Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros











Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38977177

RESUMEN

Psalidodon bifasciatus is a fish species sensitive to physical and chemical changes in water. It serves as a good bioindicator of temperature variations and is utilized in environmental monitoring studies in Brazilian rivers. The objective of this study was to evaluate antioxidant defense biomarkers in the heart, brain, and muscle of P. bifasciatus exposed to a 10 °C thermal increase. P. bifasciatus were collected and divided into a control group (21 °C) and groups subjected to thermal shock (31 °C) for periods of 2, 6, 12, 24, and 48h. Two-way ANOVA indicated that a 10 °C temperature increase caused oxidative stress in P. bifasciatus. This was evidenced by altered levels of lipid peroxidation (LPO), carbonylated proteins (PCO), and glutathione peroxidase (GPx) in the heart, catalase (CAT) and LPO in the brain, and LPO in the muscle. Principal component analysis (PCA) and integrated biomarker response (IBR) analysis indicated that, compared to the heart and muscle, the brain exhibited a greater activation of the antioxidant response. Sensitivity analysis indicated that the muscle was the most sensitive organ, followed by the brain and heart. Our results indicate that the stress response is tissue-specific through the activation of distinct mechanisms. These responses may be associated with the tissue's function as well as its energy demand. As expected, P. bifasciatus showed changes in response to thermal stress, with the brain showing the greatest alteration in antioxidant defenses and the muscle being the most sensitive tissue.


Asunto(s)
Antioxidantes , Respuesta al Choque Térmico , Animales , Antioxidantes/metabolismo , Respuesta al Choque Térmico/fisiología , Estrés Oxidativo/fisiología , Biomarcadores/metabolismo , Encéfalo/metabolismo , Peroxidación de Lípido , Catalasa/metabolismo , Glutatión Peroxidasa/metabolismo , Miocardio/metabolismo , Proteínas de Peces/metabolismo , Músculos/metabolismo
2.
Scand J Med Sci Sports ; 34(1): e14493, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37732872

RESUMEN

OBJECTIVE: The aim of the present study was to examine whether 10-20-30 training (consecutive 1-min intervals consisting of 30 s at low-speed, 20 s at moderate-speed, and 10 s at high-speed), performed with submaximal effort during the 10-s high-speed runs, would lead to improved performance as well as increased maximum oxygen uptake (VO2 -max) and muscle oxidative phosphorylation (OXPHOS). In addition, to examine to what extent the effects would compare to 10-20-30 running conducted with maximal effort. DESIGN: Nineteen males were randomly assigned to 10-20-30 running performed with either submaximal (SUBMAX; n = 11) or maximal (MAX; n = 8) effort, which was conducted three times/week for 6 weeks (intervention; INT). Before and after INT, subjects completed a 5-km running test and a VO2 -max test, and a biopsy was obtained from m. vastus lateralis. RESULTS: After compared to before INT, SUBMAX and MAX improved (p < 0.05) 5-km performance by 3.0% (20.8 ± 0.4 (means±SE) vs. 21.5 ± 0.4 min) and 2.3% (21.2 ± 0.4 vs. 21.6 ± 0.4 min), respectively, and VO2 -max was ~7% higher (p < 0.01) in both SUBMAX (57.0 ± 1.3 vs. 53.5 ± 1.1 mL/min/kg) and MAX (57.8 ± 1.2 vs. 53.7 ± 0.9 mL/min/kg), with no difference in the changes between groups. In SUBMAX, muscle OXPHOS was unchanged, whereas in MAX, muscle OXPHOS subunits (I-IV) and total OXPHOS (5.5 ± 0.3 vs 4.7 ± 0.3 A.U.) were 9%-29% higher (p < 0.05) after compared to before INT. CONCLUSION: Conducting 10-20-30 training with a non-maximal effort during the 10-s high-speed runs is as efficient in improving 5-km performance and VO2 -max as maximal effort exercise, whereas increase in muscle OXPHOS occur only when the 10-s high-speed runs are performed with maximal effort.


Asunto(s)
Fosforilación Oxidativa , Consumo de Oxígeno , Masculino , Humanos , Consumo de Oxígeno/fisiología , Resistencia Física/fisiología , Oxígeno , Músculo Cuádriceps
3.
Scand J Med Sci Sports ; 34(1): e14362, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37002854

RESUMEN

INTRODUCTION: Male elite cyclists (average VO2 -max: 71 mL/min/kg, n = 18) completed 7 weeks of high-intensity interval training (HIT) (3×/week; 4-min and 30-s intervals) during the competitive part of the season. The influence of a maintained or lowered total training volume combined with HIT was evaluated in a two-group design. Weekly moderate-intensity training was lowered by ~33% (~5 h) (LOW, n = 8) or maintained at normal volume (NOR, n = 10). Endurance performance and fatigue resistance were evaluated via 400 kcal time-trials (~20 min) commenced either with or without prior completion of a 120-min preload (including repeated 20-s sprints to simulate physiologic demands during road races). RESULTS: Time-trial performance without preload was improved after the intervention (p = 0.006) with a 3% increase in LOW (p = 0.04) and a 2% increase in NOR (p = 0.07). Preloaded time-trial was not significantly improved (p = 0.19). In the preload, average power during repeated sprinting increased by 6% in LOW (p < 0.01) and fatigue resistance in sprinting (start vs end of preload) was improved (p < 0.05) in both groups. Blood lactate during the preload was lowered (p < 0.001) solely in NOR. Measures of oxidative enzyme activity remained unchanged, whereas the glycolytic enzyme PFK increased by 22% for LOW (p = 0.02). CONCLUSION: The present study demonstrates that elite cyclists can benefit from intensified training during the competitive season both with maintained and lowered training volume at moderate intensity. In addition to benchmarking the effects of such training in ecological elite settings, the results also indicate how some performance and physiological parameters may interact with training volume.


Asunto(s)
Ciclismo , Resistencia Física , Humanos , Masculino , Resistencia Física/fisiología , Ciclismo/fisiología , Consumo de Oxígeno/fisiología
4.
World J Microbiol Biotechnol ; 39(12): 329, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37792159

RESUMEN

Ligninolytic and other oxidative enzymes have emerged as promising biocatalysts in several industries. Since their production at a low cost is necessary for any large-scale application, we demonstrate the use of rice bran (RB), an agricultural waste and agri-food wastes such as potato peelings (PP), banana peelings (BP), and green pea peelings (GPP) for their production. High activity of laccase (12 U/ml), manganese peroxidase (16.11 ± 1.43 U/ml), and aryl alcohol oxidase (1.25 U/ml) was obtained on the PP on the 12th day of growth and ~ 6 U/ml of lytic polysaccharide monooxygenase was obtained on the 14th day of growth demonstrating PP to be a good substrate for their production. RB served as the next best substrate for the production of these enzymes. While the GPP was effective for the production of laccase (9.2 U/ml), this and the BP were not good substrates for the production of other enzymes. Efficient (48-82%) decolorization of several azo-, triarylmethane- dyes, and real textile effluent, without the addition of any mediator, demonstrated the high oxidative ability of the crude culture filtrate produced on the PP (CF-PP), which was a significant improvement compared to the treatment given by the previously reported culture filtrate obtained on wheat bran (CF-WB). An extensive breakdown of Reactive Orange (RO) 16 was demonstrated using CF-PP resulting in the formation of a new product at m/z of 294.05 (6-acetamido-3,4-dioxo-3,4-dihydronapthalene-2-sulfonate), previously reported to be produced on ozonation/advanced oxidation of RO16. The predominant laccase and manganese peroxidase isoforms produced on the PP were also identified.


Asunto(s)
Lacasa , Eliminación de Residuos , Lacasa/metabolismo , Fibras de la Dieta , Colorantes/metabolismo , Textiles , Estrés Oxidativo
5.
Environ Res ; 231(Pt 2): 116130, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37201702

RESUMEN

Studies have investigating the detoxification and antioxidant enzymes with melatonin under pesticide stress in many vertebrates, whereas no reports produced in invertebrates. In this study possible role of melatonin and luzindole effect on fipronil toxicity and the detoxification, antioxidant enzymes in H. armigera has been reported. Result showed high toxicity of fipronil treatment (LC50 4.24 ppm), followed by increased LC50 value with melatonin pretreatment (6.44 ppm). Whereas decreased toxicity was observed with melatonin and luzindole combination (3.72 ppm). The detoxification enzymes AChE, esterase and P450 were increased in larval head and whole body with exogenous melatonin level compared to control 1-1.5 µmol/mg of protein. The antioxidant levels of CAT, SOD and GST in whole body and head tissue had been increased by melatonin and fipronil combination 1.1-1.4 unit/mg of protein followed by GPx and GR in larval head (1-1.2 µmol/mg of protein). Mean while the luzindole antagonist inhibits CAT, SOD, GST and GR oxidative enzyme level (1-1.5 fold) in most of the tissue compared to melatonin and fipronil treatment (p < 0.01). Hence this study concludes that the melatonin pretreatment can reduce the fipronil toxicity by enhanced detoxification and antioxidant enzyme system in H. armigera.


Asunto(s)
Melatonina , Mariposas Nocturnas , Animales , Antioxidantes/farmacología , Melatonina/farmacología , Larva/metabolismo , Mariposas Nocturnas/metabolismo , Superóxido Dismutasa/metabolismo
6.
Inflammopharmacology ; 31(3): 1241-1256, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37005957

RESUMEN

Traditional use of Cassia absus as an anti-inflammatory in conjunctivitis and bronchitis is well reported. Owing to its anti-inflammatory potential, the current study appraised in vivo anti-arthritic activity of n-hexane and aqueous extracts of Cassia absus seeds (200 mg/kg) using Complete Freund's Adjuvant (CFA) rat model of arthritis. Changes in paw size (mm), joint diameter (mm), and pain response (sec) were recorded at the baseline and then after CFA induction at the interval of 4 days till the 28th day. Blood samples of anesthetized rats were collected for the estimation of hematological, oxidative, and inflammatory biomarkers. Results showed percent inhibition in paw edema (45.09% and 60.79%) with both n-hexane and aqueous extracts, respectively. Significant reduction in paw size and ankle joint diameter (P < 0.01) was seen in extracts treated rats. Erythrocyte Sedimentation rate, C-Reactive Protein, White Blood Cell levels significantly lowered, and Hemoglobin, Platelets and Red Blood Cell count significantly increased post-treatments. Superoxide Dismutase, Catalase, and Glutathione were significantly improved (P < 0.0001) in treated groups as compared to CFA induced arthritic control. Real-time polymerase chain reaction investigation showed significant downregulation (P < 0.05) of Interleukin-1ß, Tumor Necrosis Factor-α, Interleukin-6, Cycloxygenase-2, Nuclear Factor-κB, Prostaglandin E Synthase 2, Interferon Gamma and upregulation of Interleukin-4, Interleukin-10 in both n-hexane and aqueous extract-treated groups. It is thereby concluded that Cassia absus can significantly attenuate CFA-induced arthritis by modulation of oxidative and inflammatory biomarkers.


Asunto(s)
Artritis Experimental , Cassia , Ratas , Animales , Interleucina-6/metabolismo , FN-kappa B/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Adyuvante de Freund/farmacología , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Cassia/metabolismo , Regulación hacia Arriba , Regulación hacia Abajo , Interleucina-1beta/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Interferón gamma/metabolismo , Antiinflamatorios/farmacología , Biomarcadores , Artritis Experimental/inducido químicamente , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo
7.
Sci Total Environ ; 875: 162598, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-36882140

RESUMEN

Technogenic soil (technosol) developed from coal fly ash (FA) landfilling has been considered a critical environmental problem worldwide. Drought-tolerant plants often naturally grow on FA technosol. However, the impact of these natural revegetations on the recovery of multiple ecosystem functions (multifunctionality) remains largely unexplored and poorly understood. Here we assessed the response of multifunctionality, including nutrient cycling (i.e., carbon, nitrogen, and phosphorus), carbon storage, glomalin-related soil protein (GRSP), plant productivity, microbial biomass carbon (MBC), microbial processes (soil enzyme activities), and soil chemical properties (pH and electrical conductivity; EC) to FA technosol ten years' natural revegetation with different multipurpose species in Indo-Gangetic plain, and identified the key factors regulating ecosystem multifunctionality during reclamation. We evaluated four dominant revegetated species: Prosopis juliflora, Saccharum spontaneum, Ipomoea carnea, and Cynodon dactylon. We found that natural revegetation initiated the recovery of ecosystem multifunctionality on technosol, with greater recovery under higher biomass-producing species (P. juliflora and S. spontaneum) than lower biomass-producing ones (I. carnea and C. dactylon). The individual functions (11 of the total 16 variables) at higher functionality (70 % threshold) also exhibited this pattern among revegetated stands. Multivariate analyses revealed that most of the variables (except EC) significantly correlated with multifunctionality, indicating the capability of multifunctionality to consider the tradeoff between individual functions. We further performed structural equation modeling (SEM) to detect the effect of vegetation, pH, nutrients, and microbial activity (MBC and microbial processes) on ecosystem multifunctionality. Our SEM model predicted 98 % of the variation in multifunctionality and confirmed that the indirect effect of vegetation mediated by microbial activity is more important for multifunctionality than their direct effect. Collectively, our results demonstrate that FA technosol revegetation with high biomass-producing multipurpose species promotes ecosystem multifunctionality and emphasizes the significance of microbial activity in the recovery and maintenance of ecosystem attributes.


Asunto(s)
Ceniza del Carbón , Ecosistema , Ceniza del Carbón/análisis , Biomasa , Suelo/química , Carbono/análisis
8.
Int J Mol Sci ; 24(5)2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36902173

RESUMEN

Numerous studies have shown that oxidative stress resulting from an imbalance between the production of free radicals and their neutralization by antioxidant enzymes is one of the major pathological disorders underlying the development and progression of type 2 diabetes (T2D). The present review summarizes the current state of the art advances in understanding the role of abnormal redox homeostasis in the molecular mechanisms of T2D and provides comprehensive information on the characteristics and biological functions of antioxidant and oxidative enzymes, as well as discusses genetic studies conducted so far in order to investigate the contribution of polymorphisms in genes encoding redox state-regulating enzymes to the disease pathogenesis.


Asunto(s)
Antioxidantes , Diabetes Mellitus Tipo 2 , Humanos , Antioxidantes/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Homeostasis , Biología Molecular
9.
J Equine Vet Sci ; 119: 104134, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36202292

RESUMEN

One of the initial responses of the host's innate immunity of newborns against pathogens is the use of oxidative enzymes. This study aimed to evaluate changes in serum xanthine oxidoreductase (XOR) activity, the leukocyte myeloperoxidase (MPO) and XOR genes expression, and some biochemical parameters in healthy Darehshuri newborn foals up to 60 days of life. Blood samples were collected from 16 foals at 1, 7, 15, 30, and 60 days and used for detecting XOR activity, biochemical parameters, and also gene expression by real-time RT-PCR. High activity of XOR was observed at birth, explained by physiologic hypoxia during the birth without sex difference. The significant decrease in XOR activity during the following days is probably related to the decreased levels of substrate and feedback inhibition of XOR by uric acid. No correlations were found between XOR activity and uric acid. A positive correlation was observed between XOR mRNA and serum XOR activity in 15 days. The results also indicate higher levels of MPO gene expression at 30 days, which may be associated with their capacity for neutrophil phagocytosis. The concentrations of creatinine, total protein, and albumin were higher at birth, whereas uric acid level was lower (P < 0.05). It can be concluded that XOR activity decreases with age and there is no significant change in its gene expression and MPO expression increases with age and is sex-dependent. There is an influence of age on XOR activity, leukocyte expression of MPO, and biochemical parameters in healthy newborn foals up to 60 days of life.


Asunto(s)
Ácido Úrico , Xantina Deshidrogenasa , Caballos , Animales , Femenino , Masculino , Xantina Deshidrogenasa/genética , Animales Recién Nacidos , Leucocitos/metabolismo , Expresión Génica
10.
Iran J Basic Med Sci ; 25(8): 954-963, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36159326

RESUMEN

Objectives: The effects of protein hydrolysates (FP) from Litopenaeus vannamei on oxidative stress, and autophagy gene expression was investigated in the NAFLD-induced rats. Materials and Methods: For this purpose, twenty-four male rats were divided into four groups: Control, High-fat diet (HFD), FP20+HFD, and FP300+HFD (20 and 300 mg FP /kg rat body weight) and fed for 70 days. Results: The results indicated that the rat body and relative weight of the liver were not affected by experimental treatments (P>0.05) although the highest relative weight of the liver was observed in HFD treatment. The highest and lowest values for antioxidant enzymes and MDA concentration were observed in FP treatments (P<0.05). Also, the results showed that FP significantly decreased liver enzymes (ALT, AST) in the liver in comparison with HFD treatment (P<0.05). Plasma biochemical indices were investigated and the lowest amylase, ALP, fasting glucose, insulin, HOMA-IR, triglycerides, cholesterol, and inflammation cytokines (TNF-α, IL-6) were seen in the FP treatments which had a significant difference with HFD (P<0.05). Autophagy gene expression in the liver cells was affected by experimental diets and the lowest expression of Beclin-1 and Atg7 was observed in HFD and FP300 treatments. Interestingly, the highest expression of LC3-ɪ and P62 was seen in HFD and FP treatments, not in the control. Conclusion: Overall, the results of this experiment indicated that FPs extracted from Whiteleg shrimp at 50 °C improve the oxidative status, glucose metabolism, and autophagy gene expression and could be used as a useful nutritional strategy in fatty liver prevention.

11.
Antioxidants (Basel) ; 11(7)2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35883884

RESUMEN

Unlike other nuclear factor erythroid-2-related factor 2 (Nrf2) activators, the mechanism of action of curcumin analog, ASC-JM17 (JM17), in regulating oxidative homeostasis remains unknown. Spinocerebellar ataxia type 3 (SCA3) is an inherited polyglutamine neurodegenerative disease caused mainly by polyglutamine neurotoxicity and oxidative stress. Presently, we compared actions of JM17 with those of known Nrf2 activators, omaveloxolone (RTA-408) and dimethyl fumarate (DMF), using human neuroblastoma SK-N-SH cells with stable transfection of full-length ataxin-3 protein with 78 CAG repeats (MJD78) to clarify the resulting pathological mechanism by assaying mitochondrial function, mutant ataxin-3 protein toxicity, and oxidative stress. JM17, 1 µM, comprehensively restored mitochondrial function, decreased mutant protein aggregates, and attenuated intracellular/mitochondrial reactive oxygen species (ROS) levels. Although JM17 induced dose-dependent Nrf2 activation, a low dose of JM17 (less than 5 µM) still had a better antioxidant ability compared to the other Nrf2 activators and specifically increased mitochondrial superoxide dismutase 2 in an Nrf2-dependent manner as shown by knockdown experiments with siRNA. It showed that activation of Nrf2 in response to ROS generated in mitochondria could play an import role in the benefit of JM17. This study presents the diversified regulation of JM17 in a pathological process and helped develop more effective therapeutic strategies for SCA3.

12.
Microbiol Spectr ; 10(3): e0212521, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35658600

RESUMEN

Lytic polysaccharide monooxygenases (LPMOs) are oxidative enzymes found in viruses, archaea, and bacteria as well as eukaryotes, such as fungi, algae and insects, actively contributing to the degradation of different polysaccharides. In Aspergillus nidulans, LPMOs from family AA9 (AnLPMO9s), along with an AA3 cellobiose dehydrogenase (AnCDH1), are cosecreted upon growth on crystalline cellulose and lignocellulosic substrates, indicating their role in the degradation of plant cell wall components. Functional analysis revealed that three target LPMO9s (AnLPMO9C, AnLPMO9F and AnLPMO9G) correspond to cellulose-active enzymes with distinct regioselectivity and activity on cellulose with different proportions of crystalline and amorphous regions. AnLPMO9s deletion and overexpression studies corroborate functional data. The abundantly secreted AnLPMO9F is a major component of the extracellular cellulolytic system, while AnLPMO9G was less abundant and constantly secreted, and acts preferentially on crystalline regions of cellulose, uniquely displaying activity on highly crystalline algae cellulose. Single or double deletion of AnLPMO9s resulted in about 25% reduction in fungal growth on sugarcane straw but not on Avicel, demonstrating the contribution of LPMO9s for the saprophytic fungal lifestyle relies on the degradation of complex lignocellulosic substrates. Although the deletion of AnCDH1 slightly reduced the cellulolytic activity, it did not affect fungal growth indicating the existence of alternative electron donors to LPMOs. Additionally, double or triple knockouts of these enzymes had no accumulative deleterious effect on the cellulolytic activity nor on fungal growth, regardless of the deleted gene. Overexpression of AnLPMO9s in a cellulose-induced secretome background confirmed the importance and applicability of AnLPMO9G to improve lignocellulose saccharification. IMPORTANCE Fungal lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that boost plant biomass degradation in combination with glycoside hydrolases. Secretion of LPMO9s arsenal by Aspergillus nidulans is influenced by the substrate and time of induction. These findings along with the biochemical characterization of novel fungal LPMO9s have implications on our understanding of their concerted action, allowing rational engineering of fungal strains for biotechnological applications such as plant biomass degradation. Additionally, the role of oxidative players in fungal growth on plant biomass was evaluated by deletion and overexpression experiments using a model fungal system.


Asunto(s)
Aspergillus nidulans , Oxigenasas de Función Mixta , Aspergillus nidulans/genética , Celulosa/química , Celulosa/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lignina , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Polisacáridos , Secretoma
13.
Methods Mol Biol ; 2505: 141-164, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35732943

RESUMEN

Monoterpene indole alkaloid (MIA) constitutes a structurally diverse plant natural product group with remarkable pharmacological activities. Many MIAs have been routinely used as potent drugs for several diseases, including leukemia (vinblastine), lung cancer (camptothecin), and malaria (quinine). Nevertheless, MIAs are biosynthesized at extremely low abundance in plants and, in many cases, require additional chemical functionalizations before their therapeutic uses. As oxygenations and oxidative rearrangements are critical throughout MIAs' structural scaffolding and modifications, the discovery and engineering of oxidative enzymes play essential roles in understanding and boosting the supplies of MIAs. Recent advances in omics technologies and synthetic biology have provided unprecedented amount of biochemical data and tools, paving a wide pathway for discovering, characterizing, and engineering enzymes involved in MIA biosynthesis. Here, we discuss the latest progress in understanding the roles of oxidative enzymes in MIA metabolism and describe a bioinformatic and biochemical pipeline to identify, characterize, and make use of these plant biocatalysts.


Asunto(s)
Catharanthus , Catharanthus/metabolismo , Alcaloides Indólicos/química , Alcaloides Indólicos/metabolismo , Monoterpenos/metabolismo , Estrés Oxidativo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Vinblastina
14.
Chemosphere ; 300: 134561, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35413368

RESUMEN

In vivo studies were performed to evaluate the organ specific tissue accumulation and cellular toxicity of uranium to mud crab Scylla serrata. The specimens were acclimated in natural seawater and the exposure to 50-250 µg/L uranium was investigated up to 60 days. The present study examined the effects of concentration and duration of uranium exposure in the tissue of S. serrata at cellular and subcellular level using scanning electron microscopy and bright field transmission electron microscopy in addition to histological analysis. The results indicated that accumulation of U in S. serrata was organ specific and followed the order gills > hepatopancreas > muscle. The response of key antioxidant enzyme activities such as SOD, GPx and CAT in different organs of crabs indicated oxidative stress due to U in the ambient medium and tissue. At 50 and 100 µg/L of U exposure, individuals were able to acclimate the oxidative stress and withstand the uranium exposure. This acclimation could not be sustained at higher concentrations (250 µg/L), affecting the production of CAT in the tissues. Cellular and subcellular changes were observed in the hemocytes with reduction in their number in consonance with the antioxidant enzymes. Histological aberrations like lamellar disruption of gill, necrosis of hepatopancreas, disruption and rupture of muscle bundles were observed at different concentrations and were severe at higher concentration (250 µg/L). Necrosis was observed in the electron micrographs of tissues shortly after 15 days of exposure. SEM micrograph clearly shows disrupted lamellae, folding of marginal canal and reduction of inter lamellar spaces in the gills of crab exposed to high concentration of uranium. Mitochondrial anomalies are reported for the first time in the present study in addition to the subcellular changes and vacuoles on exposure uranium in the cells of gill and hepatopancreas.


Asunto(s)
Braquiuros , Uranio , Animales , Antioxidantes/metabolismo , Branquias/metabolismo , Necrosis , Estrés Oxidativo/fisiología , Uranio/metabolismo , Uranio/toxicidad
15.
J Environ Sci (China) ; 115: 114-125, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34969442

RESUMEN

The effect of oil sludge and zinc, present in soil both separately and as a mixture on the physiological and biochemical parameters of Miscanthus × giganteus plant was examined in a pot experiment. The opposite effect of pollutants on the accumulation of plant biomass was established: in comparison with uncontaminated control the oil sludge increased, and Zn reduced the root and shoot biomass. Oil sludge had an inhibitory effect on the plant photosynthetic apparatus, which intensified in the presence of Zn. The specific antioxidant response of M. × giganteus to the presence of both pollutants was a marked increase in the activity of superoxide dismutase (mostly owing to oil sludge) and glutathione-S-transferase (mostly owing to zinc) in the shoots. The participation of glutathione-S-transferase in the detoxification of both the organic and the inorganic pollutants was assumed. Zn inhibited the activity of laccase-like oxidase, whereas oil sludge promoted laccase and ascorbate oxidase activities. This finding suggests that these enzymes play a part in the oxidative detoxification of the organic pollutаnt. With both pollutants used jointly, Zn accumulation in the roots increased 6-fold, leading to increase in the efficiency of soil clean-up from the metal. In turn, Zn did not significantly affect the soil clean-up from oil sludge. This study shows for the first time the effect of co-contamination of soil with oil sludge and Zn on the physiological and biochemical characteristics of the bioenergetic plant M. × giganteus. The data obtained are important for understanding the mechanisms of phytoremediation with this plant.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Biodegradación Ambiental , Metales Pesados/análisis , Metales Pesados/toxicidad , Raíces de Plantas/química , Poaceae , Aguas del Alcantarillado , Suelo , Contaminantes del Suelo/análisis , Contaminantes del Suelo/toxicidad
16.
Mol Biol Rep ; 48(12): 7865-7873, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34642830

RESUMEN

BACKGROUND: Chronic stress increases the production of pro-inflammatory cytokines and oxidative stress in the brain, which underlay cognitive and psychological problems. In addition to the anti-depressants, vitamin D is known to act as an anti-inflammatory and anti-oxidative agent. This study investigates the specific effects of vitamin D in protecting hippocampus and pre-frontal cortex (PFC) against chronic mild stress (CMS)-induced activation of pro-inflammatory cytokines IL-6 and TNF-α and decreasing the activation of anti-oxidative enzymes super oxide dismutase (SOD) and glutathione peroxidase (GPx). METHODS AND RESULTS: Rats were exposed to CMS for 3 weeks. Two groups of rats received vitamin D (5 and 10 µg/kg) and another received fluoxetine (5 mg/kg) along with CMS. Control groups were not exposed to CMS, but received treatments similar to CMS groups. Serum corticosterone and IL-6, TNF-α and SOD and GPx levels in the hippocampus and PFC were measured at the end of three weeks. CMS significantly increased corticosterone, IL-6, TNF-α and decreased SOD and GPx levels (P < 0.0001) in hippocampus and PFC. Vitamin D treatment reduced corticosterone levels (P < 0.01), increased SOD (P < 0.0001) and GPx (P < 0.01) and decreased IL-6 and TNF-α (P < 0.0001) levels in the hippocampus and PFC compared to rats treated with vitamin D vehicle. Vitamin D-10 regulation of SOD and IL-6 levels was more effective than fluoxetine (P < 0.0001 and P < 0.01, respectively, in hippocampus). CONCLUSION: This study suggests that vitamin D effectively protects the key regions of the brain related to cognition and affective behavior, against the inflammation and oxidative stress caused by the chronic stress.


Asunto(s)
Estrés Psicológico/tratamiento farmacológico , Vitamina D/farmacología , Animales , Antioxidantes/metabolismo , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Citocinas/metabolismo , Glutatión Peroxidasa/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Inflamación , Interleucina-6/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ratas , Ratas Wistar , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología , Superóxido Dismutasa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Vitamina D/metabolismo
17.
Microorganisms ; 9(8)2021 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-34442793

RESUMEN

Bacterial endophytes support the adaptation of host plants to harsh environments. In this study, culturable bacterial endophytes were isolated from the African rice Oryza glaberrima L., which is well-adapted to grow with poor external inputs in the tropical region of Mali. Among these, six N-fixer strains were used to inoculate O. glaberrima RAM133 and the Asian rice O. sativa L. cv. Baldo, selected for growth in temperate climates. The colonization efficiency and the N-fixing activity were evaluated and compared for the two rice varieties. Oryza sativa-inoculated plants showed a fairly good colonization efficiency and nitrogenase activity. The inoculation of Oryza sativa with the strains Klebsiella pasteurii BDA134-6 and Phytobacter diazotrophicus BDA59-3 led to the highest nitrogenase activity. In addition, the inoculation of 'Baldo' plants with the strain P. diazotrophicus BDA59-3 led to a significant increase in nitrogen, carbon and chlorophyll content. Finally, 'Baldo' plants inoculated with Kl. pasteurii BDA134-6 showed the induction of antioxidant enzymes activity and the maintenance of nitrogen-fixation under salt stress as compared to the unstressed controls. As these endophytes efficiently colonize high-yielding crop varieties grown in cold temperate climates, they become good candidates to promote their growth under unfavorable conditions.

18.
Physiol Rep ; 9(16): e14954, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34405561

RESUMEN

INTRODUCTION: Gastric ulcer is a multifaceted process and is usually caused by mucosal damage. Herbal medicines have received much attention considering the side effects of chemical drugs. Nowadays, the use of herbal medicines has received much attention considering the side effects of chemical drugs. Quercus brantii Lindl, Cirsium vulgare (Savi) Ten, and Falcaria vulgaris Bernh are plants used as traditional phytomedicine for gastric ulcer diseases. AIM OF THE STUDY: This study was aimed to investigate the protective effects of hydroalcoholic extracts of these herbs on ethanol-induced gastric ulceration, in addition, to investigate the antioxidant, anti-inflammatory, and gene expression. MATERIALS AND METHODS: Thirty Sprague Dawley rats, (200-250 g), were divided into six groups: Control: intact animals; sham: gavaged with distilled water (14 days); negative control: gavaged with 20 mg/kg of omeprazole (14 days); experimental groups I, II, and III: gavaged with 500 mg/kg of the extract of Falcaria vulgaris, Quercus brantii, and Cirsium vulgare, respectively, (14 days). The number of ulcers and pathological parameters were assessed. The serum superoxide dismutase, catalase, glutathione peroxidase, malondialdehyde, total antioxidant capacity, albumin, total protein, haptoglobin, alpha-1-acid glycoprotein, total globulin, alpha-2-macroglobulin, C-fos, C-myc, and Caspase-9 were measured by ELISA and RT-PCR. RESULTS: The extracts significantly reduced gastric ulcer (52.33%). The results showed that the Quercus brantii extract was more effective. There were significant differences between the serum levels of alpha-1-acid glycoprotein and those of alpha-2-macroglobulin. Also, there was a significant difference in the serum level of antioxidant parameters. Changes in the expression of the genes also confirmed the results suggested by other parameters. The expression levels of C-fos, C-myc, and caspase-9 were decreased, but the Bcl-2 expression increased. CONCLUSION: The hydro-alcoholic extracts revealed various protection and noticeable change in the expression of caspase-9, C-myc, C-fos, and Bcl-2 genes in rats.


Asunto(s)
Antiinflamatorios/uso terapéutico , Antioxidantes/uso terapéutico , Cirsium/química , Extractos Vegetales/uso terapéutico , Quercus/química , Úlcera Gástrica/tratamiento farmacológico , Animales , Caspasa 9/genética , Caspasa 9/metabolismo , Mucosa Gástrica/metabolismo , Glutatión Peroxidasa/genética , Glutatión Peroxidasa/metabolismo , Haptoglobinas/genética , Haptoglobinas/metabolismo , Malondialdehído/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Ratas , Ratas Sprague-Dawley , Úlcera Gástrica/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Transcriptoma , alfa-Macroglobulinas/genética , alfa-Macroglobulinas/metabolismo
19.
Biomed Pharmacother ; 141: 111928, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34323701

RESUMEN

Glioblastoma multiforme is one of the most deadly malignant tumors, with more than 10,000 cases recorded annually in the United States. Various clinical analyses and studies show that certain chronic diseases, including cancer, interact between cell-reactive radicals rise and pathogenesis. Reactive oxygen and nitrogenous sources include endogenous (physiological processes), and exogenous sources contain reactive oxygen and nitrogen (xenobiotic interaction). The cellular oxidation/reduction shifts to oxidative stress when the regulation mechanisms of antioxidants are surpassed, and this raises the ability to damage cellular lipids, proteins, and nucleic acids. OBJECTIVE: This review is focused on how phytochemicals play crucial role against glioblastoma multiforme and to combat these, bioactive molecules and their derivatives are either used alone, in combination with anticancer drugs or as nanomedicine formulations for better cancer theranostics over the conventional approach. CONCLUSION: Bioactive molecules found in seeds, vegetables, and fruits have antioxidant, anti-inflammatory, and anticancer properties that may help cancer survivors feel better throughout chemotherapy or treatment. However, incorporating them into the nanocarrier-based drug delivery for the treatment of GBMs, which could be a promising therapeutic strategy for this tumor entity, increasing targeting effectiveness, increasing bioavailability, and reducing side effects with this target-specificity, drug internalization into cells is significantly improved, and off-target organ aggregation is reduced.


Asunto(s)
Antineoplásicos Fitogénicos/uso terapéutico , Productos Biológicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Terapias Complementarias/métodos , Glioblastoma/tratamiento farmacológico , Fitoquímicos/uso terapéutico , Animales , Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/farmacología , Productos Biológicos/aislamiento & purificación , Productos Biológicos/farmacología , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Humanos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Fitoquímicos/aislamiento & purificación , Fitoquímicos/farmacología , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo
20.
Brain Sci ; 11(6)2021 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-34072322

RESUMEN

Traumatic stress may chronically affect master homeostatic systems at the crossroads of peripheral and central susceptibility pathways and lead to the biological embedment of trauma-related allostatic trajectories through neurobiological alterations even decades later. Lately, there has been an exponential knowledge growth concerning the effect of traumatic stress on oxidative components and redox-state homeostasis. This extensive review encompasses a detailed description of the oxidative cascade components along with their physiological and pathophysiological functions and a systematic presentation of both preclinical and clinical, genetic and epigenetic human findings on trauma-related oxidative stress (OXS), followed by a substantial synthesis of the involved oxidative cascades into specific and functional, trauma-related pathways. The bulk of the evidence suggests an imbalance of pro-/anti-oxidative mechanisms under conditions of traumatic stress, respectively leading to a systemic oxidative dysregulation accompanied by toxic oxidation byproducts. Yet, there is substantial heterogeneity in findings probably relative to confounding, trauma-related parameters, as well as to the equivocal directionality of not only the involved oxidative mechanisms but other homeostatic ones. Accordingly, we also discuss the trauma-related OXS findings within the broader spectrum of systemic interactions with other major influencing systems, such as inflammation, the hypothalamic-pituitary-adrenal axis, and the circadian system. We intend to demonstrate the inherent complexity of all the systems involved, but also put forth associated caveats in the implementation and interpretation of OXS findings in trauma-related research and promote their comprehension within a broader context.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA