Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Int J Nanomedicine ; 19: 7799-7816, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39099794

RESUMEN

Background: At present, the few photothermal/chemotherapy studies about retinoblastoma that have been reported are mainly restricted to ectopic models involving subcutaneous implantation. However, eyeball is unique physiological structure, the blood-retina barrier (BRB) hinders the absorption of drug molecules through the systemic route. Moreover, the abundant blood circulation in the fundus accelerates drug metabolism. To uphold the required drug concentration, patients must undergo frequent chemotherapy sessions. Purpose: To address these challenges above, we need to develop a secure and effective drug delivery system (FA-PEG-PDA-DOX) for the fundus. Methods: We offered superior therapeutic efficacy with minimal or no side effects and successfully established orthotopic mouse models. We evaluated cellular uptake performance and targeting efficiency of FA-PEG-PDA-DOX nanosystem and assessed its synergistic antitumor effects in vitro and vivo. Biodistribution assessments were performed to determine the retention time and targeting efficiency of the NPs in vivo. Additionally, safety assessments were conducted. Results: Cell endocytosis rates of the FA-PEG-PDA-DOX+Laser group became 5.23 times that of the DOX group and 2.28 times that of FA-PEG-PDA-DOX group without irradiation. The fluorescence signal of FA-PEG-PDA-DOX persisted for more than 120 hours at the tumor site. The number of tumor cells (17.2%) in the proliferative cycle decreased by 61.6% in the photothermal-chemotherapy group, in contrast to that of the saline control group (78.8%). FA-PEG-PDA-DOX nanoparticles(NPs) exhibited favorable biosafety and high biocompatibility. Conclusion: The dual functional targeted nanosystem, with the effects of DOX and mild-temperature elevation by irradiation, resulted in precise chemo/photothermal therapy in nude mice model.


Asunto(s)
Doxorrubicina , Indoles , Terapia Fototérmica , Polímeros , Retinoblastoma , Animales , Retinoblastoma/terapia , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Ratones , Terapia Fototérmica/métodos , Humanos , Indoles/química , Indoles/farmacocinética , Indoles/farmacología , Línea Celular Tumoral , Polímeros/química , Distribución Tisular , Polietilenglicoles/química , Polietilenglicoles/farmacocinética , Ratones Desnudos , Nanopartículas/química , Sistemas de Liberación de Medicamentos/métodos , Neoplasias de la Retina/terapia , Neoplasias de la Retina/tratamiento farmacológico , Ratones Endogámicos BALB C , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Antibióticos Antineoplásicos/administración & dosificación , Modelos Animales de Enfermedad , Ensayos Antitumor por Modelo de Xenoinjerto , Sistema de Administración de Fármacos con Nanopartículas/química , Sistema de Administración de Fármacos con Nanopartículas/farmacocinética
2.
Int Immunopharmacol ; 134: 112272, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761780

RESUMEN

BACKGROUND: A subset of neutrophils isolated from the peripheral blood mononuclear cells (PBMC) layer has recently been described in cancer patients. METHODS: Double-gradient centrifugation was used to separate the neutrophil subsets. Western blotting and immunohistochemical assays were performed to assess CCDC25 expression levels. RESULTS: In this study, we found that low-density neutrophils (LDNs) were more highly enriched in metastatic hepatocellular carcinoma (HCC) patients than in non-metastatic HCC patients. We then showed a CD61+ LDNs subset, which displayed distinct functions and gene expression, when compared with high-density neutrophils (HDNs) and CD61- LDNs. Transcriptomic analysis revealed that the CD61+ LDNs were predominantly enhanced in the transcription of glycolysis and angiogenesis associated gene, HMGB1 associated gene and granulation protein gene. These CD61+ LDNs displayed a prominent ability to trigger metastasis, compared with HDNs and CD61- LDNs. Specifically, CD61+ LDN-derived HMGB1 protein increased the invasion of HCC cells by upregulating CCDC25. Mechanistically, the CD61+ LDN-derived HMGB1 protein enhanced the invasiveness of HCC cells and triggered their metastatic potential, which was mediated by TLR9-NF-κB-CCDC25 signaling. Blocking this signaling pathway reversed the invasion of the CD61+ LDN-induced HCC cells. In vivo, we consistently showed that CD61+ LDN-derived HMGB1 enhances HCC metastasis to the lungs. CONCLUSIONS: Overall, our findings showed that a subset of CD61+ LDNs has pro-metastatic effects on HCC, and may be used to target HCC in the clinical setting.


Asunto(s)
Carcinoma Hepatocelular , Proteína HMGB1 , Neoplasias Hepáticas , Neutrófilos , Regulación hacia Arriba , Animales , Femenino , Humanos , Masculino , Ratones , Carcinoma Hepatocelular/inmunología , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Integrina beta3 , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundario , Metástasis de la Neoplasia , Neutrófilos/inmunología , Neutrófilos/metabolismo
3.
Oral Oncol ; 152: 106795, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599127

RESUMEN

OBJECTIVES: Understanding head and neck tissue specific immune responses is important for elucidating immunotherapy resistance mechanisms to head and neck squamous cell carcinoma (HNSCC). In this study, we aimed to investigate HNSCC-specific immune response differences between oral and subcutaneous flank tumor transplantation in preclinical models. MATERIALS AND METHODS: The MOC1 syngeneic mouse oral carcinoma cell line or versions expressing either the H2Kb-restricted SIINFEKL peptide from ovalbumin (MOC1OVA) or ZsGreen (MOC1ZsGreen) were inoculated into mouse oral mucosa (buccal space) or subcutaneous flank and compared for immune cell kinetics in tumors and tumor-draining lymph nodes (TDLNs) and for anti-PD1 response. RESULTS: Compared to subcutaneous flank tumors, orthotopic oral MOC1OVA induced a higher number of OVA-specific T cells, PD1 + or CD69 + activated OVA-specific T cells in both primary tumors and TDLNs. Tumors were also larger in the flank site and CD8 depletion eliminated the difference in tumor weight between the two sites. Oral versus flank SIINFEKL peptide vaccination showed enhanced TDLN lymphocyte response in the former site. Notably, cDC1 from oral TDLN showed enhanced antigen uptake and co-stimulatory marker expression, resulting in elicitation of an increased antigen specific T cell response and increased activated T cells. Parental MOC1 in the oral site showed increased endogenous antigen-reactive T cells in TDLNs and anti-PD1 blockade rejected oral MOC1 tumors but not subcutaneous flank MOC1. CONCLUSION: Collectively, we find distinct immune responses between orthotopic oral and heterotopic subcutaneous models, including priming by cDC1 in TDLN, revealing important implications for head and neck cancer preclinical studies.


Asunto(s)
Neoplasias de Cabeza y Cuello , Ganglios Linfáticos , Receptor de Muerte Celular Programada 1 , Animales , Ratones , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/metabolismo , Ganglios Linfáticos/inmunología , Neoplasias de Cabeza y Cuello/inmunología , Línea Celular Tumoral , Linfocitos T/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/inmunología , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Femenino , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Ratones Endogámicos C57BL , Humanos , Neoplasias de la Boca/inmunología , Neoplasias de la Boca/patología
4.
Methods Mol Biol ; 2806: 75-90, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38676797

RESUMEN

The development of clinically relevant and reliable models of central nervous system tumors has been instrumental in advancing the field of Neuro-Oncology. The orthotopic intracranial injection is widely used to study the growth, invasion, and spread of tumors in a controlled environment. Orthotopic models are performed to examine tumor cells isolated from a specific region in a patient in the same site or location in an animal model. Orthotopic brain tumor models are also utilized for preclinical testing of therapeutics as they closely recapitulate the behavior of such cancer and the brain environment of patients. Below, we describe our experiences in the development of murine models of pediatric brain tumors including diffuse midline glioma (DMG), glioblastoma (GBM), and medulloblastoma. The method provides an overview of intracranial stereotactic injections in mice.


Asunto(s)
Neoplasias Encefálicas , Modelos Animales de Enfermedad , Animales , Humanos , Ratones , Neoplasias Encefálicas/patología , Niño , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Meduloblastoma/patología , Glioma/patología , Glioblastoma/patología , Xenoinjertos
5.
Head Neck ; 46(5): 1056-1062, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38445546

RESUMEN

BACKGROUND: Preclinical models are invaluable for studies of head and neck cancer. There is growing interest in the use of orthotopic syngeneic models, wherein cell lines are injected into the oral cavity of immunocompetent mice. In this brief report, we describe injection of mouse oral cancer 1 (MOC1) cells into the buccal mucosa and illustrate the tumor growth pattern, lymph node response, and changes in the tumor immune microenvironment over time. METHODS: MOC1 cells were injected into the buccal mucosa of C57BL6 mice. Animals were sacrificed at 7, 14, 21, or 27 days. Tumors and lymph nodes were analyzed by flow cytometry. RESULTS: All mice developed tumors by day 7 and required euthanasia for tumor burden and/or weight loss by day 27. Lymph node mapping showed that these tumors reliably drain to a submandibular lymph node. The proportion of intratumoral CD8+ T cells decreased over time, while neutrophilic myeloid cells increased dramatically. Growth of orthotopic MOC2 and MOC22 also showed similar growth patterns versus published data in flank tumors. CONCLUSIONS: When used orthotopically in the buccal mucosa, the MOC1 model induces a robust lymph node response and distinct pattern of immune cell infiltration, with peak immune infiltration by day 14.


Asunto(s)
Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Animales , Ratones , Mucosa Bucal , Ratones Endogámicos C57BL , Microambiente Tumoral , Línea Celular Tumoral
6.
Methods Mol Biol ; 2769: 99-108, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38315392

RESUMEN

Cholangiocarcinoma (CCA) is a malignancy affecting the epithelial cells that line the bile ducts. This cancer shows a poor prognosis and current treatments remain inefficient. Orthotopic CCA mouse models are useful for the development of innovative therapeutic strategies. Here, we describe an orthotopic model of intrahepatic CCA that can be easily induced in mice within 5 weeks at a high incidence. It is achieved by expressing two oncogenes, namely, (i) the intracellular domain of the Notch1 receptor (NICD) and (ii) AKT, in hepatocytes by means of the sleeping beauty transposon system. These plasmid vectors are delivered by hydrodynamic injection into the tail vein. The present chapter also describes how to perform magnetic resonance imaging (MRI) of the livers to visualize intrahepatic CCA nodules.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Ratones , Animales , Conductos Biliares Intrahepáticos , Neoplasias de los Conductos Biliares/genética , Colangiocarcinoma/genética , Oncogenes/genética , Hígado/patología
7.
J Ovarian Res ; 16(1): 218, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37986175

RESUMEN

High-grade serous carcinoma (HGSC) is the most common and aggressive subtype of epithelial ovarian cancer, characterized by gain-of-function TP53 mutations originating in the fallopian tube epithelium. Therapeutic intervention occurs at advanced metastatic disease, due to challenges in early-stage diagnosis, with common disease recurrence and therapy resistance despite initial therapy success. The mevalonate pathway is exploited by many cancers and is potently inhibited by statin drugs. Statins have shown anti-cancer activity in many, but not all cancers. Here, we investigated the role of p53 status in relation to mevalonate pathway signaling in murine oviductal epithelial (OVE) cells and identified OVE cell sensitivity to statin inhibition. We found that p53R175H mutant and Trp53 knockout OVE cells have increased mevalonate pathway signaling compared to p53 wild-type OVE cells. Through orthotopic implantation to replicate the fallopian tube origin of HGSC, p53R175H mutant cells upregulated the mevalonate pathway to drive progression to advanced-stage ovarian cancer, and simvastatin treatment abrogated this effect. Additionally, simvastatin was more efficacious at inhibiting cell metabolic activity in OVE cells than atorvastatin, rosuvastatin and pravastatin. In vitro, simvastatin demonstrated potent effects on cell proliferation, apoptosis, invasion and migration in OVE cells regardless of p53 status. In vivo, simvastatin induced ovarian cancer disease regression through decreased primary ovarian tumor weight and increased apoptosis. Simvastatin also significantly increased cytoplasmic localization of HMG-CoA reductase in ovarian tumors. Downstream of the mevalonate pathway, simvastatin had no effect on YAP or small GTPase activity. This study suggests that simvastatin can induce anti-tumor effects and could be an important inhibitor of ovarian cancer progression.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Neoplasias Ováricas , Femenino , Ratones , Animales , Humanos , Trompas Uterinas/metabolismo , Simvastatina/farmacología , Simvastatina/metabolismo , Simvastatina/uso terapéutico , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/metabolismo , Ácido Mevalónico/metabolismo , Ácido Mevalónico/uso terapéutico , Células Epiteliales/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Carcinoma Epitelial de Ovario/patología
8.
Front Immunol ; 14: 1277987, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37868989

RESUMEN

The advent of novel cancer immunotherapy approaches is revolutionizing the treatment for cancer. Current small animal models for most cancers are syngeneic or genetically engineered mouse models or xenograft models based on immunodeficient mouse strains. These models have been limited in evaluating immunotherapy regimens due to the lack of functional human immune system. Development of animal models for bone cancer faces another challenge in the accessibility of tumor engraftment sites. Here, we describe a protocol to develop an orthotopic humanized mouse model for a bone and soft tissue sarcoma, Ewing sarcoma, by transplanting fresh human cord blood CD34+ hematopoietic stem cells into young NSG-SGM3 mice combined with subsequent Ewing sarcoma patient derived cell engraftment in the tibia of the humanized mice. We demonstrated early and robust reconstitution of human CD45+ leukocytes including T cells, B cells, natural killer cells and monocytes. Ewing sarcoma xenograft tumors successfully orthotopically engrafted in the humanized mice with minimal invasive procedures. We validated the translational utility of this orthotopic humanized model by evaluating the safety and efficacy of an immunotherapy antibody, magrolimab. Treatment with magrolimab induces CD47 blockade resulting in significantly decreased primary tumor growth, decreased lung metastasis and prolonged animal survival in the established humanized model. Furthermore, the humanized model recapitulated the dose dependent toxicity associated with the CD47 blockade as observed in patients in clinical trials. In conclusion, this orthotopic humanized mouse model of Ewing sarcoma represents an improved platform for evaluating immunotherapy in bone and soft tissue sarcoma, such as Ewing sarcoma. With careful design and optimization, this model is generalizable for other bone malignancies.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Sarcoma de Ewing , Humanos , Animales , Ratones , Sarcoma de Ewing/terapia , Sarcoma de Ewing/patología , Antígeno CD47 , Neoplasias Óseas/terapia , Neoplasias Óseas/patología , Inmunoterapia/métodos , Linfocitos T , Modelos Animales de Enfermedad
9.
Molecules ; 28(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37764495

RESUMEN

Our previous study found that the intravesical perfusion of metformin has excellent inhibitory effects against bladder cancer (BC). However, this administration route allows the drug to be diluted and excreted in urine. Therefore, increasing the adhesion of metformin to the bladder mucosal layer may prolong the retention time and increase the pharmacological activity. It is well known that chitosan (Cs) has a strong adhesion to the bladder mucosal layer. Thus, this study established a novel formulation of metformin to enhance its antitumor activity by extending its retention time. In this research, we prepared Cs freeze-dried powder and investigated the effect of metformin-loaded chitosan hydrogels (MLCH) in vitro and in vivo. The results showed that MLCH had a strong inhibitory effect against proliferation and colony formation in vitro. The reduction in BC weight and the expression of tumor biomarkers in orthotopic mice showed the robust antitumor activity of MLCH via intravesical administration in vivo. The non-toxic profile of MLCH was observed as well, using histological examinations. Mechanistically, MLCH showed stronger functional activation of the AMPKα/mTOR signaling pathway compared with metformin alone. These findings aim to make this novel formulation an efficient candidate for managing BC via intravesical administration.


Asunto(s)
Quitosano , Metformina , Neoplasias de la Vejiga Urinaria , Animales , Ratones , Vejiga Urinaria , Administración Intravesical , Metformina/farmacología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Modelos Animales de Enfermedad , Hidrogeles
10.
Biomater Res ; 27(1): 89, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37723574

RESUMEN

BACKGROUND: Glioblastoma is a highly malignant brain tumor associated with poor prognosis. Conventional therapeutic approaches have limitations due to their toxic effects on normal tissue and the development of tumor cell resistance. This study aimed to explore alternative mechanisms for glioblastoma treatment by targeting angiogenesis. METHODS: The study investigated the anti-angiogenic properties of heparin in glioblastoma treatment. To overcome the limitations of heparin, a heparin-taurocholate conjugate (LHT7) was synthesized by conjugating heparin to taurocholic acid. The study utilized the U87MG human glioblastoma cell line and human umbilical vein endothelial cells (HUVEC) as experimental models. Cell viability assays and sprouting assays were performed to assess the effects of LHT7. Additionally, phosphorylation of angiogenesis-related proteins, such as phospho-ERK and phospho-VEGFR2, was measured. The anti-angiogenic effects of LHT7 were further evaluated using a glioblastoma orthotopic mouse model. RESULTS: Treatment with LHT7 resulted in a dose-dependent reduction in cell viability in U87MG human glioblastoma cells. The sprouting of HUVEC cells was significantly decreased upon LHT7 treatment. Furthermore, LHT7 treatment led to a decrease in the phosphorylation of angiogenesis-related proteins, including phospho-ERK and phospho-VEGFR2. In the glioblastoma orthotopic mouse model, LHT7 exhibited anti-angiogenic effects, supporting its potential as a therapeutic agent. CONCLUSIONS: The conjugation of heparin and taurocholic acid to create LHT7 offers several advantages over conventional therapeutic approaches for glioblastoma. LHT7 demonstrated anti-angiogenic properties, as evidenced by the reduction in cell viability and inhibition of endothelial cell sprouting. Moreover, LHT7 modulated the phosphorylation of angiogenesis-related proteins. These findings suggest that LHT7 holds promise as a medication for glioblastoma treatment, offering potential implications for improving patient outcomes.

11.
Animal Model Exp Med ; 6(5): 419-426, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37365733

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is the most common type of liver cancer. Recently, developments in radiotherapy technology have led to radiotherapy becoming one of the main therapeutics of HCC. Therefore, a suitable animal model for radiotherapy of the orthotopic HCC mouse model is urgently needed. METHODS: In the present study, Hepa1-6 cells were injected into the liver of C57BL/6 mice in situ to mimic the pathological characteristics of the original HCC. Tumor formation was monitored by applying magnetic resonance imaging techniques and verified by H&E histopathological staining, AFP staining, and Ki67 staining. A single dose of 10 Gy X-ray was applied to simulate clinical radiotherapy plans using image-guided radiotherapy (IGRT) equipment. The efficiency of radiotherapy was then assessed by examining tumor size and weight one week after radiation. Cleaved-caspase3 staining and TUNEL were used to assess apoptosis in tumor tissues. RESULTS: Intrahepatic tumor development was detected in the liver according using MRI. A high-density shadow could be seen 10 days after cell injection, which indicated the formation of HCC in vivo. The tumors grew steadily bigger, and underwent precision radiotherapy 20 days after injection. The typical pathological characteristics of HCC, such as large, deeply stained nuclei and irregular cell size, were visible with H&E staining. After radiotherapy, significantly higher expression of the immunohistochemical markers Ki67 and AFP were detected in tumor tissue than in the nearby normal tissue. Compared with the control group, the tumor volume (p = 0.05) and weight (p < 0.05) of the irradiated group were significantly reduced. In addition, a higher frequency of apoptosis was identified in irradiated HCC tumor tissue using the TUNEL and cleaved-caspase3 staining assay. CONCLUSIONS: In a well-established orthotopic HCC model, MRI was utilized to monitor the formation of tumors, and IGRT was used to simulate clinical radiotherapy. The present study could provide a suitable preclinical system for HCC radiotherapy-related studies.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Radioterapia Guiada por Imagen , Animales , Ratones , Carcinoma Hepatocelular/diagnóstico por imagen , Carcinoma Hepatocelular/radioterapia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/patología , alfa-Fetoproteínas , Antígeno Ki-67 , Línea Celular Tumoral , Ratones Endogámicos , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
12.
Int Immunopharmacol ; 121: 110451, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37331294

RESUMEN

In pancreatic cancer (PC) as intractable solid cancer, current research is focused mainly on targeted immunotherapies such as antibodies and immune cell modulators. To identify promising immune-oncological agents, animal models that recapitulate the essential features of human immune status are essential. To this end, we constructed an orthotopic xenograft model using CD34+ human hematopoietic stem cell-based humanized NOD scid gamma mouse (NSG) mice injected with luciferase-expressing PC cell lines AsPC1 and BxPC3. The growth of orthotopic tumors was monitored using noninvasive multimodal imaging, while the subtype profiles of human immune cells in blood and tumor tissues were determined by flow cytometry and immunohistopathology. In addition, the correlations of blood and tumor-infiltrating immune cell count with tumor extracellular matrix density were calculated using Spearman's test. Tumor-derived cell lines and tumor organoids with continuous passage capacity in vitro were isolated from orthotopic tumors. It was further confirmed that these tumor-derived cells and organoids have reduced PD-L1 expression and are suitable for testing the efficacy of specific targeted immunotherapeutic agents. These animal and culture models could facilitate the development and validation of immunotherapeutic agents for intractable solid cancers including PC.


Asunto(s)
Neoplasias Pancreáticas , Humanos , Animales , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto , Antígenos CD34 , Organoides , Ratones SCID , Modelos Animales de Enfermedad , Ratones Endogámicos NOD , Neoplasias Pancreáticas
13.
J Pharmacol Sci ; 152(2): 69-75, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37169481

RESUMEN

OBJECTIVE: AST-3424 is a novel specific aldo-keto reductase 1C3 (AKR1C3) prodrug that releases a DNA alkylating reagent upon reduction by AKR1C3. This study aimed to evaluate the efficacy and safety of AST-3424 in patient-derived tumor xenograft (PDTX) model and orthotopic model against hepatocellular carcinoma (HCC). MATERIALS AND METHOD: PDTX models derived from three HCC patients and orthotopic mice models using HepG2 cells were developed. The mice were treated with AST-3424 alone or combined with other drugs (oxaliplatin, apatinib, sorafenib and elemene in PDTX models, oxaliplatin and 5- fluorouracil in orthotopic models). The tumor volume and weight, as well as the mice weight were assessed. The liver tumor and transplanted tumor were removed for histological, immunohistochemical and Western blot detection in orthotopic model experiments. RESULTS: AST-3424 could inhibit tumor growth in HCC PDTX models and orthotopic models, with no difference in safety compared with other marketed drugs, and the drug combination did not increase toxicity. The inhibitory effect of combination treatment was more obvious than which used alone. The reduction of AKR1C3 expression was negatively correlated with AST-3424 dose. CONCLUSION: AST-3424 had a promising effect against HCC in PDTX model and orthotopic model with good safety. It could promote the sensitivity of other drugs without increasing toxicity. Clinical trials are warranted to further certify its antitumor effect and safety.


Asunto(s)
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Profármacos , Humanos , Animales , Ratones , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Profármacos/metabolismo , Profármacos/farmacología , Profármacos/uso terapéutico , Oxaliplatino/uso terapéutico , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Antineoplásicos/farmacología , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas
14.
Mol Imaging Biol ; 25(4): 638-647, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37166575

RESUMEN

PURPOSE: We demonstrated earlier in mouse models of pancreatic ductal adenocarcinoma (PDA) that Ktrans derived from dynamic contrast-enhanced (DCE) MRI detected microvascular effect induced by PEGPH20, a hyaluronidase which removes stromal hyaluronan, leading to reduced interstitial fluid pressure in the tumor (Clinical Cancer Res (2019) 25: 2314-2322). How the choice of pharmacokinetic (PK) model and arterial input function (AIF) may impact DCE-derived markers for detecting such an effect is not known. PROCEDURES: Retrospective analyses of the DCE-MRI of the orthotopic PDA model are performed to examine the impact of individual versus group AIF combined with Tofts model (TM), extended-Tofts model (ETM), or shutter-speed model (SSM) on the ability to detect the microvascular changes induced by PEGPH20 treatment. RESULTS: Individual AIF exhibit a marked difference in peak gadolinium concentration. However, across all three PK models, kep values show a significant correlation between individual versus group-AIF (p < 0.01). Regardless individual or group AIF, when kep is obtained from fitting the DCE-MRI data using the SSM, kep shows a significant increase after PEGPH20 treatment (p < 0.05 compared to the baseline); %change of kep from baseline to post-treatment is also significantly different between PEGPH20 versus vehicle group (p < 0.05). In comparison, when kep is derived from the TM, only the use of individual AIF leads to a significant increase of kep after PEGPH20 treatment, whereas the %change of kep is not different between PEGPH20 versus vehicle group. Group AIF but not individual AIF allows detection of a significant increase of Vp (derived from the ETM) in PEGPH20 versus vehicle group (p < 0.05). Increase of Vp is consistent with a large increase of mean capillary lumen area estimated from immunostaining. CONCLUSION: Our results suggest that kep derived from SSM and Vp from ETM, both using group AIF, are optimal for the detection of microvascular changes induced by stroma-directed drug PEGPH20. These analyses provide insights in the choice of PK model and AIF for optimal DCE protocol design in mouse pancreatic cancer models.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Ratones , Medios de Contraste/farmacocinética , Estudios Retrospectivos , Aumento de la Imagen/métodos , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/tratamiento farmacológico , Modelos Animales de Enfermedad , Carcinoma Ductal Pancreático/diagnóstico por imagen , Carcinoma Ductal Pancreático/tratamiento farmacológico , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Neoplasias Pancreáticas
15.
J Thorac Dis ; 15(4): 2012-2021, 2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37197556

RESUMEN

Background: Orthotopic models of lung cancer have been widely utilized, and the purpose of this study was to demonstrate the viability of our proposed modified modeling approach. Methods: A total of 50 female BALB/c mice were implanted with 1×1×1 mm fragments of a tumor sample into the left lung lobe. After 2 months of observation, the mice were humanely euthanized through CO2 inhalation. The macroscopic specimens were photographed, and the most representative neoplastic lesions were collected for histological analysis. Small-animal positron emission tomography/computed tomography (PET/CT) scans were conducted on 6 randomly selected mice. Results: Local tumor formation, ipsilateral thoracic tissue infiltration, the contralateral chest wall, right lung metastases, and distant kidney metastases were observed in these models. Overall, the tumor development and metastasis rates were 60.86% (28/46) and 57.14% (16/28), respectively. The 3 mice that had a small-animal PET/CT scan developed a local tumor, but no distant metastases were observed. Conclusions: This modified method was deemed reliable, reproducible, minimally invasive, straightforward, and comprehensible; it might serve as the foundation for developing patient-derived orthotopic xenografts of lung cancer.

16.
Front Oncol ; 13: 1094123, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36845684

RESUMEN

Introduction: The KRAS(G12C) mutation is the most common genetic mutation in North American lung adenocarcinoma patients. Recently, direct inhibitors of the KRASG12C protein have been developed and demonstrate clinical response rates of 37-43%. Importantly, these agents fail to generate durable therapeutic responses with median progression-free survival of ~6.5 months. Methods: To provide models for further preclinical improvement of these inhibitors, we generated three novel murine KRASG12C-driven lung cancer cell lines. The co-occurring NRASQ61L mutation in KRASG12C-positive LLC cells was deleted and the KRASG12V allele in CMT167 cells was edited to KRASG12C with CRISPR/Cas9 methods. Also, a novel murine KRASG12C line, mKRC.1, was established from a tumor generated in a genetically-engineered mouse model. Results: The three lines exhibit similar in vitro sensitivities to KRASG12C inhibitors (MRTX-1257, MRTX-849, AMG-510), but distinct in vivo responses to MRTX-849 ranging from progressive growth with orthotopic LLC-NRAS KO tumors to modest shrinkage with mKRC.1 tumors. All three cell lines exhibited synergistic in vitro growth inhibition with combinations of MRTX-1257 and the SHP2/PTPN11 inhibitor, RMC-4550. Moreover, treatment with a MRTX-849/RMC-4550 combination yielded transient tumor shrinkage in orthotopic LLC-NRAS KO tumors propagated in syngeneic mice and durable shrinkage of mKRC.1 tumors. Notably, single-agent MRTX-849 activity in mKRC.1 tumors and the combination response in LLC-NRAS KO tumors was lost when the experiments were performed in athymic nu/nu mice, supporting a growing literature demonstrating a role for adaptive immunity in the response to this class of drugs. Discussion: These new models of murine KRASG12C mutant lung cancer should prove valuable for identifying improved therapeutic combination strategies with KRASG12C inhibitors.

17.
Hepatobiliary Pancreat Dis Int ; 22(2): 190-199, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36549966

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a disease of the elderly mostly because its development from preneoplastic lesions depends on the accumulation of gene mutations and epigenetic alterations over time. How aging of non-cancerous tissues of the host affects tumor progression, however, remains largely unknown. METHODS: We took advantage of a model of accelerated aging, uncoupling protein 2-deficient (Ucp2 knockout, Ucp2 KO) mice, to investigate the growth of orthotopically transplanted Ucp2 wild-type (WT) PDAC cells (cell lines Panc02 and 6606PDA) in vivo and to study strain-dependent differences of the PDAC microenvironment. RESULTS: Measurements of tumor weights and quantification of proliferating cells indicated a significant growth advantage of Panc02 and 6606PDA cells in WT mice compared to Ucp2 KO mice. In tumors in the knockout strain, higher levels of interferon-γ mRNA despite similar numbers of tumor-infiltrating T cells were observed. 6606PDA cells triggered a stronger stromal reaction in Ucp2 KO mice than in WT animals. Accordingly, pancreatic stellate cells from Ucp2 KO mice proliferated at a higher rate than cells of the WT strain when they were incubated with conditioned media from PDAC cells. CONCLUSIONS: Ucp2 modulates PDAC microenvironment in a way that favors tumor progression and implicates an altered stromal response as one of the underlying mechanisms.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ratones , Animales , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo , Ratones Endogámicos C57BL , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Ratones Noqueados , Microambiente Tumoral , Neoplasias Pancreáticas
18.
Saudi Dent J ; 35(8): 1029-1038, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38170041

RESUMEN

Dental caries (DC)-induced pulp infections usually undergo the common endodontic treatment, root canal therapy (RCT). Endodontically treated teeth are devitalized, become brittle and susceptible for re-infection which eventually results in dental loss. These complications arise because the devitalized pulp losses its ability for innate homeostasis, repair and regeneration. Therefore, restoring the vitality, structure and function of the inflamed pulp and compromised dentin have become the focal points in regenerative endodontics. There are very few evidences, so far, that connect methylenetetrahydrofolate reductase single nucleotide polymorphisms (MTHFR-SNPs) and dental disorders. However, the primary consequences of MTHFR-SNPs, in terms of excessive homocysteine and folate deficiency, are well-known contributors to dental diseases. This article identifies the possible mechanisms by which MTHFR-SNP-carriers are susceptible for DC-induced pulp inflammation (PI); and discusses a cell-homing based strategy for in vivo transplantation in an orthotopic model to regenerate the functional dentine-pulp complex which includes dentinogenesis, neurogenesis and vasculogenesis, in the SNP-carriers.

19.
Animal Model Exp Med ; 5(6): 575-581, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36451547

RESUMEN

BACKGROUND: Bladder cancer poses a great burden on society and its high rate of recurrence and treatment failure necessitates use of appropriate animal models to study its pathogenesis and test novel treatments. Orthotopic models are superior to other types since they provide a normal microenvironment. Four methods are described for developing bladder cancer models inside the animal's bladder. Direct intramural injection is one of these methods and is widely used. However, its efficacy in model development has not yet been studied. We aimed to evaluate the efficacy and success rate of the direct intramural injection method of developing an orthotopic model for the study of bladder cancer. METHOD: Tumor cell lines were prepared in four microtubes. Aliquots of 200 × 103 cells were injected through a 27 gauge needle into the ventral wall of the bladders of 4 male and 4 female BALB/c mice following a midline 1 cm laparotomy incision. In addition, 1 million cells from each microtube were injected into the flanks of control mice. To prevent infection and alleviate pain, 5 mg/kg enrofloxacin and 2.5 mg/kg flunixin meglumine, respectively, were injected subcutaneously. RESULTS: Tumors formed in all mice, resulting in 100% take rate and zero post-operation mortality. Surgery time was ≤15 min per mouse. In two mice, tumors were found in the peritoneal space as well. CONCLUSION: Direct intramural injection is a rapid, reliable, and reproducible method for developing orthotopic models of bladder cancer. It can be done on both male and female mice and only requires readily available surgical tools. However, needle track can result in cell spillage and peritoneal tumors.


Asunto(s)
Trasplantes , Neoplasias de la Vejiga Urinaria , Masculino , Femenino , Ratones , Animales , Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/cirugía , Línea Celular Tumoral , Trasplantes/patología , Microambiente Tumoral
20.
Cancers (Basel) ; 14(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36230481

RESUMEN

In times of high-precision radiotherapy, the accurate and precise definition of the primary tumor localization and its microscopic spread is of enormous importance. In glioblastoma, the microscopic tumor extension is uncertain and, therefore, population-based margins for Clinical Target Volume (CTV) definition are clinically used, which could either be too small-leading to increased risk of loco-regional recurrences-or too large, thus, enhancing the probability of normal tissue toxicity. Therefore, the aim of this project is to investigate an individualized definition of the CTV in preclinical glioblastoma models based on specific biological tumor characteristics. The microscopic tumor extensions of two different orthotopic brain tumor models (U87MG_mCherry; G7_mCherry) were evaluated before and during fractionated radiotherapy and correlated with corresponding histological data. Representative tumor slices were analyzed using Matrix-Assisted Laser Desorption/Ionization (MALDI) and stained for putative stem-like cell markers as well as invasion markers. The edges of the tumor are clearly shown by the MALDI segmentation via unsupervised clustering of mass spectra and are consistent with the histologically defined border in H&E staining in both models. MALDI component analysis identified specific peaks as potential markers for normal brain tissue (e.g., 1339 m/z), whereas other peaks demarcated the tumors very well (e.g., 1562 m/z for U87MG_mCherry) irrespective of treatment. MMP14 staining revealed only a few positive cells, mainly in the tumor border, which could reflect the invasive front in both models. The results of this study indicate that MALDI information correlates with microscopic tumor spread in glioblastoma models. Therefore, an individualized CTV definition based on biological tumor characteristics seems possible, whereby the visualization of tumor volume and protein heterogeneity can be potentially used to define radiotherapy-sensitive and resistant areas.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA