Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
1.
Cells ; 13(17)2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39272993

RESUMEN

Ovarian aging results in reproductive disorders and infertility in mammals. Previous studies have reported that the ferroptosis and autophagy caused by oxidative stress may lead to ovarian aging, but the mechanisms remain unclear. In this study, we compared the morphological characteristics between the aged and young ovaries of pigs and found that the aged ovaries were larger in size and showed more corpora lutea. TUNEL assay further showed that the apoptosis level of granulosa cells (GCs) was relatively higher in the aged ovaries than those in young ovaries, as well as the expressions of autophagy-associated genes, e.g., p62, ATG7, ATG5, and BECN1, but that the expressions of oxidative stress and aging-associated genes, e.g., SOD1, SIRT1, and SIRT6, were significantly lower. Furthermore, the RNA-seq, Western blotting, and immunofluorescence suggested that phospholipid phosphatase 3 (PLPP3) protein was significantly upregulated in the aged ovaries. PLPP3 was likely to decrease the expressions of SIRT1 and SIRT6 to accelerate cellular senescence of porcine GCs, inhibit the expressions of SOD1, CAT, FSP1, FTH1, and SLC7A11 to exacerbate oxidative stress and ferroptosis, and arouse autophagy to retard the follicular development. In addition, two SNPs of PLPP3 promoter were significantly associated with the age at puberty. g.155798586 (T/T) and g.155798718 (C/C) notably facilitated the mRNA and protein level of PLPP3. In conclusion, PLPP3 might aggravate the oxidative stress of GCs to accelerate ovarian aging, and two molecular markers of PLPP3 were identified for ovarian aging in pigs. This work not only contributes to investigations on mechanisms for ovarian aging but also provides valuable molecular markers to postpone ovarian aging in populations.


Asunto(s)
Envejecimiento , Células de la Granulosa , Ovario , Estrés Oxidativo , Animales , Femenino , Ovario/metabolismo , Ovario/patología , Porcinos , Envejecimiento/genética , Envejecimiento/metabolismo , Células de la Granulosa/metabolismo , Autofagia/genética , Apoptosis/genética , Senescencia Celular/genética , Fosfatidato Fosfatasa/metabolismo , Fosfatidato Fosfatasa/genética
2.
J Ovarian Res ; 17(1): 185, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39272131

RESUMEN

BACKGROUND: In-depth understanding of dynamic expression profiles of human granulosa cells (GCs) during follicular development will contribute to the diagnostic and targeted interventions for female infertility. However, genome-scale analysis of long non-coding ribonucleic acid (lncRNA) in GCs across diverse developmental stages is challenging. Meanwhile, further research is needed to determine how aberrant lncRNA expression participates in ovarian diseases. METHODS: Granulosa cell-related lncRNAs data spanning five follicular development stages were retrieved and filtered from the NCBI dataset (GSE107746). Stage-specific lncRNA expression patterns and mRNA-lncRNA co-expression networks were identified with bioinformatic approaches. Subsequently, the expression pattern of SNHG18 was detected in GCs during ovarian aging. And SNHG18 siRNA or overexpression plasmids were transfected to SVOG cells in examining the regulatory roles of SNHG18 in GC proliferation and apoptosis. Moreover, whether PKCɛ/SNHG18 signaling take part in GC glycolysis via ENO1 were verified in SVOG cells. RESULTS: We demonstrated that GC-related lncRNAs were specifically expressed across different developmental stages, and coordinated crucial biological functions like mitotic cell cycle and metabolic processes in the folliculogenesis. Thereafter, we noticed a strong correlation of PRKCE and SNHG18 expression in our analysis. With downregulated SNHG18 of GCs identified in the context of ovarian aging, SNHG18 knockdown could further induce cell apoptosis, retard cell proliferation and exacerbate DNA damage in SVOG cell. Moreover, downregulated PKCɛ/SNHG18 pathway interrupted the SVOG cell glycolysis by lowering the ENO1 expression. CONCLUSIONS: Altogether, our results revealed that folliculogenesis-related lncRNA SNHG18 participated in the pathogenesis of ovarian aging, which may provide novel biomarkers for ovarian function and new insights for the infertility treatment.


Asunto(s)
Apoptosis , Glucólisis , Células de la Granulosa , ARN Largo no Codificante , Femenino , Humanos , Envejecimiento/genética , Envejecimiento/metabolismo , Apoptosis/genética , Glucólisis/genética , Células de la Granulosa/metabolismo , Ovario/metabolismo , Ovario/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
3.
J Photochem Photobiol B ; 260: 113024, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39276447

RESUMEN

Ovarian aging is a serious clinical concern. Few safe and effective methods are currently available to improve ovarian functions. Photobiomodulation (PBM) is a safe and noninvasive physical therapy that can modulate a series of biological processes. Recently, several studies have noted its potential to improve the function of ovary and reproductive cells. However, the effects of PBM treatment on natural ovarian aging remain unclear. In this study, we used a naturally reproductive aging mouse model to observe the effect of PBM on ovarian function. Young and aged female ICR mice were treated with or without PBM for 2 months. PBM was performed using a semiconductor InGaAlP laser emitting at 650 nm (80 mW, 6.7 mW/cm2 for 5 or 10 min, resulting in a dose of 2 or 4 J/cm2, respectively). After treatment, the effects of PBM and its role in oxidative stress, inflammation, and mitochondrial function were investigated. We found that PBM (4 J/cm2) effectively recovered the levels of sex hormones, increased the number of primordial and growing follicles, improved angiogenesis, and decreased cell apoptosis in naturally aged mice. Moreover, PBM reduced oxidative stress, inhibited chronic ovarian inflammation, and improved mitochondrial function in aged ovaries. Similar protective effects of PBM were observed in a hydrogen peroxide-induced oxidative stress model of human granulosa cell line (KGN) in vitro. Increased cell viability, cell proliferation, hormone secretion, mitochondrial membrane potential, and adenosine triphosphate levels and decreased apoptosis and oxidative stress were detected in KGN cells after PBM treatment. Collectively, this study suggest that PBM treatment is beneficial for restoring ovarian function in naturally reproductive aging mice and has a significant protective effect against oxidative stress damage in KGN cells. The mechanisms underlying the benefits of PBM in ovarian aging include antioxidant stress, reduction of inflammation, and preservation of mitochondrial function. Therefore, this study emphasizes the potential of PBM as a therapeutic intervention to ameliorate ovarian aging.

4.
J Ovarian Res ; 17(1): 171, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39182123

RESUMEN

Premature ovarian insufficiency (POI) is defined as onset of menopause characterized by amenorrhea, hypergonadotropism, and hypoestrogenism, before the age of 40 years. The POI is increasing, which seriously affects the quality of patients' life. Due to its diversity of pathogenic factors, complex pathogenesis and limited treatment methods, the search for finding effective treatment of POI has become a hotspot. Stem cells are characterized by the ability of self-renewal and differentiation and play an important role in the regeneration of injured tissues, which is therapy is expected to be used in the treatment of POI. The aim of this review is to summarize the pathogenic mechanisms and the research progress of POI treatment with stem cells from different sources.


Asunto(s)
Infertilidad Femenina , Insuficiencia Ovárica Primaria , Células Madre , Humanos , Femenino , Insuficiencia Ovárica Primaria/terapia , Infertilidad Femenina/terapia , Ovario , Envejecimiento , Trasplante de Células Madre/métodos , Animales
5.
Antioxidants (Basel) ; 13(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39199181

RESUMEN

Oxidative stress is recognized as a prominent factor contributing to follicular atresia and ovarian aging, which leads to decreased laying performance in hens. Reducing oxidative stress can improve ovarian function and prolong the laying period in poultry. This study investigates the impact of Pterostilbene (PTS), a natural antioxidant, on ovarian oxidative stress in low-laying chickens. Thirty-six Hy-Line White laying chickens were evenly divided into four groups and fed diets containing varying doses of PTS for 15 consecutive days. The results showed that dietary supplementation with PTS significantly increased the laying rate, with the most effective group exhibiting a remarkable 42.7% increase. Furthermore, PTS significantly enhanced the antioxidant capacity of aging laying hens, as evidenced by increased levels of glutathione, glutathione peroxidase, superoxide dismutase, catalase, and total antioxidant capacity in the ovaries, livers, and serum. Subsequent experiments revealed decreased expressions of Bax, Caspase-3, and γ-H2AX, along with an increased expression of BCL-2 in the ovaries and livers of laying hens. PTS supplementation also positively affects fat metabolism by reducing abdominal fat accumulation and promoting fat transfer from the liver to the ovary. To elucidate the mechanism underlying the effects of PTS on ovarian function, a series of in vitro experiments were conducted. These in vitro experiments revealed that PTS pretreatment restored the antioxidant capacity of D-galactose-induced small white follicles by upregulating SIRT1/Nrf2 expression. This protective effect was inhibited by EX-527, a specific inhibitor of SIRT1. These findings suggest that the natural antioxidant PTS has the potential to regulate cell apoptosis and fat metabolism in laying chickens by ameliorating oxidative stress, thereby enhancing laying performance.

6.
Front Endocrinol (Lausanne) ; 15: 1417007, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952389

RESUMEN

Ovarian aging is a complex process characterized by a decline in oocyte quantity and quality, directly impacting fertility and overall well-being. Recent researches have identified mitochondria as pivotal players in the aging of ovaries, influencing various hallmarks and pathways governing this intricate process. In this review, we discuss the multifaceted role of mitochondria in determining ovarian fate, and outline the pivotal mechanisms through which mitochondria contribute to ovarian aging. Specifically, we emphasize the potential of targeting mitochondrial dysfunction through innovative therapeutic approaches, including antioxidants, metabolic improvement, biogenesis promotion, mitophagy enhancement, mitochondrial transfer, and traditional Chinese medicine. These strategies hold promise as effective means to mitigate age-related fertility decline and preserve ovarian health. Drawing insights from advanced researches in the field, this review provides a deeper understanding of the intricate interplay between mitochondrial function and ovarian aging, offering valuable perspectives for the development of novel therapeutic interventions aimed at preserving fertility and enhancing overall reproductive health.


Asunto(s)
Envejecimiento , Mitocondrias , Ovario , Humanos , Femenino , Mitocondrias/metabolismo , Envejecimiento/fisiología , Envejecimiento/metabolismo , Ovario/metabolismo , Ovario/fisiología , Animales , Antioxidantes/uso terapéutico , Oocitos/metabolismo , Oocitos/fisiología , Mitofagia/fisiología
7.
Climacteric ; : 1-6, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051435

RESUMEN

OBJECTIVES: Observational studies have suggested an association between age at natural menopause (ANM) and ventricular structure and function. Nevertheless, the causal relationship remains unclear. This study aimed to evaluate the causal effects of ANM on ventricular structure and function by Mendelian randomization (MR) analysis. METHODS: Genome-wide association summary statistics for ANM and 16 ventricular structures and functions were obtained. The inverse variance weighted (IVW) method was the primary MR approach for assessing causal associations. In addition, three additional MR methods (MR-Egger, weighted median and weighted mode) were performed to complement the IVW method. Furthermore, various sensitivity tests were conducted to evaluate the reliability of the MR results. RESULTS: The IVW method identified no causal association between ANM and all 16 ventricular structures or functions (p > 0.05). Three additional MR methods yielded parallel results to the IVW approach (p > 0.05). Various sensitivity tests revealed stability of the MR results, indicating no heterogeneity or horizontal pleiotropy. CONCLUSION: The present MR study indicated that ANM would not causally affect ventricular structure or function. Therefore, the correlation between ANM and ventricular characteristics in previous observational studies might be attributed to shared upstream cardiovascular risk factors or unidentified genetic mutations that simultaneously affect both ANM and ventricular structure and function.

8.
Reprod Sci ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38995602

RESUMEN

In this study, we aimed to investigate the molecular mechanisms of RNA N6-methyladenosine (m6A) modification and how its associated proteins affect granulosa cell aging. A granulosa cell senescence model was constructed to detect the differences in total RNA m6A modification levels and the expression of related enzymes. Changes in downstream molecular expression and the effects on the cellular senescence phenotype were explored by repeatedly knocking down and overexpressing the key genes fat mass and obesity-associated protein (FTO), YT521-B homology domain family member 2 (YTHDF2), and matrix metalloproteinase-2 (MMP2). There was an increased total RNA m6A modification and decreased expression of the demethylase FTO and target gene MMP2 in senescent granulosa cells. FTO and MMP2 knockdown promoted granulosa cell senescence, whereas FTO and MMP2 overexpression retarded it. YTHDF2 and FTO can bind to the messenger RNA of MMP2. The extracellular signal-regulated kinase (ERK) pathway, which is downstream of MMP2, retarded the process of granulosa cell senescence through ERK activators. In granulosa cells, FTO can regulate the expression of MMP2 in an m6A-YTHDF2-dependent manner, influencing the activation status of the ERK pathway and contributing to the aging process of granulosa cells.

9.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167334, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-38971505

RESUMEN

Ovarian aging, a complex and challenging concern within the realm of reproductive medicine, is associated with reduced fertility, menopausal symptoms and long-term health risks. Our previous investigation revealed a correlation between Peroxiredoxin 4 (PRDX4) and human ovarian aging. The purpose of this research was to substantiate the protective role of PRDX4 against ovarian aging and elucidate the underlying molecular mechanism in mice. In this study, a Prdx4-/- mouse model was established and it was observed that the deficiency of PRDX4 led to only an accelerated decline of ovarian function in comparison to wild-type (WT) mice. The impaired ovarian function observed in this study can be attributed to an imbalance in protein homeostasis, an exacerbation of endoplasmic reticulum stress (ER stress), and ultimately an increase in apoptosis of granulosa cells. Furthermore, our research reveals a noteworthy decline in the expression of Follicle-stimulating hormone receptor (FSHR) in aging Prdx4-/- mice, especially the functional trimer, due to impaired disulfide bond formation. Contrarily, the overexpression of PRDX4 facilitated the maintenance of protein homeostasis, mitigated ER stress, and consequently elevated E2 levels in a simulated KGN cell aging model. Additionally, the overexpression of PRDX4 restored the expression of the correct spatial conformation of FSHR, the functional trimer. In summary, our research reveals the significant contribution of PRDX4 in delaying ovarian aging, presenting a novel and promising therapeutic target for ovarian aging from the perspective of endoplasmic reticulum protein homeostasis.


Asunto(s)
Envejecimiento , Estrés del Retículo Endoplásmico , Células de la Granulosa , Ratones Noqueados , Ovario , Peroxirredoxinas , Proteostasis , Animales , Femenino , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética , Células de la Granulosa/metabolismo , Células de la Granulosa/patología , Ratones , Envejecimiento/metabolismo , Envejecimiento/patología , Ovario/metabolismo , Ovario/patología , Humanos , Apoptosis , Receptores de HFE/metabolismo , Receptores de HFE/genética
10.
Adv Nutr ; 15(8): 100273, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39019217

RESUMEN

Ovarian aging is a major factor for female subfertility. Multiple antioxidants have been applied in different clinical scenarios, but their effects on fertility in women with ovarian aging are still unclear. To address this, a meta-analysis was performed to evaluate the effectiveness and safety of antioxidants on fertility in women with ovarian aging. A total of 20 randomized clinical trials with 2617 participants were included. The results showed that use of antioxidants not only significantly increased the number of retrieved oocytes and high-quality embryo rates but also reduced the dose of gonadotropin, contributing to higher clinical pregnancy rates. According to the subgroup analysis of different dose settings, better effects were more pronounced with lower doses; in terms of antioxidant types, coenzyme Q10 (CoQ10) tended to be more effective than melatonin, myo-inositol, and vitamins. When compared with placebo or no treatment, CoQ10 showed more advantages, whereas small improvements were observed with other drugs. In addition, based on subgroup analysis of CoQ10, the optimal treatment regimen of CoQ10 for improving pregnancy rate was 30 mg/d for 3 mo before the controlled ovarian stimulation cycle, and women with diminished ovarian reserve clearly benefited from CoQ10 treatment, especially those aged <35 y. Our study suggests that antioxidant consumption is an effective and safe complementary therapy for women with ovarian aging. Appropriate antioxidant treatment should be offered at a low dose according to the patient's age and ovarian reserve. This study was registered at PROSPERO as CRD42022359529.


Asunto(s)
Envejecimiento , Antioxidantes , Fertilidad , Ovario , Ubiquinona , Adulto , Femenino , Humanos , Embarazo , Envejecimiento/fisiología , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Suplementos Dietéticos , Fertilidad/efectos de los fármacos , Infertilidad Femenina/tratamiento farmacológico , Reserva Ovárica/efectos de los fármacos , Ovario/efectos de los fármacos , Ovario/fisiología , Inducción de la Ovulación/métodos , Índice de Embarazo , Ensayos Clínicos Controlados Aleatorios como Asunto , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ubiquinona/administración & dosificación , Vitaminas/administración & dosificación
11.
J Assist Reprod Genet ; 41(9): 2419-2439, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39023827

RESUMEN

PURPOSE: Ovarian aging is closely related to a decrease in follicular reserve and oocyte quality. The precise molecular mechanisms underlying these reductions have yet to be fully elucidated. Herein, we examine spatiotemporal distribution of key proteins responsible for DNA double-strand break (DSB) repair in ovaries from early to older ages. Functional studies have shown that the γH2AX, RAD51, BRCA1, and RPA70 proteins play indispensable roles in HR-based repair pathway, while the KU80 and XRCC4 proteins are essential for successfully operating cNHEJ pathway. METHODS: Female Balb/C mice were divided into five groups as follows: Prepuberty (3 weeks old; n = 6), puberty (7 weeks old; n = 7), postpuberty (18 weeks old; n = 7), early aged (52 weeks old; n = 7), and late aged (60 weeks old; n = 7). The expression of DSB repair proteins, cellular senescence (ß-GAL) and apoptosis (cCASP3) markers was evaluated in the ovaries using immunohistochemistry. RESULT: ß-GAL and cCASP3 levels progressively increased from prepuberty to aged groups (P < 0.05). Notably, γH2AX levels varied in preantral and antral follicles among the groups (P < 0.05). In aged groups, RAD51, BRCA1, KU80, and XRCC4 levels increased (P < 0.05), while RPA70 levels decreased (P < 0.05) compared to the other groups. CONCLUSIONS: The observed alterations were primarily attributed to altered expression in oocytes and granulosa cells of the follicles and other ovarian cells. As a result, the findings indicate that these DSB repair proteins may play a role in the repair processes and even other related cellular events in ovarian cells from early to older ages.


Asunto(s)
Proteína BRCA1 , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN , Histonas , Autoantígeno Ku , Folículo Ovárico , Ovario , Recombinasa Rad51 , Animales , Femenino , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Ratones , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Reparación del ADN/genética , Folículo Ovárico/metabolismo , Folículo Ovárico/crecimiento & desarrollo , Histonas/genética , Histonas/metabolismo , Ovario/metabolismo , Ovario/crecimiento & desarrollo , Oocitos/metabolismo , Oocitos/crecimiento & desarrollo , Envejecimiento/genética , Envejecimiento/metabolismo , Proteína de Replicación A/metabolismo , Proteína de Replicación A/genética , Ratones Endogámicos BALB C
12.
J Ovarian Res ; 17(1): 139, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970048

RESUMEN

Ovarian fibrosis, characterized by the excessive proliferation of ovarian fibroblasts and the accumulation of extracellular matrix (ECM), serves as one of the primary causes of ovarian dysfunction. Despite the critical role of ovarian fibrosis in maintaining the normal physiological function of the mammalian ovaries, research on this condition has been greatly underestimated, which leads to a lack of clinical treatment options for ovarian dysfunction caused by fibrosis. This review synthesizes recent research on the molecular mechanisms of ovarian fibrosis, encompassing TGF-ß, extracellular matrix, inflammation, and other profibrotic factors contributing to abnormal ovarian fibrosis. Additionally, we summarize current treatment approaches for ovarian dysfunction targeting ovarian fibrosis, including antifibrotic drugs, stem cell transplantation, and exosomal therapies. The purpose of this review is to summarize the research progress on ovarian fibrosis and to propose potential therapeutic strategies targeting ovarian fibrosis for the treatment of ovarian dysfunction.


Asunto(s)
Fibrosis , Ovario , Humanos , Femenino , Ovario/patología , Ovario/metabolismo , Animales , Matriz Extracelular/metabolismo , Enfermedades del Ovario/metabolismo , Enfermedades del Ovario/patología , Enfermedades del Ovario/terapia , Terapia Molecular Dirigida , Factor de Crecimiento Transformador beta/metabolismo
13.
Crit Rev Food Sci Nutr ; : 1-13, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38835159

RESUMEN

The global rise in life expectancy corresponds with a delay in childbearing age among women. Ovaries, seen as the chronometers of female physiological aging, demonstrate features of sped up aging, evidenced by the steady decline in both the quality and quantity of ovarian follicles from birth. The multifaceted pathogenesis of ovarian aging has kindled intensive research interest from the biomedical and pharmaceutical sectors. Novel studies underscore the integral roles of gut microbiota in follicular development, lipid metabolism, and hormonal regulation, forging a nexus with ovarian aging. In this review, we outline the role of gut microbiota in ovarian function (follicular development, oocyte maturation, and ovulation), compile and present gut microbiota alterations associated with age-related ovarian aging. We also discuss potential strategies for alleviating ovarian aging from the perspective of gut microbiota, such as fecal microbiota transplantation and probiotics.

14.
J Pers Med ; 14(6)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38929772

RESUMEN

BACKGROUND: Ovarian aging is characterized by the accumulation of free radicals, leading to tissue damage and affecting reproductive health. Intravascular laser irradiation of blood (ILIB, using a low-energy He-Ne laser) is known for its efficacy in treating vascular-related diseases by reducing free radicals and inflammation. However, its impact on ovarian aging remains unexplored. This study aimed to investigate the effects of ILIB on oxidative stress and energy metabolism in aging ovaries. METHODS: Genetic analysis was conducted on 75 infertile patients with aging ovaries, divided into ILIB-treated and control (CTRL) groups. Patients underwent two courses of laser treatment, and clinical parameters were evaluated. Cumulus cells were collected for the genetic analysis of oxeiptosis, glycolysis, and the tricarboxylic acid (TCA) cycle. RESULTS: The analysis of gene expression patterns revealed intriguing findings in ILIB-treated patients compared to the untreated group. Notably, ILIB treatment resulted in significant upregulation of oxeiptosis-related genes AIFM1 and NRF2, suggesting a potential protective effect against oxidative stress-induced cell death. Furthermore, ILIB treatment led to a downregulation of glycolysis-associated gene hexokinase 2 (HK2), indicating a shift away from anaerobic metabolism, along with an increase in PDHA levels, indicative of enhanced mitochondrial function. Consistent with these changes, ILIB-treated patients exhibited elevated expression of the key TCA cycle genes citrate synthase (CS), succinate dehydrogenase complex subunit A (SDHA), and fumarate hydratase (FH), signifying improved energy metabolism. CONCLUSION: The findings from this study underscore the potential of ILIB as a therapeutic strategy for mitigating ovarian aging. By targeting oxidative stress and enhancing energy metabolism, ILIB holds promise for preserving ovarian function and reproductive health in aging individuals. Further research is warranted to elucidate the underlying mechanisms and optimize the application of ILIB in clinical settings, with the ultimate goal of improving fertility outcomes in women experiencing age-related ovarian decline.

15.
J Clin Med ; 13(12)2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38929949

RESUMEN

Background: In this investigation, we aimed to understand the influence of oral probiotic supplementation on the vaginal microbiota of women preparing for assisted reproductive technology (ART) procedures. Given the importance of a healthy microbiome for reproductive success, this study sought to explore how probiotics might alter the bacterial composition in the vaginal environment. Methods: We recruited a cohort of 30 women, averaging 37 years of age (ranging from 31 to 43 years), who were scheduled to undergo ART. Using 16S ribosomal RNA (rRNA) sequencing, we meticulously analyzed the vaginal microbiota composition before and after the administration of oral probiotic supplements. Results: Our analysis identified 17 distinct microorganisms, including 8 species of Lactobacillus. Following probiotic supplementation, we observed subtle yet notable changes in the vaginal microbiota of some participants. Specifically, there was a decrease in Gardnerella abundance by approximately 20%, and increases in Lactobacillus and Bifidobacterium by 10% and 15%, respectively. Additionally, we noted a significant reduction in the Firmicutes/Bacteroidetes (F/B) ratio in the probiotic group, indicating potential shifts in the overall bacterial composition. Conclusions: These preliminary findings suggest that oral probiotic supplementation can induce significant changes in the vaginal microbiota of middle-aged women undergoing ART, potentially improving their overall bacterial profile. Future studies should consider a larger sample size and a narrower age range to validate these results. Investigating factors related to female hormone production could also provide deeper insights. Understanding the effects of probiotics on the vaginal microbiota in patients with ovarian aging may lead to personalized interventions and better reproductive outcomes.

16.
J Ethnopharmacol ; 333: 118505, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945466

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Zuogui Pill (ZGP) is a traditional herbal formula of Chinese Medicine with a long history of use in alleviating ovarian aging. AIM OF THE STUDY: To examine the impact of ZGP on oxidative stress and the stemness of oogonial stem cells (OSCs) in cyclophosphamide (CTX)-induced ovarian aging, as well as its molecular mechanisms involving the nuclear factor erythroid 2-related factor 2 (Nrf2, NFE2L2)/heme oxygenase-1 (HO-1, Hmox1) pathway. MATERIALS AND METHODS: Female Sprague-Dawley (SD) rats were randomly divided into seven groups: control, model (CTX), estradiol valerate (EV, 0.103 mg/kg), ZGP-L (low dose Zuogui Pill, 1.851 g/kg), ZGP-H (high dose Zuogui Pill, 3.702 g/kg), ML385 (30 mg/kg), and ML385+ZGP-L. After CTX modeling, the EV, ZGP-L, ZGP-H, and ML385+ZGP-L groups were treated by gavage for 8 weeks, while the ML385 and ML385+ZGP-L groups were administered the Nrf2 antagonist ML385 twice a week. OSCs were isolated after modeling and then treated with drug serum containing 10% ZGP or 10 µM ML385. The general conditions of the rats, including body weight, ovarian weight/body weight ratio, and estrous cycle, were observed. Ovarian ultrastructure, follicle and corpus luteum counts were assessed via hematoxylin and eosin (H&E) staining. Serum hormone levels were measured using enzyme-linked immunosorbent assay (ELISA). Nrf2/HO-1 pathway, stem cell, germ cell, and cell cycle biomarkers were analyzed by qPCR and Western blot. Cell viability was assessed by cell counting kit-8 (CCK-8) assay. Oxidative stress biomarkers were evaluated using flow cytometry and assay kits. Immunofluorescence was employed to detect and locate OSCs in the ovary, quantify the average fluorescence intensity, and identify OSCs. RESULTS: After ZGP treatment, rats with CTX-induced ovarian aging exhibited improved general condition, increased body weight, higher total ovarian weight to body weight ratio, and a restoration of the estrous cycle similar to the control group. Serum levels of estradiol (E2) and follicle stimulating hormone (FSH), two sex hormones, were also improved. Ovarian ultrastructure and follicle count at all stages showed improvement. Moreover, the viability and proliferation capacity of OSCs were enhanced following ZGP intervention. The Nrf2/HO-1 pathway was found to be down-regulated in CTX-induced aging ovarian OSCs. However, ZGP reversed this effect by activating the expression of Nrf2, HO-1, and NAD(P)H oxidoreductase 1 (NQO1), increasing the activity of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), and reducing the accumulation of malonaldehyde (MDA) and reactive oxygen species (ROS), thus restoring resistance to oxidative stress. Additionally, ZGP improved the cell cycle of OSCs, up-regulated the expression of Cyclin D1 and Cyclin E1, restored cell stemness, promoted proliferation, enhanced the expression of cell stemness markers octamer-binding transcription factor 4 (Oct4) and mouse VASA homolog (MVH), and down-regulated the expression of P21, thereby inhibiting apoptosis. The therapeutic effects of ZGP against oxidative stress and restoration of cell stemness were attenuated following inhibition of the Nrf2 signaling pathway using ML385. CONCLUSIONS: ZGP protected against CTX-induced ovarian aging by restoring normal ovarian function, alleviating oxidative stress in aging OSCs, promoting OSCs proliferation, and restoring their stemness in rats, possibly through regulating the Nrf2/HO-1 pathway.


Asunto(s)
Medicamentos Herbarios Chinos , Células Madre Oogoniales , Ovario , Estrés Oxidativo , Transducción de Señal , Animales , Femenino , Ratas , Envejecimiento/efectos de los fármacos , Ciclofosfamida , Medicamentos Herbarios Chinos/farmacología , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo-Oxigenasa 1/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Células Madre Oogoniales/efectos de los fármacos , Ovario/efectos de los fármacos , Ovario/metabolismo , Ovario/patología , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
17.
bioRxiv ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38915651

RESUMEN

In humans, aging triggers cellular and tissue deterioration, and the female reproductive system is the first to show signs of decline. Reproductive aging is associated with decreased ovarian reserve, decreased quality of the remaining oocytes, and decreased production of the ovarian hormones estrogen and progesterone. With aging, both mouse and human ovaries become pro-fibrotic and stiff. However, whether stiffness directly impairs ovarian function, folliculogenesis, and oocyte quality is unknown. To answer this question, we cultured mouse follicles in alginate gels that mimicked the stiffness of reproductively young and old ovaries. Follicles cultured in stiff hydrogels exhibited decreased survival and growth, decreased granulosa cell viability and estradiol synthesis, and decreased oocyte quality. We also observed a reduction in the number of granulosa cell-oocyte transzonal projections. RNA sequencing revealed early changes in the follicle transcriptome in response to stiffness. Follicles cultured in a stiff environment had lower expression of genes related to follicle development and greater expression of genes related to inflammation and extracellular matrix remodeling than follicles cultured in a soft environment. Altogether, our findings suggest that ovarian stiffness directly modulates folliculogenesis and contributes to the progressive decline in oocyte quantity and quality observed in women of advanced maternal age.

18.
Hum Reprod ; 39(8): 1599-1607, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38906835

RESUMEN

Ovarian aging, a natural process in women and various other female mammals as they age, is characterized by a decline in ovarian function and fertility due to a reduction in oocyte reserve and quality. This phenomenon is believed to result from a combination of genetic, hormonal, and environmental factors. While these factors collectively contribute to the shaping of ovarian aging, the substantial impact and intricate interplay of chronic inflammation in this process have been somewhat overlooked in discussions. Chronic inflammation, a prolonged and sustained inflammatory response persisting over an extended period, can exert detrimental effects on tissues and organs. This review delves into the novel hallmark of aging-chronic inflammation-to further emphasize the primary characteristics of ovarian aging. It endeavors to explore not only the clinical symptoms but also the underlying mechanisms associated with this complex process. By shining a spotlight on chronic inflammation, the aim is to broaden our understanding of the multifaceted aspects of ovarian aging and its potential clinical implications.


Asunto(s)
Envejecimiento , Inflamación , Ovario , Humanos , Femenino , Envejecimiento/fisiología , Ovario/fisiopatología , Enfermedad Crónica , Animales , Reserva Ovárica/fisiología
19.
J Ovarian Res ; 17(1): 118, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822408

RESUMEN

In women who are getting older, the quantity and quality of their follicles or oocytes and decline. This is characterized by decreased ovarian reserve function (DOR), fewer remaining oocytes, and lower quality oocytes. As more women choose to delay childbirth, the decline in fertility associated with age has become a significant concern for modern women. The decline in oocyte quality is a key indicator of ovarian aging. Many studies suggest that age-related changes in oocyte energy metabolism may impact oocyte quality. Changes in oocyte energy metabolism affect adenosine 5'-triphosphate (ATP) production, but how related products and proteins influence oocyte quality remains largely unknown. This review focuses on oocyte metabolism in age-related ovarian aging and its potential impact on oocyte quality, as well as therapeutic strategies that may partially influence oocyte metabolism. This research aims to enhance our understanding of age-related changes in oocyte energy metabolism, and the identification of biomarkers and treatment methods.


Asunto(s)
Envejecimiento , Metabolismo Energético , Oocitos , Ovario , Oocitos/metabolismo , Humanos , Femenino , Envejecimiento/metabolismo , Ovario/metabolismo , Animales , Adenosina Trifosfato/metabolismo
20.
Clin Exp Reprod Med ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38782038

RESUMEN

Ovarian reserve diminishes with age, and older women experience a corresponding shift in sex hormone levels. These changes contribute to an age-dependent decrease in fertility and a decline in overall health. Furthermore, while survival rates following cancer treatment have improved for young female patients, a reduction in ovarian function due to the side effects of such treatments can be difficult to avoid. To date, no effective therapy has been recommended to preserve ovarian health in these patients. Mesenchymal progenitor cells (MPCs) are considered a promising option for cell therapy aimed at maintaining fertility and fecundity. Although MPCs derived from human adult tissues are recognized for their various protective effects against ovarian senescence, they are limited in quantity. Consequently, human pluripotent stem cell-derived MPCs (hPSC-MPCs), which exhibit high proliferative capacity and retain genetic stability during growth, have been utilized to delay reproductive aging. This review highlights the impact of hPSC-MPCs on preserving the functionality of damaged ovaries in female mouse models subjected to chemotherapy and natural aging. It also proposes their potential as a valuable cell source for fertility preservation in women with a variety of diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA