Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Mol Biosci ; 11: 1441550, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39170746

RESUMEN

Introduction: Drugs that target reactive oxygen species (ROS) metabolism have progressed the treatment of pancreatic cancer treatment, yet their efficacy remains poor because of the adaptation of cancer cells to high concentration of ROS. Cells cope with ROS by recognizing 8-oxoguanine residues and processing severely oxidized RNA, which make it feasible to improve the efficacy of ROS-modulating drugs in pancreatic cancer by targeting 8-oxoguanine regulators. Methods: Poly(rC)-binding protein 1 (PCBP1) was identified as a potential oncogene in pancreatic cancer through datasets of The Cancer Genome Atlas (TCGA) project and Gene Expression Omnibus (GEO). High-throughput virtual screening was used to screen out potential inhibitors for PCBP1. Computational molecular dynamics simulations was used to verify the stable interaction between the two compounds and PCBP1 and their structure-activity relationships. In vitro experiments were performed for functional validation of silychristin. Results: In this study, we identified PCBP1 as a potential oncogene in pancreatic cancer. By applying high-throughput virtual screening, we identified Compound 102 and Compound 934 (silychristin) as potential PCBP1 inhibitors. Computational molecular dynamics simulations and virtual alanine mutagenesis verified the structure-activity correlation between PCBP1 and the two identified compounds. These two compounds interfere with the PCBP1-RNA interaction and impair the ability of PCBP1 to process RNA, leading to intracellular R loop accumulation. Compound 934 synergized with ROS agent hydrogen peroxide to strongly improve induced cell death in pancreatic cancer cells. Discussion: Our results provide valuable insights into the development of drugs that target PCBP1 and identified promising synergistic agents for ROS-modulating drugs in pancreatic cancer.

2.
Aging Cell ; : e14275, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016438

RESUMEN

Renal aging, marked by the accumulation of senescent cells and chronic low-grade inflammation, leads to renal interstitial fibrosis and impaired function. In this study, we investigate the role of macrophages, a key regulator of inflammation, in renal aging by analyzing kidney single-cell RNA sequencing data of C57BL/6J mice from 8 weeks to 24 months. Our findings elucidate the dynamic changes in the proportion of kidney cell types during renal aging and reveal that increased macrophage infiltration contributes to chronic low-grade inflammation, with these macrophages exhibiting senescence and activation of ferroptosis signaling. CellChat analysis indicates enhanced communications between macrophages and tubular cells during aging. Suppressing ferroptosis alleviates macrophage-mediated tubular partial epithelial-mesenchymal transition in vitro, thereby mitigating the expression of fibrosis-related genes. Using SCENIC analysis, we infer Stat1 as a key age-related transcription factor promoting iron dyshomeostasis and ferroptosis in macrophages by regulating the expression of Pcbp1, an iron chaperone protein that inhibits ferroptosis. Furthermore, through virtual screening and molecular docking from a library of anti-aging compounds, we construct a docking model targeting Pcbp1, which indicates that the natural small molecule compound Rutin can suppress macrophage senescence and ferroptosis by preserving Pcbp1. In summary, our study underscores the crucial role of macrophage iron dyshomeostasis and ferroptosis in renal aging. Our results also suggest Pcbp1 as an intervention target in aging-related renal fibrosis and highlight Rutin as a potential therapeutic agent in mitigating age-related renal chronic low-grade inflammation and fibrosis.

3.
Microbiol Spectr ; 12(6): e0391423, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38742903

RESUMEN

Porcine parvovirus (PPV) is one of the most important pathogens that cause reproductive failure in pigs. However, the pathogenesis of PPV infection remains unclear. Proteomics is a powerful tool to understand the interaction between virus and host cells. In the present study, we analyzed the proteomics of PPV-infected PK-15 cells. A total of 32 and 345 proteins were differentially expressed at the early and replication stages, respectively. Subsequent gene ontology annotation and Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed these differentially expressed proteins were significantly enriched in pathways including toll-like receptor signaling pathway, tumor necrosis factor signaling pathway, and viral carcinogenesis. The expression of poly (rC) binding protein 1 (PCBP1) was observed to decrease after PPV infection. Overexpressed or silenced PCBP1 expression inhibited or promoted PPV infection. Our studies established a foundation for further exploration of the multiplication mechanism of PPV. IMPORTANCE: Porcine parvovirus (PPV) is a cause of reproductive failure in the swine industry. Our knowledge of PPV remains limited, and there is no effective treatment for PPV infection. Proteomics of PPV-infected PK-15 cells was conducted to identify differentially expressed proteins at 6 hours post-infection (hpi) and 36 hpi. Gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that various pathways participate in PPV infection. Poly (rC) binding protein 1 was confirmed to inhibit PPV replication, which provided potential targets for anti-PPV infection. Our findings improve the understanding of PPV infection and pave the way for future research in this area.


Asunto(s)
Infecciones por Parvoviridae , Parvovirus Porcino , Proteómica , Proteínas de Unión al ARN , Enfermedades de los Porcinos , Replicación Viral , Parvovirus Porcino/genética , Parvovirus Porcino/fisiología , Animales , Porcinos , Línea Celular , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Infecciones por Parvoviridae/virología , Infecciones por Parvoviridae/metabolismo , Infecciones por Parvoviridae/veterinaria , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/metabolismo , Enfermedades de los Porcinos/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
4.
Front Immunol ; 15: 1375168, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38690287

RESUMEN

Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T-cell leukemia/lymphoma. The HTLV-1 Tax constitutively activates nuclear factor-κB (NF-κB) to promote the survival and transformation of HTLV-1-infected T cells. Despite extensive study of Tax, how Tax interacts with host factors to regulate NF-κB activation and HTLV-1-driven cell proliferation is not entirely clear. Here, we showed that overexpression of Poly (rC)-binding protein 1 (PCBP1) promoted Tax-mediated IκB kinase (IKK)-NF-κB signaling activation, whereas knockdown of PCBP1 attenuated Tax-dependent IKK-NF-κB activation. However, Tax activation of HTLV-1 long terminal repeat was unaffected by PCBP1. Furthermore, depletion of PCBP1 led to apoptosis and reduced proliferation of HTLV-1-transformed cells. Mechanistically, PCBP1 interacted and co-localized with Tax in the cytoplasm, and PCBP1 KH3 domain was indispensable for the interaction between PCBP1 and Tax. Moreover, PCBP1 facilitated the assembly of Tax/IKK complex. Collectively, our results demonstrated that PCBP1 may exert an essential effect in Tax/IKK complex combination and subsequent NF-κB activation, which provides a novel insight into the pathogenetic mechanisms of HTLV-1.


Asunto(s)
Proteínas de Unión al ADN , Productos del Gen tax , Ribonucleoproteínas Nucleares Heterogéneas , Virus Linfotrópico T Tipo 1 Humano , FN-kappa B , Proteínas de Unión al ARN , Humanos , Productos del Gen tax/metabolismo , FN-kappa B/metabolismo , Virus Linfotrópico T Tipo 1 Humano/fisiología , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Transducción de Señal , Células HEK293 , Unión Proteica , Proliferación Celular , Infecciones por HTLV-I/metabolismo , Infecciones por HTLV-I/virología , Apoptosis , Quinasa I-kappa B/metabolismo , Interacciones Huésped-Patógeno
5.
Reprod Toxicol ; 125: 108581, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38552991

RESUMEN

Maternal smoking during pregnancy increases oxidative stress and decreases antioxidant capacity in newborns. Uncontrolled oxidative stress plays a role in fetal development disorders and in adverse perinatal outcomes. In order to identify molecular pathways involved in low fetal growth, epigenetic modifications in newborns of smoking and non-smoking mothers were examined. Low birth weight newborns of mothers who smoked more than 10 cigarettes per day during the first trimester of pregnancy and normal birth weight newborns of mothers who did not smoke during pregnancy were included in the study. DNA was extracted from umbilical cord blood of term newborns. 125 differentially methylated regions were identified by MeDIP-Seq. Functional analysis revealed several pathways, such as ferroptosis, that were enriched in differentially methylated genes after prenatal smoke exposure. GPX4 and PCBP1 were found to be hypermethylated and associated with low fetal growth. These epigenetic modifications in ferroptosis pathway genes in newborns of smoking mothers can potentially contribute to intrauterine growth restriction through the induction of cell death via lipid peroxidation of cell membranes. The identification of epigenetic modifications in the ferroptosis pathway sheds light on the potential mechanisms underlying the pathophysiology of low birth weight in infants born to smoking mothers.


Asunto(s)
Ferroptosis , Sangre Fetal , Embarazo , Femenino , Lactante , Recién Nacido , Humanos , Peso al Nacer , Ferroptosis/genética , Desarrollo Fetal , Células Sanguíneas , Epigénesis Genética
6.
Brain Res ; 1832: 148863, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38492841

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a debilitating neurodegenerative condition characterized by the loss of dopaminergic neurons and neuroinflammation. Previous research has identified the involvement of Poly (rC)-binding protein 1 (PCBP1) in certain degenerative diseases; however, its specific mechanisms in PD remain incompletely understood. METHODS: In this study, 6-OHDA-induced neurotoxicity in the cell lines SH-SY5Y, BV-2 and HA, was used to evaluate the protective effects of PCBP1. We assessed alterations in BDNF levels in SY5Y cells, changes in GDNF expression in glial cells, as well as variations in HSP70 and NF-κB activation. Additionally, glial cells were used as the in vitro model for neuroinflammation mechanisms. RESULTS: The results indicate that the overexpression of PCBP1 significantly enhances cell growth compared to the control plasmid pEGFP/N1 group. Overexpression of PCBP1 leads to a substantial reduction in early apoptosis rates in SH-SY5Y, HA, and BV-2 cells, with statistically significant differences (p < 0.05). Furthermore, the overexpression of PCBP1 in cells results in a marked increase in the expression of HSP70, GDNF, and BDNF, while reducing NF-κB expression. Additionally, in SH-SY5Y, HA, and BV-2 cells overexpressing PCBP1, there is a decrease in the inflammatory factor IL-6 compared to the control plasmid pEGFP/N1 group, while BV-2 cells exhibit a significant increase in the anti-inflammatory factor IL-10. CONCLUSION: Our findings suggest that PCBP1 plays a substantial role in promoting cell growth and modulating the balance of neuroprotective and inflammatory factors. These results offer valuable insights into the potential therapeutic utility of PCBP1 in mitigating neuroinflammation and enhancing neuronal survival in PD.


Asunto(s)
Neuroblastoma , Fármacos Neuroprotectores , Enfermedad de Parkinson , Humanos , Oxidopamina/toxicidad , FN-kappa B/metabolismo , Proteínas Portadoras , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/farmacología , Enfermedades Neuroinflamatorias , Línea Celular Tumoral , Apoptosis , Neuroglía/metabolismo , Fármacos Neuroprotectores/farmacología
7.
Cancer Lett ; 589: 216828, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38521199

RESUMEN

5-Fluorouracil (5-FU) resistance has always been a formidable obstacle in the adjuvant treatment of advanced colorectal cancer (CRC). In recent years, long non-coding RNAs have emerged as key regulators in various pathophysiological processes including 5-FU resistance. TRG is a postoperative pathological score of the chemotherapy effectiveness for CRC, of which TRG 0-1 is classified as chemotherapy sensitivity and TRG 3 as chemotherapy resistance. Here, RNA-seq combined with weighted gene correlation network analysis confirmed the close association of GAS6-AS1 with TRG. GAS6-AS1 expression was positively correlated with advanced clinicopathological features and poor prognosis in CRC. GAS6-AS1 increased the 50% inhibiting concentration of 5-FU, enhanced cell proliferation and accelerated G1/S transition, both with and without 5-FU, both in vitro and in vivo. Mechanistically, GAS6-AS1 enhanced the stability of MCM3 mRNA by recruiting PCBP1, consequently increasing MCM3 expression. Furthermore, PCBP1 and MCM3 counteracted the effects of GAS6-AS1 on 5-FU resistance. Notably, the PDX model indicated that combining chemotherapeutic drugs with GAS6-AS1 knockdown yielded superior outcomes in vivo. Together, our findings elucidate that GAS6-AS1 directly binds to PCBP1, enhancing MCM3 expression and thereby promoting 5-FU resistance. GAS6-AS1 may serve as a robust biomarker and potential therapeutic target for combination therapy in CRC.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , ARN Largo no Codificante , Humanos , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , ARN Largo no Codificante/metabolismo , MicroARNs/genética , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Componente 3 del Complejo de Mantenimiento de Minicromosoma/genética , Componente 3 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
8.
Cytokine ; 174: 156456, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38061091

RESUMEN

Macrophages play a key role in maintaining systemic iron homeostasis and immunity. During pro-inflammatory stage macrophages retain iron due to the decrease of the unique iron exporter ferroportin. Increased cellular iron is sequestered in to storage protein ferritin by iron chaperone poly(rC)-binding protein 1 (PCBP1). However, the fate of PCBP1 and its interaction with ferritin in pro-inflammatory macrophages has not been studied so far. Here we report that PCBP1 protein level is down-regulated in lipopolysaccharide (LPS) treated macrophages. LPS did not alter PCBP1 mRNA and protein stability suggesting inhibition of translation as a mechanism of PCBP1 down-regulation that was confirmed by 35S-methionine incorporation assay. PCBP1 interacts with ferritin-H (Ft-H) subunit to load iron into ferritin. We detected a decreased interaction between PCBP1 and Ft-H after LPS-stimulation. As a result iron loading in to ferritin was affected with simultaneous increase in labile iron pool (LIP). Pre-treatment of cells with iron chelator dampened LPS-induced expression of TNF-α, IL-1ß and IL-6 mRNA. Silencing of PCBP1 increased the magnitude of expression of these cytokines compared to control siRNA transfected LPS-treated macrophages. In contrast, overexpression of PCBP1 resulted a decrease in expression of these cytokines compared to vector transfected macrophages. Our results reveal a novel regulation of PCBP1 and its role in expression of cytokines in LPS-induced pro-inflammatory macrophages.


Asunto(s)
Hierro , Lipopolisacáridos , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Citocinas/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ferritinas/genética , Ferritinas/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Macrófagos/metabolismo
9.
Aging Cell ; 22(11): e13982, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37681451

RESUMEN

Although immunosenescence may result in increased morbidity and mortality, many mammals have evolved effective immune coping strategies to extend their lifespans. Thus, the immune systems of long-lived mammals present unique models to study healthy longevity. To identify the molecular clues of anti-immunosenescence, we first built high-quality reference genome for a long-lived myotis bat, and then compared three long-lived mammals (i.e., bat, naked mole rat, and human) versus the short-lived mammal, mouse, in splenic immune cells at single-cell resolution. A close relationship between B:T cell ratio and immunosenescence was detected, as B:T cell ratio was much higher in mouse than long-lived mammals and significantly increased during aging. Importantly, we identified several iron-related genes that could resist immunosenescence changes, especially the iron chaperon, PCBP1, which was upregulated in long-lived mammals but dramatically downregulated during aging in all splenic immune cell types. Supportively, immune cells of mouse spleens contained more free iron than those of bat spleens, suggesting higher level of ROS-induced damage in mouse. PCBP1 downregulation during aging was also detected in hepatic but not pulmonary immune cells, which is consistent with the crucial roles of spleen and liver in organismal iron recycling. Furthermore, PCBP1 perturbation in immune cell lines would result in cellular iron dyshomeostasis and senescence. Finally, we identified two transcription factors that could regulate PCBP1 during aging. Together, our findings highlight the importance of iron homeostasis in splenic anti-immunosenescence, and provide unique insight for improving human healthspan.


Asunto(s)
Quirópteros , Inmunosenescencia , Humanos , Animales , Ratones , Quirópteros/genética , Bazo/metabolismo , Envejecimiento , Mamíferos/fisiología , Homeostasis
10.
Ann Clin Lab Sci ; 53(3): 438-447, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37437927

RESUMEN

OBJECTIVE: Long non-coding RNAs (lncRNAs) have been demonstrated to play important roles in ischemic stroke. In this study, we investigated the roles and action mechanism of lncRNA poly(rC)-binding protein 1-antisense RNA 1 (PCBP1-AS1) in cerebral ischemia/reperfusion (I/R) injury. METHODS: We used a middle cerebral artery occlusion (MCAO) model in vivo and an oxygen-glucose deprivation/reperfusion (OGDR) model in vitro to investigate the mechanism of I/R injury. Cell counting kit-8 assay was used to assess the cell viability, and the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling and western blotting assays were used to evaluate the apoptosis of cells. We also determined the middle cerebral artery occlusion (MCAO)-induced infarct size in vivo using 2, 3, 5-triphenyltetrazolium chloride staining. The predicted targeted regulatory relationships of miR-506-3p with lncRNA PCBP1-AS1 and CCL2 were evaluated via luciferase reporter assays. RESULTS: We found that lncRNA PCBP1-AS1 and C-C motif chemokine ligand 2 (CCL2) levels were upregulated in OGDR-induced SH-SY 5Y cells and the MCAO rat model. Moreover, silencing of lncRNA PCBP1-AS1 improved the viability and attenuated the apoptosis of OGDR-induced SH-SY 5Y cells. LncRNA PCBP1-AS1 silencing partially recovered the infarct size and suppressed the apoptosis in the MCAO model in vivo. Mechanistically, lncRNA PCBP1-AS1 targeted microRNA (miR)-506-3p, which recognized the CCL2 3'-untranslated region. Notably, CCL2 overexpression abrogated the inhibitory effect of lncRNA PCBP1-AS1 silencing on OGDR-induced cell growth. CONCLUSION: LncRNA PCBP1-AS1 sequesters miR-506-3p to upregulate CCL2 expression, thereby aggravating I/R injury, suggesting its potential for RNA-targeted treatment of cerebral ischemic stroke.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Daño por Reperfusión , Animales , Ratas , Quimiocinas , Glucosa , Infarto de la Arteria Cerebral Media/genética , Ligandos , MicroARNs/genética , Daño por Reperfusión/genética , ARN Largo no Codificante/genética , Humanos
11.
Mol Carcinog ; 62(7): 907-919, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37157950

RESUMEN

Although Poly C Binding Protein 1 (PCBP1) affects cellular ferroptosis and mitochondrial dysfunction, the mechanisms by which PCBP1 regulates bladder cancer (BC) cell functions are unknown. In this study, two BC cell lines (T24 and UMUC3) were treated with different doses of ferroptosis inducer erastin to analyze the effect of PCBP1. Online databases (RPISeq and CatRAPID) were used to predict the possible direct interaction between PCBP1 protein and serine ß-lactamase-like protein (LACTB) mRNA, which was further validated via RNA pull-down, RNA immunoprecipitation, and luciferase reporter assays. Mitochondria injury and ferroptosis were evaluated using CCK-8 assay, TUNEL staining, flow cytometry, corresponding kits, and JC-1 staining. In vivo experiments were conducted using tumor xenograft models. Quantitative reverse-transcription polymerase chain reaction was used to detect transcript expression levels, while protein levels were analyzed using western blot and immunohistochemistry. PCBP1 expression was significantly upregulated in BC tissues and cell lines. Also, PCBP1 knockdown increased erastin-mediated ferroptosis in T24 and UMUC3 cells, while PCBP1 overexpression decreased erastin-mediated ferroptosis in T24 and UMUC3 cells. Mechanistic results showed that LACTB mRNA is a novel PCBP1-binding transcript. LACTB upregulation promoted erastin-induced ferroptosis and mitochondrial dysfunction. Furthermore, LACTB overexpression reversed PCBP1-mediated ferroptosis protection, including decreased ROS and enhanced mitochondrial function, which were further alleviated after phosphatidylserine decarboxylase (PISD) overexpression. Moreover, PCBP1 silencing significantly enhanced tumor inhibition effect of sulfasalazine in xenograft mice transplanted with T24 and UMUC3 cells, leading to LACTB upregulation and PISD downregulation. In conclusion, PCBP1 protects BC cells against mitochondria injury and ferroptosis via LACTB/PISD axis.


Asunto(s)
Ferroptosis , Neoplasias de la Vejiga Urinaria , Humanos , Animales , Ratones , Neoplasias de la Vejiga Urinaria/genética , Mitocondrias , ARN , ARN Mensajero/genética , Estabilidad del ARN , Proteínas de Unión al ADN , Proteínas de Unión al ARN/genética , beta-Lactamasas/farmacología , Proteínas de la Membrana , Proteínas Mitocondriales
12.
Front Mol Biosci ; 10: 1127690, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36818045

RESUMEN

Cells express hundreds of iron-dependent enzymes that rely on the iron cofactors heme, iron-sulfur clusters, and mono-or di-nuclear iron centers for activity. Cells require systems for both the assembly and the distribution of iron cofactors to their cognate enzymes. Proteins involved in the binding and trafficking of iron ions in the cytosol, called cytosolic iron chaperones, have been identified and characterized in mammalian cells. The first identified iron chaperone, poly C-binding protein 1 (PCBP1), has also been studied in mice using genetic models of conditional deletion in tissues specialized for iron handling. Studies of iron trafficking in mouse tissues have necessitated the development of new approaches, which have revealed new roles for PCBP1 in the management of cytosolic iron. These approaches can be applied to investigate use of other nutrient metals in mammals.

13.
Cell Biol Toxicol ; 39(5): 2331-2343, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-35639300

RESUMEN

Loss of expression or protein kinase B (Akt1)-mediated post-translational modification of the RNA binding protein Poly r(C) binding protein 1 (PCBP1) is closely related to metastatic advancement of breast cancer. However, the role of PCBP1 in tumorigenesis is not completely defined. Using a xenograft orthotopic model of breast tumorigenesis (4T1-Pcbp1-/-), we show here that PCBP1 knockdown-induced tumorigenesis is inhibited by activation of the WNT signaling via treating with the glycogen synthase kinase 3 beta inhibitor TWS119, but not the Akt2/Akt3 inhibitor GSK690693. Mass cytometry-based evaluation of the tumor microenvironment (TME) revealed significantly more regulatory T cells (Tregs) and significantly less cytotoxic T cells in 4T1-Pcbp1-/-mice treated with saline control in comparison to mice treated with TWS119. Infiltrating cytotoxic T cells were phenotypically and functionally exhausted. Treatment with TWS119 resulted in rescue of cytotoxic T cell function and inhibition of suppressor activity of Tregs. Using cytotoxic T cells isolated from healthy donors, we show that TWS119-induced WNT signaling-mediated inhibition of cytotoxic T cell expansion is reliant on expression of PCBP1. In conclusion, decreased PCBP1 expression favors breast tumorigenesis by potentiating skewing of tumor infiltrating T cells towards Tregs, thereby effectively suppressing anti-tumor immunity.


Asunto(s)
Neoplasias de la Mama , Vía de Señalización Wnt , Animales , Femenino , Humanos , Ratones , Carcinogénesis , Transformación Celular Neoplásica , Proteínas de Unión al ADN , Proteínas de Unión al ARN/genética , Microambiente Tumoral
14.
Front Aging Neurosci ; 14: 884837, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35795237

RESUMEN

PCBP-1, a multifunctional RNA binding protein, is expressed in various human cell/tissue types and involved in post-transcriptional gene regulation. PCBP-1 has important roles in cellular Iron homeostasis, mitochondrial stability, and other cellular activities involved in the pathophysiological process of neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD). However, it remains enigmatic whether PCPB-1 is associated with the pathogenesis of PD. In this study, we cloned and constitutively overexpressed PCBP-1 in rat PC12 cells (PC12 cell is the common cell line studying neurodegenerative disease include PD). RNA-seq was performed to analyze PCBP-1-regulated differentially expressed genes (DEGs) and alternative splicing events (ASEs) between control and PCBP1-overexpressed cells. GO and KEGG pathway analyses were performed to identify functional DEGs and alternatively spliced genes. Consequently, we validated PCBP-1-regulated genes using RT-qPCR. Finally, we downloaded CLIP-seq data from GEO (GSE84700) to analyze the mechanisms of PCBP-1's regulation of gene expression and ASEs by revealing the binding profile of PCBP-1 on its target pre-mRNAs. Overexpression of PCBP-1 partially regulated the ASE and expression of genes enriched in neuroinflammation and protein ubiquitination, which were also associated with PD pathogenesis. Moreover, RT-qPCR assay verified the PCBP-1-modulated expression of neuroinflammatory genes, like LCN-2, and alternative splicing (AS) of ubiquitination-related gene WWP-2. Finally, CLIP-seq data analysis indicated that the first UC motif was the critical site for PCBP-1 binding to its targets. In this study, we provided evidence that PCBP-1 could regulate the expression of LCN-2 gene expression associated with neuroinflammation and AS of WWP-2 in relation to protein ubiquitination. These findings thus provided novel insights into the potential application of PCBP-1 as the disease pathophysiological or therapeutic target for neurodegenerative disease.

15.
J Transl Med ; 20(1): 343, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35907982

RESUMEN

BACKGROUND: PolyC-RNA-binding protein 1 (PCBP1) functions as a tumour suppressor and RNA regulator that is downregulated in human cancers. Here, we aimed to reveal the biological function of PCBP1 in lung adenocarcinoma (LUAD). METHODS: First, PCBP1 was identified as an important biomarker that maintains LUAD through The Cancer Genome Atlas (TCGA) project screening and confirmed by immunohistochemistry and qPCR. Via colony formation, CCK8, IncuCyte cell proliferation, wound healing and Transwell assays, we confirmed that PCBP1 was closely related to the proliferation and migration of LUAD cells. The downstream gene DKK1 was discovered by RNA sequencing of PCBP1 knockdown cells. The underlying mechanisms were further investigated using western blot, qPCR, RIP, RNA pulldown and mRNA stability assays. RESULTS: We demonstrate that PCBP1 is downregulated in LUAD tumour tissues. The reduction in PCBP1 promotes the proliferation, migration and invasion of LUAD in vitro and in vivo. Mechanistically, the RNA-binding protein PCBP1 represses LUAD by stabilizing DKK1 mRNA. Subsequently, decreased expression of the DKK1 protein relieves the inhibitory effect on the Wnt/ß-catenin signalling pathway. Taken together, these results show that PCBP1 acts as a tumour suppressor gene, inhibiting the tumorigenesis of LUAD. CONCLUSIONS: We found that PCBP1 inhibits LUAD development by upregulating DKK1 to inactivate the Wnt/ß-catenin pathway. Our findings highlight the potential of PCBP1 as a promising therapeutic target.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Neoplasias Pulmonares/patología , ARN , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , beta Catenina/metabolismo
16.
J Cancer Res Clin Oncol ; 148(12): 3475-3484, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35896897

RESUMEN

PURPOSE: Splicing factor poly(rC)-binding protein 1 (PCBP1) is a novel tumor suppressor that is downregulated in several cancers thereby regulating tumor formation and metastasis. However, the involvement of PCBP1 in apoptosis of cancer cells and the molecular mechanism remains elusive. On this basis, we sought to investigate the role of splicing factor PCBP1 in the apoptosis in human cervical cancer cells. METHODS: To investigate PCBP1 functions in vitro, we overexpressed PCBP1 in human cervical cancer cells. A series of cytological function assays were employed to study to the role of PCBP1 in cell proliferation, cell cycle arrest and apoptosis. RESULTS: Overexpression of PCBP1 was found to greatly repress proliferation of HeLa cells in a time-dependent manner. It also induced a significant increase in G2/M phase arrest and apoptosis. Furthermore, overexpressed PCBP1 favored the production of long isoforms of p73, thereby inducing upregulated ratio of Bax/Bcl-2, the release of cytochrome c and the expression of caspase-3. CONCLUSION: Our results revealed that PCBP1 played a vital role in p73 splicing, cycle arrest and apoptosis induction in human cervical carcinoma cells. Targeting PCBP1 may be a potential therapeutic strategy for cervical cancer therapy.


Asunto(s)
Neoplasias del Cuello Uterino , Femenino , Humanos , Apoptosis/fisiología , Proteína X Asociada a bcl-2/metabolismo , Proteínas Portadoras , Caspasa 3/metabolismo , Línea Celular Tumoral , Citocromos c/metabolismo , Células HeLa , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Factores de Empalme de ARN/genética , Neoplasias del Cuello Uterino/patología
17.
Virus Res ; 318: 198851, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35764193

RESUMEN

Coxsackievirus B3 (CVB3) is a positive single-strand RNA virus causing myocarditis, pancreatitis and meningitis. During CVB3 infection, various host cellular components, including proteins and non-coding RNAs, interact with the virus and affect viral infection. Poly(rC) binding protein 1 (PCBP1) is a multifunctional RNA binding protein regulating transcription, translation and mRNA stability of a variety of genes. In this study, we observed a significant reduction of PCBP1 protein during CVB3 infection. By bioinformatic prediction and luciferase-assay verification, we confirmed that the expression of PCBP1 was directly inhibited by miR-21, a microRNA upregulated during CVB3 infection. Furthermore, we found that overexpression of PCBP1 promoted CVB3 infection and knocking down of PCBP1 inhibited it. In the subsequent mechanism study, our results revealed that PCBP1 blocked the translation of p62/SQSTM1 (sequestosome 1), an autophagy-receptor protein suppressing CVB3 replication, by interacting with the cis-element in the 5' untranslational region (5' UTR) of p62/SQSTM1. In summary, our studies have identified PCBP1 as a beneficial factor for CVB3 infection. These findings may deepen the understanding of host-virus interactions and provide a potential target for intervention of CVB3 infection.


Asunto(s)
Infecciones por Coxsackievirus , Enterovirus Humano B , Regiones no Traducidas 5' , Proteínas Portadoras/genética , Infecciones por Coxsackievirus/genética , Proteínas de Unión al ADN/metabolismo , Enterovirus Humano B/genética , Células HeLa , Humanos , Poli A/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismo , Replicación Viral/genética
18.
Curr Gene Ther ; 22(5): 397-405, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35549870

RESUMEN

BACKGROUND: Signal transducer and activator of transcription 3 (STAT3) is an oncogene and frequently overexpressed in cancers. However, the regulatory mechanisms of STAT3 expression are not fully understood. Poly(rC)-binding protein1 (PCBP1) is an RNA-binding protein that regulates mRNA stability, splicing, and translation. PCBP1 is a tumor suppressor and can inhibit the translation of several oncogenic genes. OBJECTIVE: We aimed to understand the regulatory mechanisms of STAT3 expression. METHODS: The 5' UTR or 3' UTR regions of the human STAT3 gene were inserted upstream or downstream of the green fluorescent gene (GFP), respectively, which were used as reporter systems to analyze the inhibitory effects of PCBP1 on the STAT3 gene expression. The deletion and point mutation in 5' UTR were used to search the essential regulatory sequences of the translation inhibition. The mutations of PCBP1 protein were analyzed in the cBioPortal online service. The effects of mutated PCBP1 proteins on STAT3 expression, cancer cell proliferation, and colony formation were analyzed in oral squamous cell carcinoma (OSCC) cell lines. RESULTS: PCBP1 inhibits mRNA translation through a motif in the 5' UTR of STAT3. Moreover, we found two leucine residues (Leu100 and Leu102) of PCBP1 protein frequently mutated in cancers. These mutations abolished the inhibition function of PCBP1 on STAT3 translation. Surprisingly, in contrast to wild-type PCBP1 protein, these mutations can promote the growth and colony formation of cancer cells. CONCLUSION: Overall, we demonstrate that PCBP1 can inhibit the expression of STAT3 through its 5' UTR, and two leucine residues of PCBP1 protein are essential for its functions.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Regiones no Traducidas 3' , Regiones no Traducidas 5'/genética , Carcinoma de Células Escamosas/genética , Proteínas Portadoras/genética , Línea Celular Tumoral , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Humanos , Leucina/genética , Neoplasias de la Boca/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
19.
Bioengineered ; 13(4): 8581-8592, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35287546

RESUMEN

The molecular etiology of esophageal squamous cell carcinoma (ESCC) has not been fully elucidated. Understanding the molecular mechanisms and finding new therapeutic targets for ESCC are of crucial importance. PolyC-RNA-binding protein 1 (PCBP1) is an RNA-binding protein. Here, we found overexpressed PCBP1 in esophageal cancer tissues by quantitative polymerase chain reaction (qPCR) and western blotting analysis. PCBP1 knockdown significantly attenuated migratory and invasion abilities of ESCC cells. Mechanistically, PCBP1 bound directly to tropomyosin 3 (TPM3) mRNA, which was verified by RNA-protein immunoprecipitation (RIP) assay. PCBP1 knockdown markedly reduced messenger RNA (mRNA) levels of TPM3. After inhibiting intracellular mRNA synthesis with actinomycin D (ActD), it was found that PCBP1 knockdown contributed to a significant decrease in TPM3 mRNA degradation. Furthermore, PCBP1 promoted migration and invasion of EC cells by directly binding to the 3'UTR of TPM3 mRNA, increasing TPM3 mRNA stability. Taken together, PCBP1 acting as a pro-oncogenic factor enhances TPM3 mRNA stability by directly binding to the 3'UTR of TPM3 mRNA in esophageal squamous cell carcinoma. Our findings provide a new perspective for understanding the molecular mechanism of esophageal carcinogenesis, and PCBP1 is a promising therapeutic target.


Asunto(s)
Proteínas de Unión al ADN , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Proteínas de Unión al ARN , Tropomiosina , Regiones no Traducidas 3' , Carcinogénesis/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Proteínas de Unión al ADN/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Humanos , Estabilidad del ARN , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Tropomiosina/genética
20.
BMC Cancer ; 22(1): 123, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35100974

RESUMEN

BACKGROUND: Gastric cancer remains a major cause of cancer-related death worldwide. C12orf48, also named PARP1 binding protein, is over-expressed in several cancers. However, the expression profile and potential roles of C12orf48 in gastric cancer are largely unknown. METHODS: We used bioinformatics approaches and tissue microarray immunohistochemistry to analyze the expression profile of C12orf48 in gastric cancer tissues. Plasmid-mediated over-expression or knockdown were performed. CCK-8 assays and flow cytometry were employed to evaluate cellular proliferation and apoptosis respectively. Transwell assays were used to assess migrative and invasive abilities. The roles of C12orf48 were also evaluated in a xenograft tumor model. RESULTS: We found that C12orf48 was over-expressed in gastric cancer tissue, which associated with advanced stage and poor prognosis. In vitro and in vivo experiments showed depletion of C12orf48 attenuated cancer growth, while facilitated apoptosis. Further, the expression of Poly r(C)-Binding Protein (PCBP) 1 was found negatively regulated by C12orf48. Intended up-regulation of PCBP1 prevented C12orf48-mediated proliferation and rescued cells from apoptosis. Besides, C12orf48 promoted cellular migration and invasion, with E-cadherin down-regulated while vimentin and N-cadherin up-regulated, which was reversed by up-regulated PCBP1. CONCLUSIONS: Our findings indicate that depletion of C12orf48 inhibited gastric cancer growth and metastasis via up-regulating PCBP1. Targeting C12orf48-PCBP1 axis may be a potential therapeutic strategy.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ARN/metabolismo , Neoplasias Gástricas/genética , Apoptosis/genética , Proliferación Celular/genética , Biología Computacional , Regulación hacia Abajo/genética , Humanos , Metástasis de la Neoplasia/genética , Procesos Neoplásicos , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA