, increased respiration, and increased ATP production. Furthermore, the ability of AdipoRon to stimulate AMPK and PGC1a was conserved in nonhuman primate cultured cells. These data show that AdipoRon is an effective agent for the prevention of sarcopenia in mice and indicate that its effects translate to primates, suggesting it may also be a suitable therapeutic for sarcopenia in clinical application.


Asunto(s)
Adiponectina , Receptores de Adiponectina , Adiponectina/metabolismo , Animales , Masculino , Ratones , Músculo Esquelético/metabolismo , Piperidinas , Primates , Calidad de Vida , Receptores de Adiponectina/metabolismo
10.
Chinese Pharmacological Bulletin ; (12): 1137-1141, 2022.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1014025

RESUMEN

Mitochondria play central roles in energy homeosta¬sis, metabolism and signaling.Drugs may induce mitochondrial oxidative stress, disturb mitochondrial toxicity pathways and im¬pair mitochondrial function.Mitochondrial function is regulated by multiple toxicity pathways, and the antioxidant stress pathway HO-l/PGC-1 a plays an important role in mitochondrial oxidative stress.This artical reviews the influence of oxidative stress on toxicity pathways and the roles of HO-l/PGC-1 a pathway in reg¬ulating mitochondrial oxidative stress.

11.
Saudi J Biol Sci ; 28(12): 6957-6962, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34866995

RESUMEN

Asthma is a complicated lung disease, which has increased morbidity and mortality rates in worldwide. There is an overlap between asthma pathophysiology and mitochondrial dysfunction and MSCs may have regulatory effect on mitochondrial dysfunction and treats asthma. Therefore, immune-modulatory effect of MSCs and mitochondrial signaling pathways in asthma was studied. After culturing of MSCs and producing asthma animal model, the mice were treated with MSCs via IV via IT. BALf's eosinophil Counting, The levels of IL-4, -5, -13, -25, -33, INF-γ, Cys-LT, LTB4, LTC4, mitochondria genes expression of COX-1, COX-2, ND1, Nrf2, Cytb were measured and lung histopathological study were done. BALf's eosinophils, the levels of IL-4, -5, -13, -25, -33, LTB4, LTC4, Cys-LT, the mitochondria genes expression (COX-1, COX-2, Cytb and ND-1), perivascular and peribronchial inflammation, mucus hyper-production and hyperplasia of the goblet cell in pathological study were significantly decreased in MSCs-treated asthma mice and reverse trend was found about Nrf-2 gene expression, IFN-γ level and ratio of the INF-γ/IL-4. MSC therapy can control inflammation, immune-inflammatory factors in asthma and mitochondrial related genes, and prevent asthma immune-pathology.

12.
Front Pharmacol ; 12: 636204, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34588976

RESUMEN

Rationale: Nonalcoholic fatty liver disease (NAFLD) is a kind of metabolic disease characterized by liver steatosis. Excessive reactive oxygen species (ROS) originating from dysfunctional mitochondria is the major pathophysiological contributor in the development of NAFLD and is thought to be a promising therapeutic target. A few reports demonstrate the antioxidative treatments for NAFLD. Methods: Male C57 mice were fed on a normal chow diet (ND) or high-fat diet (HFD) for 8 weeks. PBS or N-acetyl cysteine (NAC) was gavaged to mice. LO2 human liver cell line treated with palmitic acid (PA) was applied as a cellular model. Western blot, immunofluorescence, biochemistry assay, and pathological staining were used to investigate the mechanism of suppressing lipid accumulation of NAC. Results: NAC treatment was able to prevent HFD-induced NAFLD, as evidenced by less hepatic triglyceride accumulation and lipid droplet formation compared with that of mice in the HFD group. NAC could preserve mitochondrial function by inhibiting excessive mitophagy and promoting mitochondria biogenesis to prevent ROS production. NAC also activated Sirt1 and preserved its protein level and subsequently promoted mitochondria biogenesis via deacetylating PGC1a. Conclusion: We demonstrated that NAC may be an effective drug to treat NAFLD, which was related to its antioxidative and mitochondrial protective effect.

13.
Cells ; 10(7)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-34360007

RESUMEN

Since mitochondria are suggested to be important regulators in maintaining cartilage homeostasis, turnover of mitochondria through mitochondrial biogenesis and mitochondrial degradation may play an important role in the pathogenesis of osteoarthritis (OA). Here, we found that mitochondrial dysfunction is closely associated with OA pathogenesis and identified the peroxisome proliferator-activated receptor-gamma co-activator 1-alpha (PGC1α) as a potent regulator. The expression level of PGC1α was significantly decreased under OA conditions, and knockdown of PGC1α dramatically elevated the cartilage degradation by upregulating cartilage degrading enzymes and apoptotic cell death. Interestingly, the knockdown of PGC1α activated the parkin RBR E3 ubiquitin protein ligase (PRKN)-independent selective mitochondria autophagy (mitophagy) pathway through the upregulation of BCL2 and adenovirus E1B 19-kDa-interacting protein 3 (BNIP3). The overexpression of BNIP3 stimulated mitophagy and cartilage degradation by upregulating cartilage-degrading enzymes and chondrocyte death. We identified microRNA (miR)-126-5p as an upstream regulator for PGC1α and confirmed the direct binding between miR-126-5p and 3' untranslated region (UTR) of PGC1α. An in vivo OA mouse model induced by the destabilization of medial meniscus (DMM) surgery, and the delivery of antago-miR-126 via intra-articular injection significantly decreased cartilage degradation. In sum, the loss of PGC1α in chondrocytes due to upregulation of miR-126-5p during OA pathogenesis resulted in the activation of PRKN-independent mitophagy through the upregulation of BNIP3 and stimulated cartilage degradation and apoptotic death of chondrocytes. Therefore, the regulation of PGC1α:BNIP3 mitophagy axis could be of therapeutic benefit to cartilage-degrading diseases.


Asunto(s)
Cartílago Articular/metabolismo , Proteínas de la Membrana/genética , MicroARNs/genética , Proteínas Mitocondriales/genética , Mitofagia/genética , Osteoartritis/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Animales , Antagomirs/genética , Antagomirs/metabolismo , Artroplastia de Reemplazo de Rodilla/métodos , Secuencia de Bases , Cartílago Articular/patología , Condrocitos/metabolismo , Condrocitos/patología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Proteínas de la Membrana/metabolismo , Meniscos Tibiales/metabolismo , Meniscos Tibiales/patología , Ratones , Ratones Endogámicos C57BL , MicroARNs/antagonistas & inhibidores , MicroARNs/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/metabolismo , Osteoartritis/metabolismo , Osteoartritis/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/antagonistas & inhibidores , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
14.
Mitochondrion ; 58: 246-254, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33812061

RESUMEN

Mitochondrial DNA (mtDNA) copy number alterations occur in acute myeloid leukemia (AML). We evaluated regulation and biological significance of mtDNA copy number in pediatric AML patients (n = 123) by qRT-PCR, and in-vitro studies. MtDNA copy number was significantly higher (p < 0.001) and an independent predictor of aggressive disease (p = 0.006), lower event free survival (p = 0.033), and overall survival (p = 0.007). Expression of TFAM, POLG, POLRMT, MYC and ND3 were significantly upregulated. In cell lines, PGC1A inhibition decreased mtDNA copy number while MYC inhibition had no effect. PGC1A may contribute to enhanced mtDNA copy number, which predicts disease aggressiveness and inferior survival outcome.


Asunto(s)
Variaciones en el Número de Copia de ADN , ADN Mitocondrial/genética , Leucemia Mieloide Aguda/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Niño , Humanos , Evaluación de Resultado en la Atención de Salud
15.
Eur J Appl Physiol ; 121(6): 1715-1723, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33682060

RESUMEN

INTRODUCTION: PGC-1a has been termed the master regulator of mitochondrial biogenesis. The exercise-induced rise in PGC-1a transcription is blunted when acute exercise takes place in the heat. However, it is unknown if this alteration has functional implications after heat acclimation and exercise training. PURPOSE: To determine the impact of 3 weeks of aerobic exercise training in the heat (33 °C) compared to training in room temperature (20 °C) on thermoregulation, PGC-1a mRNA response, and aerobic power. METHODS: Twenty-one untrained college aged males (age, 24 ± 4 years; height, 178 ± 6 cm) were randomly assigned to 3 weeks of aerobic exercise training in either 33 °C (n = 12) or 20 °C (n = 11) environmental temperatures. RESULTS: The 20 °C training group increased 20 °C [Formula: see text]̇O2peak from 3.21 ± 0.77 to 3.66 ± 0.78 L·min-1 (p < 0.001) while the 33 °C training group did not improve (pre, 3.16 ± 0.48 L·min-1; post, 3.28 ± 0.63 L·min-1; p = 0.283). PGC-1a increased in response to acute aerobic exercise more in 20 °C (6.6 ± 0.7 fold) than 33 °C (4.6 ± 0.7 fold, p = 0.031) before training, but was no different after training in 20 °C (2.4 ± 0.3 fold) or 33 °C (2.4 ± 0.5 fold, p = 0.999). No quantitative alterations in mitochondrial DNA were detected with training or between temperatures (p > 0.05). CONCLUSIONS: This research indicates that exercise in the heat may limit the effectiveness of aerobic exercise at increasing aerobic power. Furthermore, this study demonstrates that heat induced blunting of the normal exercise induced PGC-1a response is eliminated after 3 weeks of heat acclimation.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Ejercicio Físico/fisiología , Calor , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Aclimatación/fisiología , Humanos , Masculino , Consumo de Oxígeno/fisiología , Adulto Joven
16.
Eur J Appl Physiol ; 121(4): 1219-1232, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33564963

RESUMEN

PURPOSE: Carbohydrate (CHO) restriction could be a potent metabolic regulator of endurance exercise-induced muscle adaptations. Here, we determined whether post-exercise CHO restriction following strenuous exercise combining continuous cycling exercise (CCE) and sprint interval exercise could affect the gene expression related to mitochondrial biogenesis and oxidative metabolism in human skeletal muscle. METHODS: In a randomized cross-over design, 8 recreationally active males performed two cycling exercise sessions separated by 4 weeks. Each session consisted of 60-min CCE and six 30-s all-out sprints, which was followed by ingestion of either a CHO or placebo beverage in the post-exercise recovery period. Muscle glycogen concentration and the mRNA levels of several genes related to mitochondrial biogenesis and oxidative metabolism were determined before, immediately after, and at 3 h after exercise. RESULTS: Compared to pre-exercise, strenuous cycling led to a severe muscle glycogen depletion (> 90%) and induced a large increase in PGC1A and PDK4 mRNA levels (~ 20-fold and ~ 10-fold, respectively) during the acute recovery period in both trials. The abundance of the other transcripts was not changed or was only moderately increased during this period. CHO restriction during the 3-h post-exercise period blunted muscle glycogen resynthesis but did not increase the mRNA levels of genes associated with muscle adaptation to endurance exercise, as compared with abundant post-exercise CHO consumption. CONCLUSION: CHO restriction after a glycogen-depleting and metabolically-demanding cycling session is not effective for increasing the acute mRNA levels of genes involved in mitochondrial biogenesis and oxidative metabolism in human skeletal muscle.


Asunto(s)
Carbohidratos de la Dieta/farmacología , Músculo Esquelético/metabolismo , Biogénesis de Organelos , Acondicionamiento Físico Humano/métodos , Adulto , Dieta Baja en Carbohidratos/efectos adversos , Dieta Baja en Carbohidratos/métodos , Carbohidratos de la Dieta/administración & dosificación , Glucógeno/metabolismo , Humanos , Masculino , Mitocondrias Musculares/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Acondicionamiento Físico Humano/efectos adversos , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/genética , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo
17.
Gene ; 774: 145422, 2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33450350

RESUMEN

BACKGROUND: Leptin (LEP), leptin receptor (LEPR) and peroxisome proliferator-activated receptor gamma co-activator 1-alpha (PGC1A) are involved in the pathogenesis of multiple sclerosis (MS) by affecting the inflammatory response and reactive oxygen species production. LEP rs7799039 and LEPR rs1137101 genetic variants modify the serum LEP levels and PGC1A rs8192678 alters the PGC1A activity. The study objective was to explore the associations of these variants with susceptibility to MS, disease course/clinical parameters and also with peripheral blood mononuclear cell expression of the target genes and plasma LEP concentrations, in the study subjects. METHODS: The study groups included 528 patients with MS and 429 controls. TaqMan® assays were used for genotyping and gene expression quantification. The Chi-square, parametric and nonparametric tests and simple/multiple logistic regression were performed for the statistical analysis of data. RESULTS: A multiple logistic regression model including all three investigated variants, applied to patients (RRMS + SPMS) and controls, showed that PGC1A rs8192678 minor allele had an increased risk for the occurrence of disease, with OR (95%CI) = 1,32 (1,01-1,73), P = 0,04. Between-effect of gender and LEPR variant on the multiple sclerosis severity score (MSSS) was identified (P = 0,005). In male patients (relapsing-remitting and secondary progressive), LEPR minor allele carriers had increased MSSS (GG + AG vs AA, median (minimum-maximum) = 5,38 (0,64-9,88) vs 4,27 (0,78-9,63); P = 0,01, Padj = 0,03). In relapsing-remitting patients LEP rs7799039 affected the LEP gene expression (P = 0,006; Padj = 0,04). CONCLUSION: The current findings implicate an impact of investigated genetic variants on the pathogenesis of MS.


Asunto(s)
Leptina/genética , Esclerosis Múltiple/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Polimorfismo de Nucleótido Simple , Receptores de Leptina/genética , Adulto , Estudios de Casos y Controles , Femenino , Expresión Génica , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Leptina/sangre , Leucocitos Mononucleares , Masculino , Persona de Mediana Edad , Gravedad del Paciente , Reacción en Cadena en Tiempo Real de la Polimerasa
18.
Skelet Muscle ; 10(1): 25, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32933582

RESUMEN

BACKGROUND: Elderly populations are susceptible to critical limb ischemia (CLI), but conventional treatments cannot significantly decrease amputation and mortality. Although exercise is an effective "non-pharmacological medicine" targeting mitochondria to improve skeletal muscle function, few studies have focused on the application of exercise in CLI. METHODS: Elderly male C57BL/6 mice (14 months old) were used to establish a CLI model to assess the effect of exercise on perfusion, performance recovery, apoptosis, mitochondrial function, and mitochondrial turnover in gastrocnemius muscle. The potential underlying mechanism mediated by PGC1a/FNDC5/irisin was confirmed in hypoxic and nutrient-deprived myotubes undergoing electrical pulse stimuli (EPS). RESULTS: Exercise significantly accelerated the perfusion recovery and exercise performance in ischemic limbs following CLI. Exercise improved the mitochondrial membrane potential and total ATP production and decreased apoptosis in the ischemic limbs. Exercise increased the formation of mitochondrial derived vesicle-like structures and decreased the mitochondrial length in the ischemic limbs, accompanied by upregulated PGC1a/FNDC5/irisin expression. In vitro, PGC1a/FNDC5/irisin downregulation decreased EPS-elevated PINK1, Parkin, DRP1, and LC3B mRNA levels. The irisin levels in the culture medium were correlated with the expression of mitochondrial fission and mitophagy markers in myotubes. CONCLUSION: Exercise enhanced mitochondrial fission and selective autophagy to promote the recovery of myopathy after CLI in elderly mice through the PGC1a/FNDC5/irisin pathway, supporting the efficacy of exercise therapy in elderly individuals with CLI and demonstrating the potential of targeting PGC1a/FNDC5/irisin as a new strategy for the treatment of CLI.


Asunto(s)
Isquemia/metabolismo , Dinámicas Mitocondriales , Mitofagia , Actividad Motora , Músculo Esquelético/metabolismo , Enfermedades Musculares/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Animales , Hipoxia de la Célula , Línea Celular , Fibronectinas/metabolismo , Isquemia/complicaciones , Isquemia/terapia , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias Musculares/metabolismo , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/fisiología , Enfermedades Musculares/etiología , Enfermedades Musculares/terapia
19.
Biochem Biophys Rep ; 22: 100735, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32140572

RESUMEN

Octopamine (OCT) have an adverse effect on heart function. One of the positive effects of exercise training is improving cardiac function and cardiomyocytes signaling, which along with herbal supplements can have better effects on the heart tissue. Therefore, the aim of this study was to evaluate the effects of exercise training and OCT on changes of PGC1α and UCP1 expression in heart tissue of rat treated with deep frying oil (DFO). In this study, 45 male wistar rats were divided into 5 groups (n = 9 in each): I) control (Co), II) DFO, III) DFO + exercise, IV) DFO + OCT, and V) DFO + OCT + exercise. The quantification of apoptotic effects of DFO in heart tissue was assessed by TUNEL assay. Masson's trichrome stain applied to study cardiomyocytic fibers. Moreover, PGC1α and UCP1 genes and proteins expression in all groups were investigated using quantitative real-time PCR and immunohistochemical method. A significant increase in apoptotic cells was observed in the DFO-treated group (p < 0.05). In Masson's Trichrome stain study, more cardiomyocytic fibers were observed and some lymphocytic cells were present in some fibers. Also, the expression of PGC1α and UCP1 was significantly increase in DFO + exercise group, DFO + OCT group, and DFO + OCT + exercise group compare to DFO group (p < 0.05). Based on these findings, exercise and octopamine can be considered as factors affecting the expression of PGC1α genes and UCP1 as well as drug poisoning.

20.
Appl Physiol Nutr Metab ; 45(6): 641-649, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31778310

RESUMEN

This study tested the hypothesis that a novel, gravity-induced blood flow restricted (BFR) aerobic exercise (AE) model will result in greater activation of the AMPK-PGC-1α pathway compared with work rate-matched non-BFR. Thirteen healthy males (age: 22.4 ± 3.0 years; peak oxygen uptake: 42.4 ± 7.3 mL/(kg·min)) completed two 30-min work rate-matched bouts of cycling performed with their legs below (CTL) and above their heart (BFR) at ∼2 weeks apart. Muscle biopsies were taken before, immediately, and 3 h after exercise. Blood was drawn before and immediately after exercise. Our novel gravity-induced BFR model led to less muscle oxygenation during BFR compared with CTL (O2Hb: p = 0.01; HHb: p < 0.01) and no difference in muscle activation (p = 0.53). Plasma epinephrine increased following both BFR and CTL (p < 0.01); however, only norepinephrine increased more following BFR (p < 0.01). PGC-1α messenger RNA (mRNA) increased more following BFR (∼6-fold) compared with CTL (∼4-fold; p = 0.036). VEGFA mRNA increased (p < 0.01) similarly following BFR and CTL (p = 0.21), and HIF-1α mRNA did not increase following either condition (p = 0.21). Phosphorylated acetyl-coenzyme A carboxylase (ACC) increased more following BFR (p < 0.035) whereas p-PKA substrates, p-p38 MAPK, and acetyl-p53 increased (p < 0.05) similarly following both conditions (p > 0.05). In conclusion, gravity-induced BFR is a viable BFR model that demonstrated an important role of AMPK signalling on augmenting PGC-1α mRNA. Novelty Gravity-induced BFR AE reduced muscle oxygenation without impacting muscle activation, advancing gravity-induced BFR as a simple, inexpensive BFR model. Gravity-induced BFR increased PGC-1α mRNA and ACC phosphorylation more than work rate-matched non-BFR AE. This is the first BFR AE study to concurrently measure blood catecholamines, muscle activation, and muscle oxygenation.


Asunto(s)
Ejercicio Físico/fisiología , Músculo Esquelético , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Flujo Sanguíneo Regional/fisiología , Proteínas Quinasas Activadas por AMP/metabolismo , Acetil-CoA Carboxilasa/química , Acetil-CoA Carboxilasa/metabolismo , Adulto , Estudios Cruzados , Epinefrina/sangre , Gravitación , Humanos , Masculino , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Consumo de Oxígeno/fisiología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/análisis , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Transducción de Señal/fisiología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA