Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 240
Filtrar
1.
Nanomedicine (Lond) ; : 1-17, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39225145

RESUMEN

Aim: To evaluate the anti-pancreatic cancer effect of novel Tubeimoside I multifunctional liposomes combined with gemcitabine.Methods: Liposomes were prepared through the thin film hydration method, with evaluations conducted on parameters including encapsulation efficiency (EE%), particle size, polydispersity index (PDI), zeta potential (ZP), storage stability, and release over a 7-day period. The cellular uptake rate, therapeutic efficacy in vitro and in vivo and the role of immune microenvironment modulation were evaluated.Results: The novel Tubeimoside I multifunctional liposomal exhibited good stability, significant anti-cancer activity, and immune microenvironment remodeling effects. Furthermore, it showed a safety profile.Conclusion: This study underscores the potential of Novel Tubeimoside I multifunctional liposomal as a promising treatment option for pancreatic cancer.


[Box: see text].

2.
Int J Pharm ; 662: 124516, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39067549

RESUMEN

Uveitis is a group of inflammatory ocular pathologies. Endotoxin-Induced Uveitis (EIU) model represent a well-known model induced by administration of Lipopolysaccharide (LPS). The aim is to characterize two models of EIU through two routes of administration with novel noninvasive imaging techniques. 29 rats underwent Intraocular Pressure (IOP) measurements, Optical Coherence Tomography (OCT), proteomic analysis, and Positron Emission Tomography and Computed Tomography (PET/CT). Groups included healthy controls (C), BSS administered controls (Ci), systemically induced EIU with LPS (LPSs), and intravitreally induced EIU with LPS (LPSi) for IOP, OCT, and proteomic studies. For 18F-FDG PET/CT study, animals were divided into FDG-C, FDG-LPSs and FDG-LPSi groups and scanned using a preclinical PET/CT system. LPSi animals exhibited higher IOP post-induction compared to C and LPSs groups. LPSi showed increased cellular infiltrate, fibrotic membranes, and iris inflammation. Proinflammatory proteins were more expressed in EIU models, especially LPSi. PET/CT indicated higher eye uptake in induced models compared to FDG-C. FDG-LPSi showed higher eye uptake than FDG-LPSs but systemic uptake was higher in FDG-LPSs due to generalized inflammation. OCT is valuable for anterior segment assessment in experimental models. 18F-FDG PET/CT shows promise as a noninvasive biomarker for ocular inflammatory diseases. Intravitreal induction leads to higher ocular inflammation. These findings offer insights for future inflammatory disease research and drug studies.


Asunto(s)
Modelos Animales de Enfermedad , Presión Intraocular , Lipopolisacáridos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Proteómica , Tomografía de Coherencia Óptica , Uveítis , Animales , Uveítis/inducido químicamente , Uveítis/diagnóstico por imagen , Uveítis/metabolismo , Tomografía de Coherencia Óptica/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Proteómica/métodos , Lipopolisacáridos/toxicidad , Presión Intraocular/efectos de los fármacos , Ratas , Masculino , Fluorodesoxiglucosa F18/administración & dosificación , Endotoxinas/toxicidad , Ratas Sprague-Dawley
3.
J Labelled Comp Radiopharm ; 67(10): 334-340, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39041590

RESUMEN

Recently, the folate receptor (FR) has become an exciting target for the diagnosis of FR-positive malignancies. Nevertheless, suboptimal in vivo pharmacokinetic properties, particularly high uptake in the renal and hepatobiliary systems, are important limiting factors for the clinical translation of most FR-based radiotracers. In this study, we developed a novel 18F-labeled FR-targeted positron emission tomography (PET) tracer [18F]AlF-NOTA-Asp2-PEG2-Folate modified with a hydrophilic linker (-Asp2-PEG2) to optimize its pharmacokinetic properties and conducted a comprehensive preclinical assessment. The [18F]AlF-NOTA-Asp2-PEG2-Folate was manually synthesized within 30 min with a non-decay-corrected radiochemical yield of 16.3 ± 2.0% (n = 5). Among KB cells, [18F]AlF-NOTA-Asp2-PEG2-Folate exhibited high specificity and affinity for FR. PET/CT imaging and biodistribution experiments in KB tumor-bearing mice showed decent tumor uptake (1.7 ± 0.3% ID/g) and significantly decreased uptake in kidneys and liver (22.2 ± 2.1 and 0.3 ± 0.1% ID/g at 60 min p.i., respectively) of [18F]AlF-NOTA-Asp2-PEG2-Folate, compared to the known tracer [18F]AlF-NOTA-Folate (78.6 ± 5.1 and 5.3 ± 0.5 % ID/g at 90 min p.i., respectively). The favorable properties of [18F]AlF-NOTA-Asp2-PEG2-Folate, including its efficient synthesis, decent tumor uptake, relatively low renal uptake, and rapid clearance from most normal organs, portray it as a promising PET tracer for FR-positive tumors.


Asunto(s)
Radioisótopos de Flúor , Ácido Fólico , Tomografía de Emisión de Positrones , Animales , Tomografía de Emisión de Positrones/métodos , Ratones , Humanos , Distribución Tisular , Radioisótopos de Flúor/química , Ácido Fólico/química , Ácido Fólico/farmacocinética , Células KB , Radiofármacos/síntesis química , Radiofármacos/farmacocinética , Radiofármacos/química , Técnicas de Química Sintética , Receptores de Folato Anclados a GPI/metabolismo , Compuestos Heterocíclicos con 1 Anillo
4.
5.
Eur J Clin Invest ; : e14270, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39021058

RESUMEN

Often differential diagnosis between AL and ATTR amyloidosis is difficult. Concerning ATTR, sensitive diagnostic tool, as diphosphonate scintigraphy, was validated, instead of no imaging approach is as accurate in AL. Cardiac ultrasound and circulating biomarkers may raise the clinical suspicion but biopsy remains the only option for diagnosis. We aimed to explore the sensitivity of 18F-Florbetaben PET respect to blood tests or periumbilical fat (POF), cardiac, bone marrow (BM) or other tissues biopsies in a cohort of 33 patients.

6.
Cell Stem Cell ; 31(7): 974-988.e5, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38843830

RESUMEN

Cellular therapies with cardiomyocytes produced from induced pluripotent stem cells (iPSC-CMs) offer a potential route to cardiac regeneration as a treatment for chronic ischemic heart disease. Here, we report successful long-term engraftment and in vivo maturation of autologous iPSC-CMs in two rhesus macaques with small, subclinical chronic myocardial infarctions, all without immunosuppression. Longitudinal positron emission tomography imaging using the sodium/iodide symporter (NIS) reporter gene revealed stable grafts for over 6 and 12 months, with no teratoma formation. Histological analyses suggested capability of the transplanted iPSC-CMs to mature and integrate with endogenous myocardium, with no sign of immune cell infiltration or rejection. By contrast, allogeneic iPSC-CMs were rejected within 8 weeks of transplantation. This study provides the longest-term safety and maturation data to date in any large animal model, addresses concerns regarding neoantigen immunoreactivity of autologous iPSC therapies, and suggests that autologous iPSC-CMs would similarly engraft and mature in human hearts.


Asunto(s)
Células Madre Pluripotentes Inducidas , Macaca mulatta , Miocitos Cardíacos , Animales , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Diferenciación Celular , Humanos , Trasplante Autólogo , Tomografía de Emisión de Positrones , Factores de Tiempo , Infarto del Miocardio/terapia , Infarto del Miocardio/patología
7.
Jpn J Clin Oncol ; 54(8): 873-879, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38864246

RESUMEN

BACKGROUND: PET/CT imaging with Zirconium-89 labeled [89Zr]Zr-DFO-girentuximab, which targets tumor antigen CAIX, may aid in the differentiation and characterization of clear cell renal cell carcinomas (RCC) and other renal and extrarenal lesions, and has been studied in European and American cohorts. We report results from a phase I study that evaluated the safety profile, biodistribution, and dosimetry of [89Zr]Zr-DFO-girentuximab in Japanese patients with suspected RCC. METHODS: Eligible adult patients received 37 MBq (± 10%; 10 mg mass dose) of intravenous [89Zr]Zr-DFO-girentuximab. Safety and tolerability profile was assessed based on adverse events, concomitant medications, physical examination, vital signs, hematology, serum chemistry, urinalysis, human anti-chimeric antibody measurement, and 12-lead electrocardiograms at predefined intervals. Biodistribution and normal organ and tumor dosimetry were evaluated with PET/CT images acquired at 0.5, 4, 24, 72 h and Day 5 ± 2 d after administration. RESULTS: [89Zr]Zr-DFO-girentuximab was administered in six patients as per protocol. No treatment-emergent adverse events were reported. Dosimetry analysis showed that radioactivity was widely distributed in the body, and that the absorbed dose in healthy organs was highest in the liver (mean ± standard deviation) (1.365 ± 0.245 mGy/MBq), kidney (1.126 ± 0.190 mGy/MBq), heart wall (1.096 ± 0.232 mGy/MBq), and spleen (1.072 ± 0.466 mGy/MBq). The mean effective dose, adjusted by the radioactive dose administered, was 0.470 mSv/MBq. The radiation dose was highly accumulated in the targeted tumor, while any abnormal accumulation in other organs was not reported. CONCLUSIONS: This study demonstrates that [89Zr]Zr-DFO-girentuximab administered to Japanese patients with suspected RCC has a favorable safety profile and is well tolerated and has a similar dosimetry profile to previously studied populations.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radioisótopos , Circonio , Humanos , Carcinoma de Células Renales/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Masculino , Neoplasias Renales/diagnóstico por imagen , Femenino , Persona de Mediana Edad , Anciano , Circonio/farmacocinética , Radioisótopos/administración & dosificación , Radioisótopos/farmacocinética , Anticuerpos Monoclonales/farmacocinética , Anticuerpos Monoclonales/administración & dosificación , Distribución Tisular , Adulto , Japón , Radiofármacos/farmacocinética , Radiofármacos/administración & dosificación , Pueblos del Este de Asia
8.
Transl Stroke Res ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940873

RESUMEN

The development of fibrosis after injury to the brain or spinal cord limits the regeneration of the central nervous system in adult mammals. However, the extent of fibrosis in the injured brain has not been systematically investigated in mammals in vivo. This study aimed to assess whether [18F]AlF-FAPI-42-based cerebral positron emission tomography (PET) can be utilized to assess the extent of fibrosis in ischemic regions of the brain in vivo. Sprague-Dawley rats underwent permanent occlusion of the right middle cerebral artery (MCAO). On days 3, 7, 14, and 21 after MCAO, the uptake of [18F]AlF-FAPI-42 in the ischemic region of the brain in the MCAO groups surpassed that in the control group (day 0). The specific expression of fibroblast activation protein-α (FAP) in ischemic regions of the brain was also confirmed in immunohistofluorescence experiments in vitro. [18F]AlF-FAPI-42 intensity correlated with the density of collagen deposition in the ischemic hemisphere (p < 0.001). [18F]AlF-FAPI-42 PET/CT imaging demonstrated a specific uptake of radioactivity in the infarcted area in an ischemic stroke patient. PET imaging by using [18F]AlF-FAPI-42 offers a promising non-invasive method for monitoring the progression of cerebral fibrosis caused by ischemic stroke and may facilitate the clinical management of stroke patients. Trial registration: chictr.org.cn ChiCTR2200059004. Registered April 22, 2022.

9.
Mol Imaging Biol ; 26(4): 680-692, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38664355

RESUMEN

AIM: Atherosclerosis remains the pathological basis of myocardial infarction and ischemic stroke. Early and accurate identification of plauqes is crucial to improve clinical outcomes of atherosclerosis patients. Our study aims to evaluate the potential value of fibroblast activation protein inhibitor (FAPI)-04 PET/CT in identifying plaques via a preclinical rabbit model of atherosclerosis. METHODS: New Zealand white rabbits were fed high-fat diet (HFD), and randomly divided into the model group injured by the balloon, and the sham group only with incisions. Ultrasound was performed to detect plaques, and FAPI-avid was determined through Al18F-NOTA-FAPI-04 PET/CT. Mean standardized uptake values (SUVmean) in lesions were compared, and biodistribution of Al18F-NOTA-FAPI-04 and target-to-background ratios (TBRs) were calculated. Histological staining was performed to display arterial plaques, and autoradiography (ARG) was employed to measure the in vitro intensity of Al18F-NOTA-FAPI-04. At last, the correlation among FAP levels, plaque area, SUVmean values and fibrous cap thickness was assessed. RESULTS: The rabbit carotid and abdominal atherosclerosis model was established. Al18F-NOTA-FAPI-04 showed a higher uptake in carotid plaques (SUVmean 1.32 ± 0.11) and abdominal plaques (SUVmean 0.73 ± 0.13) compared to corresponding controls (SUVmean 1.07 ± 0.06; 0.46 ± 0.03) (P < 0.05). Biodistribution analysis of Al18F-NOTA-FAPI-04 revealed that the bigger plaques were delineated with higher TBRs. Pathological staining showed the formation of arterial plaques, and ARG staining exhibited a higher intensity of Al18F-NOTA-FAPI-04 in the bigger plaques. Lastly, plaque area was found to be positively correlated to FAP expression and SUVmean, while FAP expression was negatively correlated to fibrous cap thickness of plaques. CONCLUSIONS: We successfully achieve molecular imaging of fibroblast activation in atherosclerotic lesions of rabbits, suggesting Al18F-NOTA-FAPI-04 PET/CT may be a potentially valuable tool to identify plaques.


Asunto(s)
Imagen Molecular , Placa Aterosclerótica , Tomografía Computarizada por Tomografía de Emisión de Positrones , Animales , Conejos , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/patología , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Imagen Molecular/métodos , Distribución Tisular , Masculino , Fibroblastos/metabolismo , Fibroblastos/patología , Modelos Animales de Enfermedad , Proteínas de la Membrana , Endopeptidasas
10.
Comput Methods Programs Biomed ; 250: 108125, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631130

RESUMEN

BACKGROUND AND OBJECTIVES: Automatic tumor segmentation plays a crucial role in cancer diagnosis and treatment planning. Computed tomography (CT) and positron emission tomography (PET) are extensively employed for their complementary medical information. However, existing methods ignore bilateral cross-modal interaction of global features during feature extraction, and they underutilize multi-stage tumor boundary features. METHODS: To address these limitations, we propose a dual-branch tumor segmentation network based on global cross-modal interaction and boundary guidance in PET/CT images (DGCBG-Net). DGCBG-Net consists of 1) a global cross-modal interaction module that extracts global contextual information from PET/CT images and promotes bilateral cross-modal interaction of global feature; 2) a shared multi-path downsampling module that learns complementary features from PET/CT modalities to mitigate the impact of misleading features and decrease the loss of discriminative features during downsampling; 3) a boundary prior-guided branch that extracts potential boundary features from CT images at multiple stages, assisting the semantic segmentation branch in improving the accuracy of tumor boundary segmentation. RESULTS: Extensive experiments are conducted on STS and Hecktor 2022 datasets to evaluate the proposed method. The average Dice scores of our DGCB-Net on the two datasets are 80.33% and 79.29%, with average IOU scores of 67.64% and 70.18%. DGCB-Net outperformed the current state-of-the-art methods with a 1.77% higher Dice score and a 2.12% higher IOU score. CONCLUSIONS: Extensive experimental results demonstrate that DGCBG-Net outperforms existing segmentation methods, and is competitive to state-of-arts.


Asunto(s)
Neoplasias , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Neoplasias/diagnóstico por imagen , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Redes Neurales de la Computación
11.
Eur J Nucl Med Mol Imaging ; 51(7): 1981-1988, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38376804

RESUMEN

BACKGROUND: Fibroblast activation protein (FAP) has emerged as a promising target for diagnosis and therapeutic intervention due to high expression and accumulation in the stromal compartments of a variety of malignant tumors. FAP-2286 utilizes cyclic peptides with FAP-binding characteristics to enhance the retention of the imaging agent within tumors, in contrast to the small-molecule FAP inhibitors (FAPI) like FAPI-04/46. The aim of this study was to quantify the tumor uptake of [68Ga] Gallium-FAP-2286 within primary solid tumors, adjacent excised tissues, and metastatic lesions. METHODS: In this prospective study, 21 patients (average age 51.9) with various diagnoses of remaining and metastatic cancers participated. Among them, six had metastatic sarcoma, and 14 had adenocarcinoma, including eight breast, two rectum, two lung, two pancreas, and one thyroid cases. The patients underwent a [68Ga]Ga-FAP-2286 PET/CT scan. An hour post-administration of [68Ga]Ga-FAP-2286, a visual assessment of whole body scans and semi-quantification of the PET/CT results were carried out. The standardized uptake values (SUV)max of [68Ga]Ga-FAP-2286 in tumor lesions and the tumor-to-background ratio (TBR) were then calculated. RESULTS: The vital signs of the patients, such as heart rate, blood pressure, and temperature, were observed before, during, and after the diagnostic procedure during the 4-h follow-up. All individuals underwent the [68Ga]Ga-FAP-2286 PET/CT scans without any signs of drug-associated pharmacological effects. The PET/CT scans displayed substantial absorption of [68Ga]Ga-FAP-2286 in tumor lesions in all patients (100% (21/21)). Irrespective of the tumors' origins (epithelial or mesothelium) and whether they exhibited local recurrence, distant recurrence, or metastatic lesions, the PET/CT scans revealed the uptake of [68Ga]Ga-FAP-2286 in these lesions. CONCLUSION: Overall, these data suggest that [68Ga]Ga-FAP-2286 is a promising FAP derivative for efficient metastatic cancer diagnosis and being considered as a potential compound for therapeutic application in patients with advanced metastatic cancers.


Asunto(s)
Radioisótopos de Galio , Metástasis de la Neoplasia , Neoplasias , Tomografía Computarizada por Tomografía de Emisión de Positrones , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Endopeptidasas , Proteínas de la Membrana , Neoplasias/diagnóstico por imagen , Péptidos Cíclicos/farmacocinética , Péptidos Cíclicos/química , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética
12.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38399432

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder with increasing global prevalence and accounts for over half of all dementia cases. Early diagnosis is paramount for not only the management of the disease, but also for the development of new AD treatments. The current golden standard for diagnosis is performed by positron emission tomography (PET) scans with the tracer [11C]Pittsburg Compound B ([11C]PiB), which targets amyloid beta protein (Aß) that builds up as plaques in the brain of AD patients. The increasing demand for AD diagnostics is in turn expected to drive an increase in [11C]PiB-PET scans and the setup of new [11C]PiB production lines at PET centers globally. Here, we present the [11C]PiB production setups, experiences, and use from four Danish PET facilities and discuss the challenges and potential pitfalls of [11C]PiB production. We report on the [11C]PiB production performed with the 6-OH-BTA-0 precursor dissolved in either dry acetone or 2-butanone and by using either [11C]CO2 or [11C]CH4 as 11C- precursors on three different commercial synthesis modules: TracerLab FX C Pro, ScanSys, or TracerMaker. It was found that the [11C]CO2 method gives the highest radioactive yield (1.5 to 3.2 GBq vs. 0.8 ± 0.3 GBq), while the highest molar activity (98.0 ± 61.4 GBq/µmol vs. 21.2 to 95.6 GBq/µmol) was achieved using [11C]CH4. [11C]PiB production with [11C]CO2 on a TracerLab FX C Pro offered the most desirable results, with the highest yield of 3.17 ± 1.20 GBq and good molar activity of 95.6 ± 44.2 GBq/µmol. Moreover, all reported methods produced [11C]PiB in quantities suitable for clinical applications, thus providing a foundation for other PET facilities seeking to establish their own [11C]PiB production.

13.
Eur J Nucl Med Mol Imaging ; 51(6): 1786-1789, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38236427

RESUMEN

INTRODUCTION: [68 Ga]Ga-FAPI-46 PET/CT is a novel hybrid imaging method that previously showed additional diagnostic value in the assessment of distant urothelial carcinoma lesions. We hypothesized that patients with bladder cancer benefit from [68 Ga]Ga-FAPI-46 PET/CT prior to radical cystectomy for locoregional lymph node staging. MATERIALS AND METHODS: Eighteen patients underwent [68 Ga]Ga-FAPI-46 PET/CT for evaluation of lymph node (LN) status in predefined LN regions. Two hundred twenty-nine intraoperatively removed LN served as histopathological reference standard. RESULTS: Urothelial carcinoma (UC) spread was found in ten LN in seven different regions (14.3%). Hereby, [68 Ga]Ga-FAPI-46 PET/CT was positive in four out of seven regions (57.1%) and showed significantly increased FAPI uptake compared to non-pathological regions. In the remaining three out of seven (42.9%) regions, [68 Ga]Ga-FAPI-46 PET/CT was rated negative since no pathological increased FAPI uptake was detected or the proximity of the urinary tract prevented a differentiation from physiological uptake. CT was inconspicuous in these three regions. In total, two FAP-positive LN regions were found without histopathological counterpart. Overall, sensitivity, specificity, positive predictive value, and negative predictive value were 57.1%, 95.2%, 66.7%, and 93.0% for PET imaging. CONCLUSION: In summary, this innovative [68 Ga]Ga-FAPI-46 PET/CT method showed high specificity and negative predictive value in patients with bladder UC with a future potential to optimize therapy planning.


Asunto(s)
Cistectomía , Estadificación de Neoplasias , Tomografía Computarizada por Tomografía de Emisión de Positrones , Quinolinas , Neoplasias de la Vejiga Urinaria , Humanos , Masculino , Neoplasias de la Vejiga Urinaria/diagnóstico por imagen , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/cirugía , Femenino , Anciano , Proyectos Piloto , Persona de Mediana Edad , Metástasis Linfática/diagnóstico por imagen , Anciano de 80 o más Años , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología , Isótopos de Galio
14.
Mol Pharm ; 21(2): 944-956, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38270082

RESUMEN

T cell immunoglobulin and mucin domain-3 (TIM3; HAVCR2) is a transmembrane protein that exerts negative regulatory control over T cell responses. Studies have demonstrated an upregulation of TIM3 expression in tumor-infiltrating lymphocytes (TILs) in cancer patients. In this investigation, a series of monoclonal antibodies targeting TIM3 were produced by hybridoma technology. Among them, C23 exhibited favorable biological properties. To enable specific binding, we developed a 124I/125I-C23 radio-tracer via N-bromosuccinimide (NBS)-mediated labeling of the monoclonal antibody C23. Binding affinity and specificity were assessed using the 293T-TIM3 cell line, which overexpresses TIM3, and the parent 293T cells. Furthermore, biodistribution and in vivo imaging of 124I/125I-C23 were examined in HEK293TIM3 xenograft models and allograft models of 4T1 (mouse breast cancer cells) and CT26 (mouse colon cancer cells). Micro-PET/CT imaging was conducted at intervals of 4, 24, 48, 72, and/or 96 h post intravenous administration of 3.7-7.4 MBq 124I-C23 in the respective model mice. Additionally, immunohistochemistry (IHC) staining of TIM3 expression in dissected tumor organs was performed, along with an assessment of the corresponding expression of Programmed Death 1 (PD1), CD3, and CD8 in the tumors. The C23 monoclonal antibody (mAb) specifically binds to TIM3 protein with a dissociation constant of 23.28 nM. The 124I-C23 and 125I-C23 radio-tracer were successfully prepared with a labeling yield of 83.59 ± 0.35% and 92.35 ± 0.20%, respectively, and over 95.00% radiochemical purity. Stability results indicated that the radiochemical purity of 124I/125I-C23 in phosphate-buffered saline (PBS) and 5% human serum albumin (HSA) was still >80% after 96 h. 125I-C23 uptake in 293T-TIM3 cells was 2.80 ± 0.12%, which was significantly higher than that in 293T cells (1.08 ± 0.08%), and 125I-C23 uptake by 293T-TIM3 cells was significantly blocked at 60 and 120 min in the blocking groups. Pharmacokinetics analysis in vivo revealed an elimination time of 14.62 h and a distribution time of 0.4672 h for 125I-C23. Micro-PET/CT imaging showed that the 124I-C23 probe uptake in the 293T-TIM3 model significantly differed from that of the negative control group and blocking group. In the humanized mouse model, the 124I-C23 probe had obvious specific uptake in the 4T1 and CT26 models and maximum uptake at 24 h in tumor tissues (SUVmax (the maximum standardized uptake value) in 4T1 and CT26 humanized TIM3 murine tumor models: 0.59 ± 0.01 and 0.76 ± 0.02, respectively). Immunohistochemistry of tumor tissues from these mouse models showed comparable TIM3 expression. CD3 and CD8 cells and PD-1 expression were also observed in TIM3-expressing tumor tissues. The TIM3-targeting antibody C23 showed good affinity and specificity. The 124I/125I-C23 probe has obvious targeting specificity for TIM3 in vitro and in vivo. Our results suggest that 124I/125I-C23 is a promising tracer for TIM3 imaging and may have great potential in monitoring immune checkpoint drug efficacy.


Asunto(s)
Anticuerpos Monoclonales , Neoplasias , Animales , Humanos , Ratones , Anticuerpos Monoclonales/química , Línea Celular Tumoral , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Radioisótopos de Yodo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Radiofármacos/farmacocinética , Distribución Tisular
15.
Int J Pharm ; 652: 123764, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38176479

RESUMEN

Triple-negative breast cancer (TNBC) diagnosis remains challenging without expressing critical receptors. Cancer cell membrane (CCm) coating has been extensively studied for targeted cancer diagnostics due to attractive features such as good biocompatibility and homotypic tumor-targeting. However, the present study found that widely used CCm coating approaches, such as extrusion, were not applicable for functionalizing irregularly shaped nanoparticles (NPs), such as porous silicon (PSi). To tackle this challenge, we proposed a novel approach that employs polyethylene glycol (PEG)-assisted membrane coating, wherein PEG and CCm are respectively functionalized on PSi NPs through chemical conjugation and physical absorption. Meanwhile, the PSi NPs were grafted with the bisphosphonate (BP) molecules for radiolabeling. Thanks to the good chelating ability of BP and homotypic tumor targeting of cancer CCm coating, a novel PSi-based contrast agent (CCm-PEG-89Zr-BP-PSi) was developed for targeted positron emission tomography (PET)/computed tomography (CT) imaging of TNBC. The novel imaging agent showed good radiochemical purity (∼99 %) and stability (∼95 % in PBS and ∼99 % in cell medium after 48 h). Furthermore, the CCm-PEG-89Zr-BP-PSi NPs had efficient homotypic targeting ability in vitro and in vivo for TNBC. These findings demonstrate a versatile biomimetic coating method to prepare novel NPs for tumor-targeted diagnosis.


Asunto(s)
Nanopartículas , Neoplasias de la Mama Triple Negativas , Humanos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Polietilenglicoles/química , Silicio , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Biomimética , Nanopartículas/química , Membrana Celular/metabolismo , Línea Celular Tumoral
16.
Mol Pharm ; 21(3): 1515-1525, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38291578

RESUMEN

Immune checkpoint inhibitors (ICIs) are a powerful treatment modality for various types of cancer. The effectiveness of ICIs is intimately connected to the binding status of antibodies to receptors. However, validated means to accurately evaluate target specificity and predict antibody efficacy in vivo are lacking. A novel peptide-based probe called Al[18F]F-NOTA-PCP1 was developed and validated for its specificity to PD-L1 in A549, U87MG, GL261, and GL261-iPDL1 cell lines, as well as in xenograft models. Then the probe was used in PET/CT scans to determine the binding status of PD-L1 antibodies (atezolizumab, avelumab, and durvalumab) in U87MG xenograft model mice. Moreover, Al[18F]F-NOTA-PCP1 was used to evaluate the impact of different treatment times and doses. Al[18F]F-NOTA-PCP1 PET/CT can be used to evaluate the interaction between PD-L1 and antibodies to determine the effectiveness of immunotherapy. By quantifying target engagement, the probe has the potential to predict the efficacy of immunotherapy and optimize the dose and treatment schedules for PD-L1 immunotherapy. This imaging agent could be a valuable tool in guiding personalized treatment strategies and improving cancer patient outcomes.


Asunto(s)
Compuestos Heterocíclicos con 1 Anillo , Neoplasias , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Animales , Ratones , Antígeno B7-H1/metabolismo , Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Péptidos
17.
Eur J Nucl Med Mol Imaging ; 51(2): 369-379, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37759096

RESUMEN

PURPOSE: PD-L1 PET imaging, as a non-invasive procedure, can perform a real-time, dynamic and quantitative analysis of PD-L1 expression at tumor sites. In this study, we developed a novel peptide-based PET tracer, [68 Ga]Ga-AUNP-12, for preclinical and first-of-its-kind imaging of PD-L1 expression in patients. METHODS: Radiosynthesis of [68 Ga]Ga-AUNP-12 was conducted. Assays for cellular uptake and binding were conducted on the PANC02, CT26, and B16F10 cell lines. Preclinical models were used to investigate its biodistribution, imaging capacity, and pharmacokinetics. Furthermore, interferon-γ (IFN-γ) was used for development of an animal model with high PD-L1 expression for targeted PET imaging and efficacy evaluation of PD-L1 blocking therapy. In healthy volunteers and cancer patients, the PD-L1 imaging, radiation dosimetry, safety, and biodistribution were further evaluated. RESULTS: In vitro and in vivo animal studies showed that [68 Ga]Ga-AUNP-12 PET imaging displayed a high specificity in evaluating PD-L1 expression. The radiochemical yield of [68 Ga]Ga-AUNP-12 was 71.7 ± 8.2%. Additionally, its molar activity and radiochemical purity were satisfactory. The B16F10 tumor was visualized with the tumor uptake of 6.86 ± 0.71% ID/g and tumor-to-muscle ratio of 6.83 ± 0.36 at 60 min after [68 Ga]Ga-AUNP-12 injection. Furthermore, [68 Ga]Ga-AUNP-12 PET imaging could sensitively detect the PD-L1 dynamic changes in CT26 tumor xenograft models regulated by IFN-γ treatment, and correspondingly can effectively guide immunotherapy. Regarding radiation dosimetry, [68 Ga]Ga-AUNP-12 is safe for human use. The first human study found that [68 Ga]Ga-AUNP-12 can be rapidly cleared from blood and other nonspecific organs through the kidney excretion, leading to form a clear imaging contrast in the clinical framework. The specificity of [68 Ga]Ga-AUNP-12 was validated and tumor uptake strongly correlated with the high PD-L1 expression in patients with lung adenocarcinoma and oesophageal squamous cell carcinoma (OSCC). CONCLUSION: [68 Ga]Ga-AUNP-12 was successfully developed as a PD-L1-specific PET imaging tracer in preclinical and first-in-human studies.


Asunto(s)
Radioisótopos de Galio , Neoplasias , Humanos , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Neoplasias/diagnóstico por imagen , Tomografía de Emisión de Positrones/métodos , Radiofármacos/farmacocinética , Distribución Tisular
18.
Expert Rev Cardiovasc Ther ; 22(1-3): 27-39, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37996246

RESUMEN

INTRODUCTION: Infective endocarditis (IE) is an increasingly important condition with significant morbidity and mortality. With advancements in cardiovascular interventions including prosthetic valve implantation and utilization of intracardiac devices, the prevalence of IE is rising in the modern era. Early detection and management of this condition are critical. AREAS COVERED: This review presents a contemporary review of the applications of multi-modality imaging in IE, taking a comparative approach of the various imaging modalities. EXPERT OPINION: Transthoracic and transesophageal echocardiography are essential imaging modalities in establishing the diagnosis of IE, as well as evaluating for complications of IE. Other imaging modalities such as cardiac computed tomography and nuclear imaging play an important role as adjuvant imaging modalities for the evaluation of IE, particularly in prosthetic valve IE and cardiovascular implantable device associated IE. It is crucial to understand the strengths, weaknesses, and clinical application of each imaging modality, to improve the diagnosis, management, and outcomes of patients with IE.


Asunto(s)
Endocarditis Bacteriana , Endocarditis , Prótesis Valvulares Cardíacas , Humanos , Fluorodesoxiglucosa F18 , Endocarditis/etiología , Imagen Multimodal , Corazón , Prótesis Valvulares Cardíacas/efectos adversos , Endocarditis Bacteriana/complicaciones
19.
Eur J Nucl Med Mol Imaging ; 51(4): 991-1001, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37991527

RESUMEN

PURPOSE: This study aimed to evaluate whether granzyme B (GzmB)-targeted positron emission tomography (PET) imaging agent (68 Ga-grazytracer) can characterize cardiac inflammation and remodeling in myocardial infarction (MI). METHODS: Rats with MI were subjected to GzmB-targeted PET/CT on post-operative days 1, 3, 6, 14, and 28. Autoradiography, Masson staining, immunohistochemistry, and ELISA were performed to verify the inflammatory response and remodeling after MI in vitro. Rats were treated with GzmB inhibitor Z-IETD-FMK to improve cardiac remodeling. Cardiac function tests were performed by echocardiography at 6 weeks after MI. RESULTS: The highest uptake of 68 Ga-grazytracer was observed on day 3 after MI compared with the values obtained on the other days (0.294 ± 0.03% ID/g at 3 days vs. 0.122 ± 0.01% ID/g in the sham group, P < 0.001). Immunohistochemistry showed significantly high expression of GzmB and CD8, in line with the PET/CT imaging results. Autoradiography revealed 68 Ga-grazytracer accumulation in the infarcted myocardium. The 68 Ga-grazytracer uptake of treated rats was significantly reduced compared with that in the MI groups (0.184 ± 0.03%ID/g vs. 0.286 ± 0.03%ID/g; P < 0.001). Echocardiography showed that the left ventricular ejection fraction was lower in the MI groups than in the ischemia reperfusion group. GzmB inhibitor treatment was shown to be effective in improving cardiac function without significantly shortening infarct size. CONCLUSIONS: This study demonstrated the potential of 68 Ga-grazytracer imaging to delineate adverse inflammatory responses and pathological cardiac remodeling, which can help predict heart function. PET/CT imaging-guided therapy may reduce myocardial injury and improve heart function in MI.


Asunto(s)
Infarto del Miocardio , Tomografía Computarizada por Tomografía de Emisión de Positrones , Ratas , Animales , Volumen Sistólico , Granzimas , Remodelación Ventricular , Función Ventricular Izquierda , Infarto del Miocardio/diagnóstico por imagen , Miocardio/patología , Tomografía de Emisión de Positrones , Inflamación/diagnóstico por imagen , Inflamación/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA