Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Intervalo de año de publicación
1.
Glob Food Sec ; 38: 100708, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37752897

RESUMEN

Where and which countries should receive higher priority for improving inorganic fertilizer use in rice fields in sub-Saharan Africa (SSA)? This study addressed this question by assessing the spatial variation in fertilizer use and its association with rice yield and yield gap in 24 SSA countries through a systematic literature review of peer-reviewed papers, theses, and grey literature published between 1995 and 2021. The results showed a large variation in N, P, and K fertilizer application rates and rice yield and an opportunity for narrowing the yield gap by increasing N and P rates, especially in irrigated rice systems. We identified clusters of sites/countries based on nutrient input and yield and suggested research and development strategies for improving yields and optimizing nutrient use efficiencies. Further research is essential to identify the factors causing low fertilizer use and the poor association between its use and yield in rainfed systems.

2.
Field Crops Res ; 287: 108652, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36259047

RESUMEN

Research for development efforts for increasing rice yield in sub-Saharan Africa (SSA) have largely concentrated on genetic improvement and agronomy for more than 50 years. Here we perform the first meta-analysis to quantify genetic gain - yield increase through use of new variety and calculated by yield difference between new variety and variety popularly grown in the target site, and agronomic gain - difference in yield between improved agronomic practices and the control in SSA using 208 paired observations from 40 studies across 12 countries. Among the studies, 41 %, 34 %, and 25 % were from irrigated lowland, rainfed lowland, and rainfed upland rice, respectively. Seventy percent of the studies reported in this paper were conducted on research stations. In agronomic practices, inorganic fertilizer management practices accounted for 78 % of the studies, of which 48 % were nitrogen (N) management. In each study, we identified four types of varieties: check variety (VC), variety with highest yield in the control (VHC), variety with highest yield under improved agronomic practices (VHT), and variety with largest yield difference between improved agronomic practices and control (VHR). VHT was the same as VHC in 35 % of observations, whereas VHR and VHT were the same in 51 %. These indicate that it is possible to develop varieties adapted to different agronomic practices and high-yielding varieties tend to be responsive to improved agronomic practices. On average, total gain in yield with improved agronomic practices and VHT was 1.6 t/ha. Agronomic practice accounted for 75 % of the total variation in total yield gain with variety and agronomic practice by variety interaction responsible for 19 % and 6 %, respectively. Genetic gains in yield with VHC, VHT, and VHR were 0.7, 0.3, and -0.3 t/ha in control, and 0.4, 0.9, and 0.5 t/ha in improved agronomic practices. Agronomic gain in yield averaged 0.5, 0.8, 1.4, and 1.6 t/ha in VHC, VC, VHT, and VHR, respectively. Agronomic gain in yield of VHT was higher than genetic gain under improved agronomic practices in 54 % of observations. Agronomic gain was highest in irrigated lowland rice, followed by rainfed lowland rice. Higher agronomic gain in yield was also associated with larger difference in N application rate between improved agronomic practices and control. Whereas agronomic practices had larger contribution to total gain in yield than genetic improvement in this study, future assessment of agronomic and genetic gains in yield is warranted. Such assessment should focus more on rainfed rice systems, where agronomic gain was small, take into account genetic improvement rate over time and integrated agronomic practices rather than single intervention like nutrient management practice only, and be conducted in farmers' fields.

3.
Plants (Basel) ; 11(3)2022 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-35161441

RESUMEN

Cereal crops can differ greatly in tolerance to oxygen shortage under germination and seedling establishment. Rice is able to germinate and elongate the coleoptile under submergence and anoxia. This capacity has been attributed to the successful use of starchy reserves through a molecular pathway activated by sugar starvation and low oxygen. This pathway culminates with the expression of α-amylases to provide sugars that fuel the sink organs. On the contrary, barley and wheat are unable to germinate under anoxia. The sensitivity of barley and wheat is likely due to the incapacity to use starch during germination. This review highlights what is currently known about the molecular mechanisms associated with cereal germination and seedling establishment under oxygen shortage with a special focus on barley and rice. Insights into the molecular mechanisms that support rice germination under low oxygen and into those that are associated with barley sensitivity may be of help for genetic improvement programs.

4.
Field Crops Res ; 270: 108193, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34366552

RESUMEN

Meeting future global staple crop demand requires continual productivity improvement. Many performance indicators have been proposed to track and measure the increase in productivity while minimizing environmental degradation. However, their use has lagged behind theory, and has not been uniform across crops in different geographies. The consequence is an uneven understanding of opportunities for sustainable intensification. Simple but robust key performance indicators (KPIs) are needed to standardize knowledge across crops and geographies. This paper defines a new term 'agronomic gain' based on an improvement in KPIs, including productivity, resource use efficiencies, and soil health that a specific single or combination of agronomic practices delivers under certain environmental conditions. We apply the concept of agronomic gain to the different stages of science-based agronomic innovations and provide a description of different approaches used to assess agronomic gain including yield gap assessment, meta-data analysis, on-station and on-farm studies, impact assessment, panel studies, and use of subnational and national statistics for assessing KPIs at different stages. We mainly focus on studies on rice in sub-Saharan Africa, where large yield gaps exist. Rice is one of the most important staple food crops and plays an essential role in food security in this region. Our analysis identifies major challenges in the assessment of agronomic gain, including differentiating agronomic gain from genetic gain, unreliable in-person interviews, and assessment of some KPIs at a larger scale. To overcome these challenges, we suggest to (i) conduct multi-environment trials for assessing variety × agronomic practice × environment interaction on KPIs, and (ii) develop novel approaches for assessing KPIs, through development of indirect methods using remote-sensing technology, mobile devices for systematized site characterization, and establishment of empirical relationships among KPIs or between agronomic practices and KPIs.

5.
Ann Bot ; 126(4): 789-806, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32597468

RESUMEN

BACKGROUND AND AIMS: Upland rice is often grown where water and phosphorus (P) are limited. To better understand the interaction between water and P availability, functional-structural models that mechanistically represent small-scale nutrient gradients and water dynamics in the rhizosphere are needed. METHODS: Rice was grown in large columns using a P-deficient soil at three P supplies in the topsoil (deficient, sub-optimal and non-limiting) in combination with two water regimes (field capacity vs. drying periods). Root system characteristics, such as nodal root number, lateral types, interbranch distance, root diameters and the distribution of biomass with depth, as well as water and P uptake, were measured. Based on the observed root data, 3-D root systems were reconstructed by calibrating the structural architecure model CRootBox for each scenario. Water flow and P transport in the soil to each of the individual root segments of the generated 3-D root architectures were simulated using a multiscale flow and transport model. Total water and P uptake were then computed by adding up the uptake by all the root segments. KEY RESULTS: Measurements showed that root architecture was significantly affected by the treatments. The moist, high P scenario had 2.8 times the root mass, double the number of nodal roots and more S-type laterals than the dry, low P scenario. Likewise, measured plant P uptake increased >3-fold by increasing P and water supply. However, drying periods reduced P uptake at high but not at low P supply. Simulation results adequately predicted P uptake in all scenarios when the Michaelis-Menten constant (Km) was corrected for diffusion limitation. They showed that the key drivers for P uptake are the different types of laterals (i.e. S- and L-type) and growing root tips. The L-type laterals become more important for overall water and P uptake than the S-type laterals in the dry scenarios. This is true across all the P treatments, but the effect is more pronounced as the P availability decreases. CONCLUSIONS: This functional-structural model can predict the function of specific rice roots in terms of P and water uptake under different P and water supplies, when the structure of the root system is known. A future challenge is to predict how the structure root systems responds to nutrient and water availability.


Asunto(s)
Oryza , Meristema , Fosfatos , Raíces de Plantas , Suelo
6.
Arq. Inst. Biol ; 87: e1202018, 2020. ilus, tab
Artículo en Inglés | VETINDEX, LILACS | ID: biblio-1121077

RESUMEN

The objective was to identify the dispersion of Tibraca limbativentris (Hemiptera: Pentatomidae) in different phenological phases of irrigated rice. The research was carried out in an area of 20.12 ha, subdivided in four fields of 0.25 to 14.1 ha with the irrigated rice culture, grown under the technical recommendations of the culture. In each field, a sampling grid of 30 × 30 m was generated, with each sampling point corresponding to 1·m-2 (200 plants), sampling was through direct counting. The number of adults of T. limbativentris·m-2 was subjected to descriptive and geostatistical analyzes. Tibraca limbativentris presents border dispersion towards the center of the irrigated rice cultivation area. The highest population densities were estimated in the anthesis and elongation phase.(AU)


O objetivo foi identificar a dispersão de Tibraca limbativentris (Hemiptera: Pentatomidae) em diferentes fases fenológicas do arroz irrigado. A pesquisa foi realizada em uma área de 20,12 ha, subdividida em quatro lavouras de 0,25 a 14,1 ha com a cultura de arroz irrigado, cultivadas sob as recomendações técnicas da cultura. Em cada lavoura, foi gerado um grid de amostragem de 30 × 30 m sendo cada ponto amostral correspondente a 1·m-2 (200 plantas), a amostragem realizada foi através de contagem direta. O número de adultos de T. limbativentris·m-2 foi submetido a análises descritivas e geoestatística. Tibraca limbativentris apresenta dispersão das bordaduras para o centro da área de cultivo de arroz irrigado. As maiores densidades populacionais foram estimadas na fase de antese e elongação.(AU)


Asunto(s)
Oryza , Riego Agrícola , Distribución Animal , Hemípteros , Brasil , Densidad de Población
7.
Rice (N Y) ; 12(1): 75, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31617022

RESUMEN

BACKGROUND: Large panicle rice has a large sink capacity, but inferior spikelet filling is poor in this variety of rice due to asynchronous grain filling. The understanding of the factors that cause asynchronous grain filling will help to propose a model for how to regulate the rice inferior spikelets grain filling. RESULTS: In this study, two large panicle rice varieties, W1844 and CJ03, with the same sink capacity but with differences in asynchronous grain filling were used. The difference in the grain filling rate between superior and inferior spikelets in W1844 was much smaller than that in CJ03. We found that superior spikelet filling was initiated earlier in W1844 than in CJ03. The source-to-sink translocation rate of sucrose during the grain filling stage was more efficient in W1844 than in CJ03, and the gene expression levels of sucrose transporters (OsSUTs) were higher in W1844 functional leaves than in those of CJ03. In addition, carbon output, the transport ratio, and the contribution rate from the stem and sheath to the panicle were much higher at the early filling stage than at later filling stages in W1844. CONCLUSION: Efficient sugar translocation can satisfy high sink strength, and also the strong sink activity can facilitate the sugar unloading in spikelets. All the above results indicate that an efficient sugar translocation rate at the early grain filling stage can improve sink strength and inferior grain filling initiation. Strategies to limit asynchronous grain filling in rice were also discussed based on our findings.

8.
Front Plant Sci ; 8: 734, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28567045

RESUMEN

The arrangement of leaf material is critical in determining the light environment, and subsequently the photosynthetic productivity of complex crop canopies. However, links between specific canopy architectural traits and photosynthetic productivity across a wide genetic background are poorly understood for field grown crops. The architecture of five genetically diverse rice varieties-four parental founders of a multi-parent advanced generation intercross (MAGIC) population plus a high yielding Philippine variety (IR64)-was captured at two different growth stages using a method for digital plant reconstruction based on stereocameras. Ray tracing was employed to explore the effects of canopy architecture on the resulting light environment in high-resolution, whilst gas exchange measurements were combined with an empirical model of photosynthesis to calculate an estimated carbon gain and total light interception. To further test the impact of different dynamic light patterns on photosynthetic properties, an empirical model of photosynthetic acclimation was employed to predict the optimal light-saturated photosynthesis rate (Pmax ) throughout canopy depth, hypothesizing that light is the sole determinant of productivity in these conditions. First, we show that a plant type with steeper leaf angles allows more efficient penetration of light into lower canopy layers and this, in turn, leads to a greater photosynthetic potential. Second the predicted optimal Pmax responds in a manner that is consistent with fractional interception and leaf area index across this germplasm. However, measured Pmax , especially in lower layers, was consistently higher than the optimal Pmax indicating factors other than light determine photosynthesis profiles. Lastly, varieties with more upright architecture exhibit higher maximum quantum yield of photosynthesis indicating a canopy-level impact on photosynthetic efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA