Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 126
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chemistry ; : e202402290, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39092488

RESUMEN

Organoboron compounds offer a new strategy to design optoelectronic materials with high fluorescence efficiency. In this paper, the organoboron compound B-BNBP with double B←N bridged bipyridine bearing four fluorine atoms as core unit is facilely synthesized and exhibits a narrowband emission spectrum and a high photoluminescence quantum yield (PLQY) of 86.53% in solution. Its polymorphic crystals were controllable prepared by different solution self-assembly methods. Two microcrystals possess different molecular packing modes, one-dimensional microstrips (1D-MSs) for H-aggregation and two-dimensional microdisks (2D-MDs) for J-aggregation, owing to abundant intermolecular interactions of four fluorine atoms sticking out conjugated plane. Their structure-property relationships were investigated by crystallographic analysis and theoretical calculation. Strong emission spectra with the full width at half maximum (FWHM) of less than 30 nm can also be observed in thin film and 2D-MDs. 1D-MSs possess thermally activated delayed fluorescence (TADF) property and exhibit superior optical waveguide performance with an optical loss of 0.061 dB/µm. This work enriches the diversity of polymorphic microcrystals and further reveals the structure-property relationship in organoboron micro/nano-crystals.

2.
Chemistry ; : e202402606, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150690

RESUMEN

Based on the reported spiro organoboron compounds (PS1 and PS2 as potent 1O2 sensitizers), several new organoboron molecules (PS4-PS9) were constructed through structural modification, and their low-lying excited states and photophysical properties have been explored by density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. The predicted effective intersystem crossing (ISC) processes arise from the S1→T2 transition for PS4-PS6 and the S1→T4 transition for PS1, and corresponding KISC rate constants reach the order of magnitude of 109 (s-1). The organoboron compounds with a (N, N) chelate acceptor are predicted to exhibit relatively higher ISC efficiency than those bearing a (N, O) acceptor, and the planar C3NBN ring and the orthogonal configuration between the donor and acceptor moieties are responsible for the ISC rate enhancement. Importantly, the geometric features of the lowest singlet excited state (S1) for these compounds play a decisive role in their photosensitive efficiency. The present results provide a basis for better understanding of the photosensitivity of these spiro organoboron compounds and the structural modification effect.

3.
Molecules ; 29(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39064996

RESUMEN

An efficient cross-coupling of aryl bromides with sodium sulfinates, using an organoboron photocatalyst with nickel, is described herein. Under the irradiation of white light, this dually catalytic system enables the synthesis of a series of sulfone compounds in moderate to good yields. A broad range of functional groups and heteroaromatic compounds is tolerated under these reaction conditions. The use of an organoboron photocatalyst highlights a sustainable alternative to iridium or ruthenium complexes. These findings contribute to the field of photochemistry and provide a greener approach to sulfone synthesis.

4.
Angew Chem Int Ed Engl ; 63(31): e202406203, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38753725

RESUMEN

Aryl radicals play a pivotal role as reactive intermediates in chemical synthesis, commonly arising from aryl halides and aryl diazo compounds. Expanding the repertoire of sources for aryl radical generation to include abundant and stable organoboron reagents would significantly advance radical chemistry and broaden their reactivity profile. While traditional approaches utilize stoichiometric oxidants or photocatalysis to generate aryl radicals from these reagents, electrochemical conditions have been largely underexplored. Through rigorous mechanistic investigations, we identified fundamental challenges hindering aryl radical generation. In addition to the high oxidation potentials of aromatic organoboron compounds, electrode passivation through radical grafting, homocoupling of aryl radicals, and decomposition issues were identified. We demonstrate that pulsed electrosynthesis enables selective and efficient aryl radical generation by mitigating the fundamental challenges. Our discoveries facilitated the development of the first electrochemical conversion of aryl potassium trifluoroborate salts into aryl C-P bonds. This sustainable and straightforward oxidative electrochemical approach exhibited a broad substrate scope, accommodating various heterocycles and aryl chlorides, typical substrates in transition-metal catalyzed cross-coupling reactions. Furthermore, we extended this methodology to form aryl C-Se, C-Te, and C-S bonds, showcasing its versatility and potential in bond formation processes.

5.
Photochem Photobiol ; 100(4): 1089-1099, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38801138

RESUMEN

Light emission from organoboron compounds of Schiff bases is found to depend strongly on their chemical structure. Two of these compounds (OB1 and OB2), which contain a benzene ring between the Schiff base moieties, exhibit weak fluorescence in methanol, with marked viscosity dependence. Fluorescence lifetimes of these compounds are in picosecond timescale, as determined by femtosecond optical gating (FOG). A significant enhancement in fluorescence intensity and lifetime is observed at 77 K, indicating the operation of an activated nonradiative process. Using fluorescence lifetime imaging microscopy (FLIM), OB1 and OB2 are shown to be potential membrane probes. The third (OB3), which is devoid of this benzene ring, exhibits relatively stronger fluorescence with nanosecond lifetimes at room temperature. No viscosity dependence is observed in this case. The emission spectrum at 77 K is markedly more intense and exhibits an additional red shifted structured feature, which persists for a few seconds. Hence, OB3 seems to have greater promise not only as fluorescent probe but also for light harvesting. The marked improvement of the light emission properties of OB3 compared with OB1 and OB2 is likely to serve as a pointer for the design of Schiff base-derived organoboron luminophores with diverse potential applications.

6.
Angew Chem Int Ed Engl ; 63(18): e202401050, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38444397

RESUMEN

Geminal bis(boronates) are versatile synthetic building blocks in organic chemistry. The fact that they predominantly serve as nucleophiles in the previous reports, however, has restrained their synthetic potential. Herein we disclose the ambiphilic reactivity of α-halogenated geminal bis(boronates), of which the first catalytic utilization was accomplished by merging a formal Heck cross-coupling with a highly diastereoselective allylboration of aldehydes or imines, providing a new avenue for rapid assembly of polyfunctionalized boron-containing compounds. We demonstrated that this cascade reaction is highly efficient and compatible with various functional groups, and a wide range of heterocycles. In contrast to a classical Pd(0/II) scenario, mechanistic experiments and DFT calculations have provided strong evidence for a catalytic cycle involving Pd(I)/diboryl carbon radical intermediates.

7.
Chem Asian J ; 19(8): e202400094, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38412058

RESUMEN

We report the synergistic combination of Pd(OAc)2 and Ag2O for the oxidative C-H arylation of (poly)fluoroarenes with aryl pinacol boronates (Ar-Bpin) in DMF as the solvent. This procedure can be conducted easily in air, and without using additional ligands, to afford the fluorinated unsymmetrical biaryl products in up to 98 % yield. Experimental studies suggest that the formation of [PdL2(C6F5)2] in DMF as coordinating solvent does not take place under the reaction conditions as it is stable to reductive elimination and thus would deactivate the catalyst. Thus, the intermediate [Pd(DMF)2(ArF)(Ar)] must be formed selectively to give desired arylation products. DFT calculations predict a low barrier (5.87 kcal/mol) for the concerted metalation deprotonation (CMD) process between C6F5H and the Pd(II) species formed after transmetalation between the Pd(II)X2 complex and aryl-Bpin which forms a Pd-Arrich species. Thus a Pd(Arrich)(Arpoor) complex is generated selectively which undergoes reductive elimination to generate the unsymmetrical biaryl product.

8.
Angew Chem Int Ed Engl ; 63(4): e202315232, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38059757

RESUMEN

General methods for the preparation of geminal bis(boronates) are of great interest due to their widespread applications in organic synthesis. While the terminal gem-diboron compounds are readily accessible, the construction of the sterically encumbered, internal analogues has remained a prominent challenge. Herein, we report a formal umpolung strategy to access these valuable building blocks. The readily available 1,1-diborylalkanes were first converted into the corresponding α-halogenated derivatives, which then serve as electrophilic components, undergoing a formal substitution with a diverse array of nucleophiles to form a series of C-C, C-O, C-S, and C-N bonds. This protocol features good tolerance to steric hindrance and a wide variety of functional groups and heterocycles. Notably, this strategy can also be extended to the synthesis of diaryl and terminal gem-diboron compounds, therefore providing a general approach to various types of geminal bis(boronates).

9.
Molecules ; 28(23)2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38067645

RESUMEN

An efficient and convenient method for the synthesis of phenols and aliphatic alcohols is described in this paper. The oxidative hydroxylation reaction of various organoboron compounds proceeded smoothly by employing H2O2 as the oxidant and citric acid as the catalyst in water at room temperature to produce phenols and aliphatic alcohols in satisfactory to excellent yields (up to 99% yield). Various synthetically useful functional groups, such as halogen atom, cyano, and nitro groups, remain intact during the oxidative hydroxylation. The developed catalytic system also could accommodate phenylboronic pinacol ester and potassium phenyltrifluoroborate to give the target product good yields.

10.
Beilstein J Org Chem ; 19: 1849-1857, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38090628

RESUMEN

A donor-π-acceptor (D-π-A)-type pull-push compound, DMB-TT-TPA (8), comprising triphenylamine as donor and dimesitylboron as acceptor linked through a thieno[3,2-b]thiophene (TT) π-conjugated linker bearing a 4-MeOPh group, was designed, synthesized, and fabricated as an emitter via a solution process for an organic light-emitting diode (OLED) application. DMB-TT-TPA (8) exhibited absorption and emission maxima of 411 and 520 nm, respectively, with a mega Stokes shift of 109 nm and fluorescence quantum yields both in the solid state (41%) and in solution (86%). The optical properties were supported by computational chemistry using density functional theory for optimized geometry and absorption. A solution-processed OLED was fabricated using low turn-on voltage, which had performances with maximum power, current, and external quantum efficiencies of 6.70 lm/W, 10.6 cd/A, and 4.61%, respectively.

11.
Angew Chem Int Ed Engl ; 62(48): e202313265, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37819780

RESUMEN

We herein report a synthetic strategy for alternating copolymers of styrene and substituted styrenes by utilizing α-styryl boronate pinacol ester (StBpin) as the co-monomer through radical alternating copolymerization followed by protodeboronation. The excellent alternating polymerization behavior of the StBpin co-monomer in such a radical polymerization system is considered to be attributed to the steric hindrance and radical stabilization exerted by the Bpin group. This strategy is effective with a wide range of substituted styrene co-monomers regardless of the electronic nature of the substituents, and the protodeboronation of the alternating Bpin-containing polymers is highly efficient without polymer backbone alternation. RAFT living polymerization was also compatible with this approach. Thus, this strategy provides a way to build-up alternating copolymers consisting of similar styrene-type co-monomers, which has been inaccessible by conventional synthetic methods.

12.
Molecules ; 28(19)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37836795

RESUMEN

We report on organoboron complexes characterized by very small energy gaps (ΔEST) between their singlet and triplet states, which allow for highly efficient harvesting of triplet excitons into singlet states for working as thermally activated delayed fluorescence (TADF) devices. Energy gaps ranging between 0.01 and 0.06 eV with dihedral angles of ca. 90° were registered. The spin-orbit couplings between the lowest excited S1 and T1 states yielded reversed intersystem crossing rate constants (KRISC) of an average of 105 s-1. This setup accomplished radiative decay rates of ca. 106 s-1, indicating highly potent electroluminescent devices, and hence, being suitable for application as organic light-emitting diodes.

13.
Angew Chem Int Ed Engl ; 62(50): e202312054, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-37877778

RESUMEN

Enones are widely utilized linchpin functional groups in chemical synthesis and molecular biology. We herein report the direct conversion of boronic esters into enones using commercially available methoxyallene as a three-carbon building block. Following boronate complex formation by reaction of the boronic ester with lithiated-methoxyallene, protonation triggers a stereospecific 1,2-migration before oxidation generates the enone. The protocol shows broad substrate scope and complete enantiospecificity is observed with chiral migrating groups. In addition, various electrophiles could be used to induce 1,2-migration and give a much broader range of α-functionalized enones. Finally, the methodology was applied to a 14-step synthesis of the enone-containing polyketide 10-deoxymethynolide.

14.
Chem Asian J ; 18(20): e202300624, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37671791

RESUMEN

Three-arm star polymethacrylates with dual-phase (solution and solid-state) fluorescent emission have been synthesized via atom transfer radical polymerization (ATRP) using a triphenylamine-derived organboron complex (TAPA-BKI-3Br) as initiator. The as-synthesized three-arm star polymethacrylates exhibited bright emission in both solution and the solid states due to the highly twisted structure and intramolecular charge transfer (ICT) effect of TAPA-BKI core, as well as the steric effect and restriction of intramolecular motions from the polymer arms. And the polymer chains have an important influence on the photophysical behavior of the as-synthesized three-arm star polymethacrylates in the aggregated state.

15.
Chemphyschem ; 24(23): e202300435, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37646234

RESUMEN

Boron compound BOMes2 containing an internal B-O bond undergoes highly efficient photoisomerization, followed by sequential structural transformations, resulting in a rare eight-membered B, O-heterocycle (S. Wang, et al. Org. Lett. 2019, 21, 5285-5289). In this work, the detailed reaction mechanisms of such a unique carbonyl-supported tetracoordinate boron system in the first excited singlet (S1 ) state and the ground (S0 ) state were investigated by using the complete active space self-consistent field and its second-order perturbation (MS-CASPT2//CASSCF) method combined with time-dependent density functional theory (TD-DFT). Moreover, an imine-substituted tetracoordinated organic boron system (BNMes2 ) was selected for comparative study to explore the intrinsic reasons for the difference in reactivity between the two types of compounds. Steric factor was found to influence the photoisomerization activity of BNMes2 and BOMes2 . These results rationalize the experimental observations and can provide helpful insights into understanding the excited-state dynamics of heteroatom-doped tetracoordinate organoboron compounds, which facilitates the rational design of boron-based materials with superior photoresponsive performances.

16.
Angew Chem Int Ed Engl ; 62(36): e202308467, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37395499

RESUMEN

This report unveils an advancement in the formation of a Lewis superacid (LSA) and an organic superbase by the geometrical deformation of an organoboron species towards a T-shaped geometry. The boron dication [2]2+ supported by an amido diphosphine pincer ligand features both a large fluoride ion affinity (FIA>SbF5 ) and hydride ion affinity (HIA>B(C6 F5 )3 ), which qualifies it as both a hard and soft LSA. The unusual Lewis acidic properties of [2]2+ are further showcased by its ability to abstract hydride and fluoride from Et3 SiH and AgSbF6 respectively, and effectively catalyze the hydrodefluorination, defluorination/arylation, as well as reduction of carbonyl compounds. One and two-electron reduction of [2]2+ affords stable boron radical cation [2]⋅+ and borylene 2, respectively. The former species has an extremely high spin density of 0.798e at the boron atom, whereas the latter compound has been demonstrated to be a strong organic base (calcd. pKBH + (MeCN)=47.4) by both theoretical and experimental assessment. Overall, these results demonstrate the strong ability of geometric constraining to empower the central boron atom.

17.
Angew Chem Int Ed Engl ; 62(35): e202308041, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37428115

RESUMEN

While chain-walking stimulates wide interest in both polymerization and organic synthesis, site- and stereoselective control of chain-walking on rings is still a challenging task in the realm of organometallic catalysis. Inspired by a controllable chain-walking on cyclohexane rings in olefin polymerization, we have developed a set of chain-walking carboborations of cyclohexenes based on nickel catalysis. Different from the 1,4-trans-selectivity disclosed in polymer science, a high level of 1,3-regio- and cis-stereoselectivity is obtained in our reactions. Mechanistically, we discovery that the base affects the reduction ability of B2 pin2 and different bases lead to different catalytic cycles and different regioselective products (1,2- Vs 1,3-addition). This study provides a concise and modular method for the synthesis of 1,3-disubstituted cyclohexylboron compounds. The incorporation of a readily modifiable boronate group greatly enhances the value of this method, the synthetic potential of which was highlighted by the synthesis of a series of high-valued commercial chemicals and pharmaceutically interesting molecules.

18.
Bioorg Chem ; 138: 106662, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37307714

RESUMEN

The construction of novel organoboron complexes with facile synthesis and unique advantages for biological imaging remains a challenge and thus has garnered considerable attention. Herein, we developed a new molecular platform, boron indolin-3-one-pyrrol (BOIN3OPY) via a two-step sequential reaction. The molecular core is robust enough to allow for post-functionalization to produce versatile dyes. When compared to the standard BODIPY, these dyes feature an N,O-bidentate seven-membered ring center, significantly redshifted absorption, and a larger Stokes shift. This study establishes a new molecular platform that provides more flexibility for the functional regulation of dyes.


Asunto(s)
Compuestos de Boro , Colorantes Fluorescentes
19.
Angew Chem Int Ed Engl ; 62(34): e202306277, 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37350059

RESUMEN

A practical method for the preparation of quaternary and tertiary allyl-substituted heteroarenes by site-selective couplings of heteroaryl nitriles and allylic nucleophiles is disclosed. Transformations utilize readily accessible stable reagents, proceed in the presence of a Lewis base activator, and undergo aryl-C(sp3 ) quaternary and tertiary carbon formation with high γ-selectivity (up to >98 : 2 γ : α).

20.
Angew Chem Int Ed Engl ; 62(28): e202304722, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37171876

RESUMEN

In the quest for essential energy solutions towards an ecological friendly future, the transformation of visible light/solar energy into mechanical motions in metal-free luminescent crystals offers a sustainable choice of smart materials for lightweight actuating, and all-organic electronic devices. Such green energy-triggered photodynamic motions with room temperature phosphorescence (RTP) emission in molecular crystals have not been reported yet. Here, we demonstrate three new stoichiometrically different Lewis acid-base molecular organoboron crystals (PS1, PS2, and PS3), which exhibit rapid photosalient effects (ballistic splitting, moving, and jumping) under both ultraviolet (UV) and visible light associated with quantitative single-crystal-to-single-crystal (SCSC) [2+2] cycloaddition of preorganized olefins. Furthermore, these systems respond to sunlight and mobile (white) flashlight with a complete SCSC transformation in a relatively slow fashion. Remarkably, all PS1, PS2, and PS3 crystals display visible light-promoted dynamic green RTP as their emission peaks promptly blue-shift, due to instantaneous photomechanical effects. Time-dependent structural mapping of intermediate photoproducts during fast SCSC [2+2] photoreaction, by X-ray photodiffraction, reveals a rationale for the origin of these photodynamic motions associated with rapid topochemical transformations. The reported light-driven behavior (mechanical motions, dynamic phosphorescence, and topochemical reactivity), is considered advantageous for the strategic design of stimuli-responsive multi-functional crystalline materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA