Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
eNeurologicalSci ; 31: 100467, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37304729

RESUMEN

Background: Spinal cord injury results in the interruption of neuronal conduction in the spinal cord, a condition that occurs in 0.1% of the world's population. This results in severe limitations in autonomy including locomotor function. Its recovery can be pursued through conventional isolated physiotherapeutic rehabilitation (overground walking training - OGT) or associated with Robot-assisted gait training - RAGT (e.g.: Lokomat ®). Aim: The aim of this review is to compare the effectiveness of RAGT combined with conventional physiotherapy. Methods: The databases consulted, from March 2022 to November 2022, were PubMed, PEDro, Cochrane Central Register of Controlled Trials (Cochrane Library) and CINAHL. RCT studies of people with incomplete spinal cord injuries treated with RAGT and/or OGT with the aim of improving walking were analysed. Results: Among the 84 RCTs identified, 4 were included in the synthesis, with a total of 258 participants. The outcomes analysed concerned both locomotor function through lower limb muscle strength and the need for assistance in walking, using the WISCI-II scale and the LEMS. Robotic treatment stimulated the greatest improvements in the four studies; however, they were not always statistically significant. Conclusion: A rehabilitation protocol combining RAGT with conventional physiotherapy is more effective than isolated OGT in improving ambulation in the subacute phase.

2.
Front Neurorobot ; 17: 1089377, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37359910

RESUMEN

Introduction: Body weight support overground walking training (BWSOWT) is widely used in gait rehabilitation. However, existing systems require large workspace, complex structure, and substantial installation cost for the actuator, which make those systems inappropriate for the clinical environment. For wide clinical use, the proposed system is based on a self-paced treadmill, and uses an optimized body weight support with frame-based two-wire mechanism. Method: The Interactive treadmill was used to mimic overground walking. We opted the conventional DC motors to partially unload the body weight and modified pelvic type harness to allow natural pelvic motion. The performance of the proposed system on the measurement of anterior/posterior position, force control, and pelvic motion was evaluated with 8 healthy subjects during walking training. Results: We verified that the proposed system was the cost/space-effective and showed the more accurate anterior/posterior position than motion sensor, comparable force control performance, and natural pelvic motion. Discussion: The proposed system is cost/space effective, and able to mimic overground walking training with body weight support. In future work, we will improve the force control performance and optimize the training protocol for wide clinical use.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA