Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Emerg Microbes Infect ; 13(1): 2399275, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39206812

RESUMEN

Published studies on outdoor air pollution and tuberculosis risk have shown heterogeneous results. Discrepancies in prior studies may be partially explained by the limited geographic scope, diverse exposure times, and heterogeneous statistical methods. Thus, we conducted a multi-province, multi-city time-series study to comprehensively investigate this issue. We selected 67 districts or counties from all geographic regions of China as study sites. We extracted data on newly diagnosed pulmonary tuberculosis (PTB) cases, outdoor air pollutant concentrations, and meteorological factors in 67 sites from January 1, 2014 to December 31, 2019. We utilized a generalized additive model to evaluate the relationship between ambient air pollutants and PTB risk. Between 2014 and 2019, there were 172,160 newly diagnosed PTB cases reported in 67 sites. With every 10-µg/m3 increase in SO2, NO2, PM10, PM2.5, and 1-mg/m3 in CO, the PTB risk increased by 1.97% [lag 0 week, 95% confidence interval (CI): 1.26, 2.68], 1.30% (lag 0 week, 95% CI: 0.43, 2.19), 0.55% (lag 8 weeks, 95% CI: 0.24, 0.85), 0.59% (lag 10 weeks, 95% CI: 0.16, 1.03), and 5.80% (lag 15 weeks, 95% CI: 2.96, 8.72), respectively. Our results indicated that ambient air pollutants were positively correlated with PTB risk, suggesting that decreasing outdoor air pollutant concentrations may help to reduce the burden of tuberculosis in countries with a high burden of tuberculosis and air pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Tuberculosis Pulmonar , Humanos , China/epidemiología , Tuberculosis Pulmonar/epidemiología , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/efectos adversos , Adulto , Material Particulado/análisis , Material Particulado/efectos adversos , Femenino , Masculino , Persona de Mediana Edad , Exposición a Riesgos Ambientales/efectos adversos , Adulto Joven
2.
Sci Total Environ ; 912: 169234, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38101631

RESUMEN

BACKGROUND: Parasitic infections (PIs) are common and pose substantial health hazards in children globally, but the fundamental environmental variables exposure during crucial time window(s) are unclear. OBJECTIVES: To identify key indoor and outdoor environmental factors leading to childhood PIs throughout critical time window(s). METHODS: A combined cross-sectional and retrospective cohort study was performed on 8689 children residing in Changsha, China. Data was acquired pertaining to the health status and environmental exposure of the children in their homes. Personal exposure to outdoor air pollutants at the residential address during the preconceptional, perinatal, and postnatal periods was computed using data from ten air quality monitoring stations. An analysis of the relationships between childhood PIs and both indoor and outdoor factors was conducted using a multiple logistic regression model. RESULTS: Childhood PIs were associated with outdoor CO and ozone (O3) exposure during the 10th-12th months prior to pregnancy, with ORs (95 % CI) of 1.68 (1.24-2.27) and 1.60 (1.15-2.22), respectively; childhood PIs were also associated with CO exposure during one year prior to pregnancy and the first trimester in utero [ORs = 1.57 (1.14-2.15) and 1.52 (1.17-1.97)]. Childhood PIs were found to be associated with PM2.5 exposure during pregnancy and the first year, with odds ratios of 1.51 (1.14-2.00) and 1.95 (1.22-3.12) per IQR increase in pollutant exposure, respectively. Exposures to smoke, renovation-related indoor air pollution (IAP), dampness and plant-related indoor allergens in the early life and past year were all associated with childhood PI, with odds ratios (95 % CI) ranging from 1.40 (1.01-1.95) for environmental tobacco smoke (ETS) during pregnancy to 1.63 (1.12-2.37) for mold/damp stains in the past year. In terms of PI risk, the early life and present periods were critical time windows for outdoor and indoor exposures, respectively. Certain individuals were more vulnerable to the PI risk associated with both indoor and outdoor exposures. Antibiotic use during child's lifetime and early years increased and decreased the PI risk of exposure to outdoor and indoor environments, respectively. CONCLUSIONS: Exposure to outdoor air pollution in early life and indoor environments in the past year were found to be associated with childhood PI.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Embarazo , Femenino , Humanos , Niño , Estudios Retrospectivos , Estudios Transversales , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Exposición a Riesgos Ambientales/análisis
3.
Process Saf Environ Prot ; 166: 368-383, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36034108

RESUMEN

Over more than two years of global health crisis due to ongoing COVID-19 pandemic, Romania experienced a five-wave pattern. This study aims to assess the potential impact of environmental drivers on COVID-19 transmission in Bucharest, capital of Romania during the analyzed epidemic period. Through descriptive statistics and cross-correlation tests applied to time series of daily observational and geospatial data of major outdoor inhalable particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5) or ≤ 10 µm (PM10), nitrogen dioxide (NO2), ozone (O3), sulfur dioxide (SO2), carbon monoxide (CO), Aerosol Optical Depth at 550 nm (AOD) and radon (222Rn), we investigated the COVID-19 waves patterns under different meteorological conditions. This study examined the contribution of individual climate variables on the ground level air pollutants concentrations and COVID-19 disease severity. As compared to the long-term average AOD over Bucharest from 2015 to 2019, for the same year periods, this study revealed major AOD level reduction by ~28 % during the spring lockdown of the first COVID-19 wave (15 March 2020-15 May 2020), and ~16 % during the third COVID-19 wave (1 February 2021-1 June 2021). This study found positive correlations between exposure to air pollutants PM2.5, PM10, NO2, SO2, CO and 222Rn, and significant negative correlations, especially for spring-summer periods between ground O3 levels, air temperature, Planetary Boundary Layer height, and surface solar irradiance with COVID-19 incidence and deaths. For the analyzed time period 1 January 2020-1 April 2022, before and during each COVID-19 wave were recorded stagnant synoptic anticyclonic conditions favorable for SARS-CoV-2 virus spreading, with positive Omega surface charts composite average (Pa/s) at 850 mb during fall- winter seasons, clearly evidenced for the second, the fourth and the fifth waves. These findings are relevant for viral infections controls and health safety strategies design in highly polluted urban environments.

4.
Environ Res ; 201: 111526, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34174258

RESUMEN

Many studies have proposed a relationship between COVID-19 transmissibility and ambient pollution levels. However, a major limitation in establishing such associations is to adequately account for complex disease dynamics, influenced by e.g. significant differences in control measures and testing policies. Another difficulty is appropriately controlling the effects of other potentially important factors, due to both their mutual correlations and a limited dataset. To overcome these difficulties, we will here use the basic reproduction number (R0) that we estimate for USA states using non-linear dynamics methods. To account for a large number of predictors (many of which are mutually strongly correlated), combined with a limited dataset, we employ machine-learning methods. Specifically, to reduce dimensionality without complicating the variable interpretation, we employ Principal Component Analysis on subsets of mutually related (and correlated) predictors. Methods that allow feature (predictor) selection, and ranking their importance, are then used, including both linear regressions with regularization and feature selection (Lasso and Elastic Net) and non-parametric methods based on ensembles of weak-learners (Random Forest and Gradient Boost). Through these substantially different approaches, we robustly obtain that PM2.5 is a major predictor of R0 in USA states, with corrections from factors such as other pollutants, prosperity measures, population density, chronic disease levels, and possibly racial composition. As a rough magnitude estimate, we obtain that a relative change in R0, with variations in pollution levels observed in the USA, is typically ~30%, which further underscores the importance of pollution in COVID-19 transmissibility.


Asunto(s)
Contaminantes Atmosféricos , COVID-19 , Contaminantes Atmosféricos/análisis , Número Básico de Reproducción , Humanos , Material Particulado/análisis , SARS-CoV-2 , Estados Unidos
5.
Artículo en Inglés | MEDLINE | ID: mdl-32867076

RESUMEN

Asthma is a chronic respiratory disease characterized by variable airflow obstruction, bronchial hyperresponsiveness, and airway inflammation. Evidence suggests that air pollution has a negative impact on asthma outcomes in both adult and pediatric populations. The aim of this review is to summarize the current knowledge on the effect of various outdoor and indoor pollutants on asthma outcomes, their burden on its management, as well as to highlight the measures that could result in improved asthma outcomes. Traffic-related air pollution, nitrogen dioxide and second-hand smoking (SHS) exposures represent significant risk factors for asthma development in children. Nevertheless, a causal relation between air pollution and development of adult asthma is not clearly established. Exposure to outdoor pollutants can induce asthma symptoms, exacerbations and decreases in lung function. Active tobacco smoking is associated with poorer asthma control, while exposure to SHS increases the risk of asthma exacerbations, respiratory symptoms and healthcare utilization. Other indoor pollutants such as heating sources and molds can also negatively impact the course of asthma. Global measures, that aim to reduce exposure to air pollutants, are highly needed in order to improve the outcomes and management of adult and pediatric asthma in addition to the existing guidelines.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Asma , Contaminación por Humo de Tabaco , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Asma/epidemiología , Asma/etiología , Niño , Exposición a Riesgos Ambientales/efectos adversos , Humanos , Dióxido de Nitrógeno/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA