Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Anal Chim Acta ; 1326: 343139, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39260917

RESUMEN

BACKGROUND: Several oxylipins including hydroxy- and epoxy-polyunsaturated fatty acids act as lipid mediators. In biological samples they can be present as non-esterified form, but the major part occurs esterified in phospholipids (PL) or other lipids. Esterified oxylipins are quantified indirectly after alkaline hydrolysis as non-esterified oxylipins. However, in this indirect analysis the information in which lipid class oxylipins are bound is lost. In this work, an untargeted liquid chromatography high-resolution mass spectrometry (LC-HRMS) method for the direct analysis of PL bearing oxylipins was developed. RESULTS: Optimized reversed-phase LC separation achieved a sufficient separation of isobaric and isomeric PL from different lipid classes bearing oxylipin positional isomers. Individual PL species bearing oxylipins were identified based on retention time, precursor ion and characteristic product ions. The bound oxylipin could be characterized based on product ions resulting from the α-cleavage occurring at the hydroxy/epoxy group. PL sn-1/sn-2 isomers were identified based on the neutral loss of the fatty acyl in the sn-2 position. A total of 422 individual oxPL species from 7 different lipid classes i.e., PI, PS, PC, PE, PC-P, PC-O, and PE-P were detected in human serum and cells. This method enabled to determine in which PL class supplemented oxylipins are incorporated in HEK293 cells: 20:4;15OH, 20:4;14Ep, and 20:5;14Ep were mostly bound to PI. 20:4;8Ep and 20:5;8Ep were esterified to PC and PE while other oxylipins were mainly found in PC. SIGNIFICANCE: The developed LC-HRMS method enables the comprehensive detection as well as the semi-quantification of isobaric and isomeric PL species bearing oxylipins. With this method, we show that the position of the oxidation has a great impact and directs the incorporation of oxylipins into the different PL classes in human cells.


Asunto(s)
Espectrometría de Masas , Oxilipinas , Fosfolípidos , Oxilipinas/análisis , Oxilipinas/química , Humanos , Fosfolípidos/análisis , Fosfolípidos/química , Espectrometría de Masas/métodos , Cromatografía Liquida/métodos , Isomerismo
2.
J Nutr ; 154(9): 2862-2870, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39025329

RESUMEN

BACKGROUND: Long-chain PUFA (LC-PUFA) influence varying aspects of inflammation. One mechanism by which they regulate inflammation is by controlling the size and molecular composition of lipid rafts. Lipid rafts are sphingolipid/cholesterol-enriched plasma membrane microdomains that compartmentalize signaling proteins and thereby control downstream inflammatory gene expression and cytokine production. OBJECTIVES: This review summarizes developments in our understanding of how LC-PUFA acyl chains of phospholipids, in addition to oxidized derivatives of LC-PUFAs such as oxidized 1-palmitoyl-2-arachidonyl-phosphatidylcholine (oxPAPC), manipulate formation of lipid rafts and thereby inflammation. METHODS: We reviewed the literature, largely from the past 2 decades, on the impact of LC-PUFA acyl chains and oxidized products of LC-PUFAs on lipid raft biophysical organization of myeloid and lymphoid cells. The majority of the studies are based on rodent or cellular experiments with supporting mechanistic studies using biomimetic membranes and molecular dynamic simulations. These studies have focused largely on the LC-PUFA docosahexaenoic acid, with some studies addressing eicosapentaenoic acid. A few studies have investigated the role of oxidized phospholipids on rafts. RESULTS: The biophysical literature suggests a model in which n-3 LC-PUFAs, in addition to oxPAPC, localize predominately to nonraft regions and impart a disordering effect in this environment. Rafts become larger because of the ensuing increase in the difference in order between raft and nonrafts. Biochemical studies suggest that some n-3 LC-PUFAs can be found within rafts. This deviation from homeostasis is a potential trigger for controlling aspects of innate and adaptive immunity. CONCLUSION: Overall, select LC-PUFA acyl chains and oxidized acyl chains of phospholipids control lipid raft dynamics and downstream inflammation. Gaps in knowledge remain, particularly on underlying molecular mechanisms by which plasma membrane receptor organization is controlled in response to oxidized LC-PUFA acyl chains of membrane phospholipids. Validation in humans is also an area for future study.


Asunto(s)
Ácidos Grasos Insaturados , Inflamación , Microdominios de Membrana , Oxidación-Reducción , Fosfolípidos , Microdominios de Membrana/metabolismo , Humanos , Inflamación/metabolismo , Fosfolípidos/metabolismo , Fosfolípidos/química , Animales , Ácidos Grasos Insaturados/metabolismo , Ácidos Grasos Insaturados/farmacología
3.
Cell Metab ; 36(8): 1745-1763.e6, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-38851189

RESUMEN

Impaired self-renewal of Kupffer cells (KCs) leads to inflammation in metabolic dysfunction-associated steatohepatitis (MASH). Here, we identify neutrophil cytosolic factor 1 (NCF1) as a critical regulator of iron homeostasis in KCs. NCF1 is upregulated in liver macrophages and dendritic cells in humans with metabolic dysfunction-associated steatotic liver disease and in MASH mice. Macrophage NCF1, but not dendritic cell NCF1, triggers KC iron overload, ferroptosis, and monocyte-derived macrophage infiltration, thus aggravating MASH progression. Mechanistically, elevated oxidized phospholipids induced by macrophage NCF1 promote Toll-like receptor (TLR4)-dependent hepatocyte hepcidin production, leading to increased KC iron deposition and subsequent KC ferroptosis. Importantly, the human low-functional polymorphic variant NCF190H alleviates KC ferroptosis and MASH in mice. In conclusion, macrophage NCF1 impairs iron homeostasis in KCs by oxidizing phospholipids, triggering hepatocyte hepcidin release and KC ferroptosis in MASH, highlighting NCF1 as a therapeutic target for improving KC fate and limiting MASH progression.


Asunto(s)
Ferroptosis , Macrófagos del Hígado , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno , Ferroptosis/genética , Macrófagos del Hígado/metabolismo , Animales , Humanos , Ratones , Especies Reactivas de Oxígeno/metabolismo , Masculino , Hierro/metabolismo , NADPH Oxidasas/metabolismo , Macrófagos/metabolismo , Hepcidinas/metabolismo , Hepcidinas/genética
4.
J Am Heart Assoc ; 13(12): e033654, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38879448

RESUMEN

Elevated lipoprotein(a) is a genetically transmitted codominant trait that is an independent risk driver for cardiovascular disease. Lipoprotein(a) concentration is heavily influenced by genetic factors, including LPA kringle IV-2 domain size, single-nucleotide polymorphisms, and interleukin-1 genotypes. Apolipoprotein(a) is encoded by the LPA gene and contains 10 subtypes with a variable number of copies of kringle -2, resulting in >40 different apolipoprotein(a) isoform sizes. Genetic loci beyond LPA, such as APOE and APOH, have been shown to impact lipoprotein(a) levels. Lipoprotein(a) concentrations are generally 5% to 10% higher in women than men, and there is up to a 3-fold difference in median lipoprotein(a) concentrations between racial and ethnic populations. Nongenetic factors, including menopause, diet, and renal function, may also impact lipoprotein(a) concentration. Lipoprotein(a) levels are also influenced by inflammation since the LPA promoter contains an interleukin-6 response element; interleukin-6 released during the inflammatory response results in transient increases in plasma lipoprotein(a) levels. Screening can identify elevated lipoprotein(a) levels and facilitate intensive risk factor management. Several investigational, RNA-targeted agents have shown promising lipoprotein(a)-lowering effects in clinical studies, and large-scale lipoprotein(a) testing will be fundamental to identifying eligible patients should these agents become available. Lipoprotein(a) testing requires routine, nonfasting blood draws, making it convenient for patients. Herein, we discuss the genetic determinants of lipoprotein(a) levels, explore the pathophysiological mechanisms underlying the association between lipoprotein(a) and cardiovascular disease, and provide practical guidance for lipoprotein(a) testing.


Asunto(s)
Enfermedades Cardiovasculares , Lipoproteína(a) , Humanos , Lipoproteína(a)/sangre , Lipoproteína(a)/genética , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/epidemiología , Factores de Riesgo de Enfermedad Cardiaca , Predisposición Genética a la Enfermedad , Medición de Riesgo , Fenotipo
5.
Arch Biochem Biophys ; 754: 109956, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458481

RESUMEN

Phospholipids are key biomolecules with important roles as components of membranes, lipoproteins and as signalling molecules. However, phospholipids are quite prone to oxidation. Upon oxidation they generate several types of oxidation products including long chain oxidation products, as hydroperoxyl and hydroxy derivatives, and highly reactive oxidation products, like small aldehydes and truncated oxidized phospholipids. The formation of protein adducts with small electrophilic aldehydes (like malondialdehyde) is now well studied, however, the aggregation of proteins with truncated oxidized phospholipids lacks research. This paper provides a short overview of the formation of protein adducts with truncated oxidized phospholipids as well as a gathering of the research on this topic. The literature found reports the synthesis, detection and fragmentation of this type of adducts, mainly focusing on truncated oxidized phospholipid' products from phosphatidylcholine class and few peptides and proteins, as human serum albumin and Apo B100, leaving unattended the screening in vivo and in disease correlation, thus lacking possible association with their biological role. These adducts are a consequence of oxidative modifications to important biomolecules and their involvement in the organism is still unclear, revealing the urgent need for more investigation in this area.


Asunto(s)
Lipoproteínas , Fosfolípidos , Humanos , Fosfolípidos/metabolismo , Oxidación-Reducción , Lipoproteínas/metabolismo , Péptidos/metabolismo , Aldehídos/metabolismo
7.
Am J Respir Cell Mol Biol ; 70(1): 11-25, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37725486

RESUMEN

The generation of bioactive truncated oxidized phospholipids (Tr-OxPLs) from oxidation of cell-membrane or circulating lipoproteins is a common feature of various pathological states. Scavenger receptor CD36 is involved in lipid transport and acts as a receptor for Tr-OxPLs. Interestingly, Tr-OxPLs and CD36 are involved in endothelial dysfunction-derived acute lung injury, but the precise mechanistic connections remain unexplored. In the present study, we investigated the role of CD36 in mediating pulmonary endothelial cell (EC) dysfunction caused by Tr-OxPLs. Our results demonstrated that the Tr-OxPLs KOdia-PC, Paz-PC, PGPC, PON-PC, POV-PC, and lysophosphocholine caused an acute EC barrier disruption as revealed by measurements of transendothelial electrical resistance and VE-cadherin immunostaining. More importantly, a synthetic amphipathic helical peptide, L37pA, targeting human CD36 strongly attenuated Tr-OxPL-induced EC permeability. L37pA also suppressed Tr-OxPL-induced endothelial inflammatory activation monitored by mRNA expression of inflammatory cytokines/chemokines and adhesion molecules. In addition, L37pA blocked Tr-OxPL-induced NF-κB activation and tyrosine phosphorylation of Src kinase and VE-cadherin. The Src inhibitor SU6656 attenuated KOdia-PC-induced EC permeability and inflammation, but inhibition of the Toll-like receptors (TLRs) TLR1, TLR2, TLR4, and TLR6 had no such protective effects. CD36-knockout mice were more resistant to Tr-OxPL-induced lung injury. Treatment with L37pA was equally effective in ameliorating Tr-OxPL-induced vascular leak and lung inflammation as determined by an Evans blue extravasation assay and total cell and protein content in BAL fluid. Altogether, these results demonstrate an essential role of CD36 in mediating Tr-OxPL-induced EC dysfunction and suggest a strong therapeutic potential of CD36 inhibitory peptides in mitigating lung injury and inflammation.


Asunto(s)
Lesión Pulmonar Aguda , Fosfolípidos , Animales , Ratones , Humanos , Fosfolípidos/metabolismo , Lesión Pulmonar Aguda/patología , Inflamación , Péptidos , Pulmón/patología
8.
FASEB J ; 38(1): e23328, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38019192

RESUMEN

Acetaminophen (APAP) is a double-edged sword, mainly depending on the dosage. A moderate dose of APAP is effective for fever and pain relief; however, an overdose induces acute liver injury. The mechanism underlying APAP-induced acute liver failure is unclear, and its treatment is limited. A recent report has shown that several oxidized phospholipids are associated with APAP-induced acute liver failure. Lysophosphatidylcholine acyltransferase 3 (Lpcat3, Lplat12), which is highly expressed in the liver, preferentially catalyzes the incorporation of arachidonate into lysophospholipids (PLs). In the present study, we investigated the roles of Lpcat3 on APAP-induced acute liver injury using liver-specific Lpcat3-knockout mice. Hepatic Lpcat3 deficiency reduced the degree of APAP-induced necrosis of hepatocytes around Zone 3 and ameliorated the elevation of hepatic injury serum marker levels, and prolonged survival. Lipidomic analysis showed that the accumulation of oxidized and hydroperoxidized phospholipids was suppressed in Lpcat3-knockout mice. The amelioration of APAP-induced acute liver injury was due not only to the reduction in the lipid synthesis of arachidonic acid PLs because of Lpcat3 deficiency, but also to the promotion of the APAP detoxification pathway by facilitating the conjugation of glutathione and N-acetyl-p-benzoquinone imine. Our findings suggest that Lpcat3 is a potential therapeutic target for treating APAP-induced acute liver injury.


Asunto(s)
Acetaminofén , Fallo Hepático Agudo , Animales , Ratones , Acetaminofén/toxicidad , Hepatocitos , Ratones Noqueados , 1-Acilglicerofosfocolina O-Aciltransferasa
9.
Cells ; 12(15)2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37566016

RESUMEN

Truncated phospholipid oxidation products (Tr-OxPL) increase in blood circulation with aging; however, their role in the severity of vascular dysfunction and bacterial lung injury in aging groups remains poorly understood. We investigated the effects of six Tr-OxPL species: KOdiA-PC, POVPC, PONPC, PGPC, Paz-PC, and Lyso-PC on endothelial dysfunction and lung inflammation caused by heat-killed Staphylococcus aureus (HKSA) in young (aged 2-4 months) and old (aged 12-18 months) mice, organotypic culture of precisely cut lung slices, and endothelial cells (mLEC) isolated from young and old mice. HKSA and Tr-OxPL combination caused a higher degree of vascular leak, the accumulation of inflammatory cells and protein in bronchoalveolar lavage, and inflammatory gene expression in old mice lungs. HKSA caused a greater magnitude of inflammatory gene activation in cell and ex vivo cultures from old mice, which was further augmented by Tr-OxPLs. L37pA peptide targeting CD36 receptor attenuated Tr-OxPL-induced endothelial cell permeability in young and old mLEC and ameliorated KOdiA-PC-induced vascular leak and lung inflammation in vivo. Finally, CD36 knockout mice showed better resistance to KOdiA-PC-induced lung injury in both age groups. These results demonstrate the aging-dependent vulnerability of pulmonary vasculature to elevated Tr-OxPL, which exacerbates bacterial lung injury. CD36 inhibition is a promising therapeutic approach for improving pneumonia outcomes in aging population.


Asunto(s)
Lesión Pulmonar , Neumonía , Animales , Ratones , Fosfolípidos/metabolismo , Células Endoteliales/metabolismo , Lesión Pulmonar/metabolismo , Neumonía/metabolismo , Envejecimiento
10.
Nutr Metab Cardiovasc Dis ; 33(10): 1866-1877, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37586921

RESUMEN

AIMS: In view of the consolidating evidence on the causal role of Lp(a) in cardiovascular disease, the Italian Society for the Study of Atherosclerosis (SISA) has assembled a consensus on Lp(a) genetics and epidemiology, together with recommendations for its measurement and current and emerging therapeutic approaches to reduce its plasma levels. Data on the Italian population are also provided. DATA SYNTHESIS: Lp(a) is constituted by one apo(a) molecule and a lipoprotein closely resembling to a low-density lipoprotein (LDL). Its similarity with an LDL, together with its ability to carry oxidized phospholipids are considered the two main features making Lp(a) harmful for cardiovascular health. Plasma Lp(a) concentrations vary over about 1000 folds in humans and are genetically determined, thus they are quite stable in any individual. Mendelian Randomization studies have suggested a causal role of Lp(a) in atherosclerotic cardiovascular disease (ASCVD) and aortic valve stenosis and observational studies indicate a linear direct correlation between cardiovascular disease and Lp(a) plasma levels. Lp(a) measurement is strongly recommended once in a patient's lifetime, particularly in FH subjects, but also as part of the initial lipid screening to assess cardiovascular risk. The apo(a) size polymorphism represents a challenge for Lp(a) measurement in plasma, but new strategies are overcoming these difficulties. A reduction of Lp(a) levels can be currently attained only by plasma apheresis and, moderately, with PCSK9 inhibitor treatment. CONCLUSIONS: Awaiting the approval of selective Lp(a)-lowering drugs, an intensive management of the other risk factors for individuals with elevated Lp(a) levels is strongly recommended.


Asunto(s)
Estenosis de la Válvula Aórtica , Aterosclerosis , Humanos , Lipoproteína(a)/genética , Proproteína Convertasa 9 , Consenso , Aterosclerosis/diagnóstico , Aterosclerosis/epidemiología , Aterosclerosis/genética
11.
Aging (Albany NY) ; 15(14): 6834-6847, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37462732

RESUMEN

In this study we sought to analyze the critical role of oxidized phospholipid (OxPL) in the progression of calcific aortic valve disease (CAVD) with the involvement of activating transcription factor 4 (ATF4). Differentially expressed genes related to CAVD were identified using bioinformatics analysis. Expression of ATF4 was examined in mouse models of aortic valve calcification (AVC) induced by the high cholesterol (HC) diet. Valvular interstitial cells (VICs) were then isolated from mouse non-calcified valve tissues, induced by osteogenic induction medium (OIM) and co-cultured with OxPAPC-stimulated macrophages. The effect of OxPLs regulating ATF4 on the macrophage polarization and osteogenic differentiation of VICs was examined with gain- and loss-of-function experiments in VICs and in vivo. In aortic valve tissues and OIM-induced VICs, ATF4 was highly expressed. ATF4 knockdown alleviated the osteogenic differentiation of VICs, as evidenced by reduced expression of bone morphogenetic protein-2 (BMP2), osteopontin (OPN), and osteocalcin. In addition, knockdown of ATF4 arrested the AVC in vivo. Meanwhile, OxPL promoted M1 polarization of macrophages and mediated osteogenic differentiation of VICs. Furthermore, OxPL up-regulated ATF4 expression through protein kinase R-like endoplasmic reticulum kinase (PERK)/eukaryotic translation initiation factor 2 subunit alpha (eIF2α) pathway. In conclusion, OxPL can potentially up-regulate the expression of ATF4, inducing macrophages polarized to M1 phenotype, osteogenic differentiation of VICs and AVC, thus accelerating the progression of CAVD.


Asunto(s)
Estenosis de la Válvula Aórtica , Calcinosis , Animales , Ratones , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Válvula Aórtica , Estenosis de la Válvula Aórtica/metabolismo , Calcinosis/genética , Calcinosis/metabolismo , Diferenciación Celular/genética , Células Cultivadas , Retículo Endoplásmico/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Osteogénesis/genética , Fosfolípidos/metabolismo , Proteínas Quinasas/metabolismo
12.
Cell Signal ; 109: 110804, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37437826

RESUMEN

Oxidized phospholipids (OxPLs) are present at basal levels in circulation of healthy individuals, but a substantial increase and changes in composition of OxPLs may rapidly occur during microbial infections, sepsis, and trauma. Specifically, truncated oxidized phospholipids (Tr-OxPLs) exhibit detrimental effects on pulmonary endothelium, yet their role on modulation of lung injury caused by bacterial pathogens remains to be elucidated. This study investigated the effects of Tr-OxPL species: KOdiA-PC, POV-PC, PON-PC, PAz-PC, PGPC, and Lyso-PC on endothelial permeability and inflammatory responses to gram-positive bacterial particles. Results showed that all six tested Tr-OxPLs augmented endothelial barrier disruption caused by heat-killed Staphylococcus aureus (HKSA) as determined by VE-cadherin immunostaining and monitoring transendothelial electrical resistance. In parallel, even moderate elevation of Tr-OxPLs augmented HKSA-induced activation of NF-κB, secretion of IL-6 and IL-8, and protein expression of ICAM-1 and VCAM-1. In the mouse model of acute lung injury caused by intranasal injection of HKSA, intravenous Tr-OxPLs administration augmented HKSA-induced increase in BAL protein content and cell counts, tissue expression of TNFα, KC, IL1ß, and CCL2, and promoted vascular leak monitored by lung infiltration of Evans Blue. These results suggest that elevated Tr-OxPLs act as critical risk factor worsening bacterial pathogen-induced endothelial dysfunction and lung injury.


Asunto(s)
Lesión Pulmonar Aguda , Fosfolípidos , Animales , Ratones , Fosfolípidos/metabolismo , Fosfolípidos/farmacología , Endotelio/metabolismo , Pulmón/metabolismo , Lesión Pulmonar Aguda/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Oxidación-Reducción
13.
Biochemistry (Mosc) ; 88(5): 698-703, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37331715

RESUMEN

It has been established that acylhydroperoxy derivatives of phospholipids from oxidized rat liver mitochondria are captured predominantly by LDL particles but not by HDL during co-incubation with blood plasma lipoproteins, which refutes the previously suggested hypothesis about the involvement of HDL in the reverse transport of oxidized phospholipids and confirms the possibility of different mechanisms of lipohydroperoxide accumulation in LDL during oxidative stress.


Asunto(s)
Lipoproteínas LDL , Fosfolípidos , Ratas , Animales , Adsorción , Estrés Oxidativo , Plasma
14.
J Thromb Thrombolysis ; 56(2): 226-232, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37338713

RESUMEN

BACKGROUND: Pelacarsen decreases plasma levels of lipoprotein(a) [Lp(a)] and oxidized phospholipids (OxPL). It was previously reported that pelacarsen does not affect the platelet count. We now report the effect of pelacarsen on on-treatment platelet reactivity. METHODS: Subjects with established cardiovascular disease and screening Lp(a) levels ≥60 mg per deciliter (~ ≥150 nmol/L) were randomized to receive pelacarsen (20, 40, or 60 mg every 4 weeks; 20 mg every 2 weeks; or 20 mg every week), or placebo for 6-12 months. Aspirin Reaction Units (ARU) and P2Y12 Reaction Units (PRU) were measured at baseline and the primary analysis timepoint (PAT) at 6 months. RESULTS: Of the 286 subjects randomized, 275 had either an ARU or PRU test, 159 (57.8%) were on aspirin alone and 94 (34.2%) subjects were on dual anti-platelet therapy. As expected, the baseline ARU and PRU were suppressed in subjects on aspirin or on dual anti-platelet therapy, respectively. There were no significant differences in baseline ARU in the aspirin groups or in PRU in the dual anti-platelet groups. At the PAT there were no statistically significant differences in ARU in subjects on aspirin or PRU in subjects on dual anti-platelet therapy among any of the pelacarsen groups compared to the pooled placebo group (p > 0.05 for all comparisons). CONCLUSION: Pelacarsen does not modify on-treatment platelet reactivity through the thromboxane A2 or P2Y12 platelet receptor pathways.


Asunto(s)
Inhibidores de Agregación Plaquetaria , Tromboxanos , Humanos , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/uso terapéutico , Clopidogrel/farmacología , Estudios Prospectivos , Plaquetas , Aspirina/uso terapéutico , Pruebas de Función Plaquetaria , Resultado del Tratamiento , Antagonistas del Receptor Purinérgico P2Y/uso terapéutico
15.
J Lipid Res ; 64(5): 100370, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37059333

RESUMEN

Conversion of lysophosphatidylcholine to lysophosphatidic acid (LPA) by autotaxin, a secreted phospholipase D, is a major pathway for producing LPA. We previously reported that feeding Ldlr-/- mice standard mouse chow supplemented with unsaturated LPA or lysophosphatidylcholine qualitatively mimicked the dyslipidemia and atherosclerosis induced by feeding a Western diet (WD). Here, we report that adding unsaturated LPA to standard mouse chow also increased the content of reactive oxygen species and oxidized phospholipids (OxPLs) in jejunum mucus. To determine the role of intestinal autotaxin, enterocyte-specific Ldlr-/-/Enpp2 KO (intestinal KO) mice were generated. In control mice, the WD increased enterocyte Enpp2 expression and raised autotaxin levels. Ex vivo, addition of OxPL to jejunum from Ldlr-/- mice on a chow diet induced expression of Enpp2. In control mice, the WD raised OxPL levels in jejunum mucus and decreased gene expression in enterocytes for a number of peptides and proteins that affect antimicrobial activity. On the WD, the control mice developed elevated levels of lipopolysaccharide in jejunum mucus and plasma, with increased dyslipidemia and increased atherosclerosis. All these changes were reduced in the intestinal KO mice. We conclude that the WD increases the formation of intestinal OxPL, which i) induce enterocyte Enpp2 and autotaxin resulting in higher enterocyte LPA levels; that ii) contribute to the formation of reactive oxygen species that help to maintain the high OxPL levels; iii) decrease intestinal antimicrobial activity; and iv) raise plasma lipopolysaccharide levels that promote systemic inflammation and enhance atherosclerosis.


Asunto(s)
Antiinfecciosos , Aterosclerosis , Dislipidemias , Ratones , Animales , Lisofosfatidilcolinas , Enterocitos/metabolismo , Lipopolisacáridos , Especies Reactivas de Oxígeno , Lisofosfolípidos/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Dieta Occidental , Inflamación/genética , Dislipidemias/metabolismo , Aterosclerosis/genética
16.
Bone ; 170: 116702, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36773885

RESUMEN

The scavenger receptor class B member 1 (SR-B1 or Scarb1) is a glycosylated cell surface receptor for high density lipoproteins (HDL), oxidized low density lipoproteins (OxLDL), and phosphocholine-containing oxidized phospholipids (PC-OxPLs). Scarb1 is expressed in macrophages and has been shown to have both pro- and anti-atherogenic properties. It has been reported that global deletion of Scarb1 in mice leads to either high or low bone mass and that PC-OxPLs decrease osteoblastogenesis and increase osteoclastogenesis. PC-OxPLs decrease bone mass in 6-month-old mice and are critical pathogenetic factors in the bone loss caused by high fat diet or aging. We have investigated here whether Scarb1 expression in myeloid cells affects bone mass and whether PC-OxPLs exert their anti-osteogenic effects via activation of Scarb1 in macrophages. To this end, we generated mice with deletion of Scarb1 in LysM-Cre expressing cells and found that lack of Scarb1 did not affect bone mass in vivo. These results indicate that Scarb1 expression in cells of the myeloid/osteoclast lineage does not contribute to bone homeostasis. Based on this evidence, and earlier studies of ours showing that Scarb1 expression in osteoblasts does not affect bone mass, we conclude that Scarb1 is not an important mediator of the adverse effects on PC-OxPLs in osteoclasts or osteoblasts in 6-month-old mice.


Asunto(s)
Densidad Ósea , Huesos , Animales , Ratones , Receptores Depuradores de Clase B/genética , Receptores Depuradores de Clase B/metabolismo , Huesos/metabolismo , Osteoclastos/metabolismo , Osteogénesis
17.
Food Res Int ; 163: 112227, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36596156

RESUMEN

Oxidation of food-derived phospholipids (PLs) can influence nutrient digestion and induce oxidative stress in gastrointestinal epithelium. In this study, hen egg yolk PL fraction was used to evaluate the effect of lipoxygenase (LOX)-induced PL oxidation on the rate of PL hydrolysis catalyzed by pancreatic phospholipase A2 (PLA2) in the presence of bile salts (BSs). Then, PL/BS solutions containing native or oxidized PLs were used in in vitro intestinal digestion to assess the effect of PL oxidation and hydrolysis on the toxicity towards HT29 cell line. Based on the obtained results, we suggest that hexanal and (E)-2-nonenal, formed by the decomposition of PL hydroperoxides, inhibited PLA2 activity. The cell exposure to simulated intestinal fluid (SIF) containing BSs decreased HT29 cell viability and significantly damaged cellular DNA. However, the genotoxic effect was reversed in the presence of all tested PL samples, while the protective effect against the BS-induced cytotoxicity was observed for native non-hydrolyzed PLs, but was not clearly visible for other samples. This can result from an overlap of other toxic effects such as lipotoxicity or disturbance of cellular redox homeostasis. Taking into account the data obtained, it was proposed that the PLA2 activity decline in the presence of PL oxidation products may be a kind of protective mechanism against rapid release of oxidized FAs characterized by high cytotoxic effect towards intestinal epithelium cells.


Asunto(s)
Pollos , Fosfolípidos , Humanos , Animales , Femenino , Fosfolípidos/metabolismo , Hidrólisis , Pollos/metabolismo , Fosfolipasas A2/toxicidad , Fosfolipasas A2/metabolismo , Oxidación-Reducción , Línea Celular , Mucosa Intestinal/metabolismo
18.
Front Mol Biosci ; 10: 1279645, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38288337

RESUMEN

Introduction: Lung cancer is one of the most frequently studied types of cancer and represents the most common and lethal neoplasm. Our previous research on non-small cell lung cancer (NSCLC) has revealed deep lipid profile reprogramming and redox status disruption in cancer patients. Lung cell membranes are rich in phospholipids that are susceptible to oxidation, leading to the formation of bioactive oxidized phosphatidylcholines (oxPCs). Persistent and elevated levels of oxPCs have been shown to induce chronic inflammation, leading to detrimental effects. However, recent reports suggest that certain oxPCs possess anti-inflammatory, pro-survival, and endothelial barrier-protective properties. Thus, we aimed to measure the levels of oxPCs in NSCLC patients and investigate their potential role in lung cancer. Methods: To explore the oxPCs profiles in lung cancer, we performed in-depth, multi-level metabolomic analyses of nearly 350 plasma and lung tissue samples from 200 patients with NSCLC, including adenocarcinoma (ADC) and squamous cell carcinoma (SCC), the two most prevalent NSCLC subtypes and COPD patients as a control group. First, we performed oxPC profiling of plasma samples. Second, we analyzed tumor and non-cancerous lung tissues collected during the surgical removal of NSCLC tumors. Because of tumor tissue heterogeneity, subsequent analyses covered the surrounding healthy tissue and peripheral and central tumors. To assess whether the observed phenotypic changes in the patients were associated with measured oxPC levels, metabolomics data were augmented with data from medical records. Results: We observed a predominance of long-chain oxPCs in plasma samples and of short-chain oxPCs in tissue samples from patients with NSCLC. The highest concentration of oxPCs was observed in the central tumor region. ADC patients showed higher levels of oxPCs compared to the control group, than patients with SCC. Conclusion: The detrimental effects associated with the accumulation of short-chain oxPCs suggest that these molecules may have greater therapeutic utility than diagnostic value, especially given that elevated oxPC levels are a hallmark of multiple types of cancer.

19.
Biomedicines ; 10(11)2022 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-36428489

RESUMEN

The prevalence of nonalcoholic steatohepatitis (NASH) in severely obese Japanese patients is extremely high. However, there are currently no methods other than liver biopsy to assess hepatic steatosis and fibrosis. The purpose of this study was to comprehensively analyze changes in fatty acid (FA) and serum-free fatty acid (FFA) metabolism in severely obese Japanese patients to determine whether these could be surrogate markers. In this study, we enrolled 20 Japanese patients who underwent laparoscopic sleeve gastrectomy (LSG) for severe obesity and intraoperative liver biopsy. Serum FFAs were analyzed with liquid chromatography-mass spectrometry, and FAs in liver tissue were assessed using matrix-assisted laser desorption/ionization-imaging mass spectrometry to determine FAs that may be indicative of a positive NASH diagnosis. All patients showed significant weight loss and metabolic improvement following LSG. Regarding weight loss and metabolic improvement indices, 23 FFAs showed significant correlations with the baseline data. Narrowing down the phospholipids to commonly detected FAs detected in liver tissue, PC(18:1e_20:4) was significantly changed in the NASH group, suggesting that it could be used as a surrogate marker for NASH diagnosis. The results suggest that specific postoperative changes in blood phospholipids could be used as surrogate markers for NASH treatment.

20.
JACC Asia ; 2(6): 653-665, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36444328

RESUMEN

Elevated concentration of lipoprotein(a) [Lp(a)] is an independent risk factor for atherosclerotic cardiovascular disease, including coronary artery disease, stroke, peripheral artery disease, and so on. Emerging data suggest that Lp(a) contributes to the increased risk for cardiovascular events even in the setting of effective reduction of plasma low-density lipoprotein cholesterol. Nevertheless, puzzling issues exist covering potential genetic factors, Lp(a) assay, possible individuals for analysis, a cutoff point of increased risk, and clinical interventions. In the Chinese population, Lp(a) exhibited a distinctive prevalence and regulated various cardiovascular diseases in specific ways. Hence, it is valuable to clarify the role of Lp(a) in cardiovascular diseases and explore prevention and control measures for the increase in Lp(a) prevalence in the Chinese population. This Beijing Heart Society experts' scientific statement will present the detailed knowledge concerning Lp(a)-related studies combined with Chinese population observations to provide the key points of reference.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA