Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros











Intervalo de año de publicación
1.
Artículo en Español | LILACS-Express | LILACS | ID: biblio-1551111

RESUMEN

En Perú, al 2019, solo el 6,4 % de los distritos disponen sus residuos urbanos en rellenos sanitarios, los cuales, están en situación de colapso, lo que exige buscar alternativas para mejorar la gestión de estos residuos y, frente a ello, el compostaje se perfila como una tecnología simple y económica, empleada para el tratamiento del componente orgánico, para reducir daños a la salud y al ambiente, sin embargo, la falta de criterios técnicos en su aplicación está afectando la calidad del compost final. El objetivo de esta investigación fue evaluar los criterios técnicos de procesamiento y la calidad del compost, a través de residuos sólidos urbanos en los distritos de la provincia Leoncio Prado. La investigación identificó los distritos que aplican el compostaje a sus residuos y evaluó la técnica de procesamiento, indicadores fisicoquímicos y determinó la calidad con base en normas técnicas internacionales. Los resultados muestran que seis de diez distritos aplican el compostaje y los indicadores fisicoquímicos contrastados con los criterios de calidad de la norma técnica chilena (NCH 2880), colombiana 5167 y de la OMS, corresponden a compost de calidad intermedia (Clase B). Los compost evaluados no representan riesgo ambiental y pueden ser utilizados como enmienda en la mejora del suelo y los cultivos con algunas restricciones, por presentar valores elevados de humedad, pH y bajos niveles de P, Ca, Mg y K.


At 2019, in Peru, only 6.4 % of the districts dispose of their urban waste in sanitary landfills, which are in a situation of collapse, therefore is needed looking for alternatives to improve the management of this waste, facing this, composting is emerging as a simple and economical technology used for the treatment of the organic component, thus, reducing damage to health and the environment, however, the lack of technical criteria in its application is affecting the quality of the final compost. The objective of this research was to evaluate the technical criteria for processing and the quality of compost based on municipal solid waste in the districts of Leoncio Prado province. The research identified the districts that apply composting to their waste and evaluated the processing technique, physicochemical indicators and determined the quality based on international technical standards. The results show that six out of ten districts apply composting, and the physicochemical indicators contrasted with the quality criteria of the Chilean technical standard (NCH 2880), Colombian 5167 and WHO, correspond to intermediate quality compost (Class B). The evaluated compost does not represent an environmental risk and can be used as an amendment in soil and crop improvement with some restrictions, since it has high moisture, pH and low levels of P, Ca, Mg and K.

2.
Bioresour Technol ; 382: 129222, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37217144

RESUMEN

Membrane fouling presents a big challenge for the real-world implementation of anaerobic membrane bioreactors (AnMBRs) in digesting high-solid biowastes. In this study, an electrochemical anaerobic membrane bioreactor (EC-AnMBR) with a novel sandwich-type composite anodic membrane was designed and constructed for controlling membrane fouling whilst improving the energy recovery. The results showed that EC-AnMBR produced a higher methane yield of 358.5 ± 74.8 mL/d, rising by 12.8% compared to the AnMBR without applied voltage. Integration of composite anodic membrane induced a stable membrane flux and low transmembrane pressure through forming an anodic biofilm while total coliforms removal reached 97.9%. The microbial community analysis further provided compelling evidence that EC-AnMBR enriched the relative abundance of hydrolyzing (Chryseobacterium 2.6%) bacteria and methane-producing (Methanobacterium 32.8%) archaea. These findings offered new insights into anti-biofouling performance and provided significant implications for municipal organic waste treatment and energy recovery in the new EC-AnMBR.


Asunto(s)
Eliminación de Residuos , Aguas del Alcantarillado , Anaerobiosis , Reactores Biológicos , Membranas Artificiales , Metano , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos , Aguas Residuales
3.
Environ Sci Technol ; 56(12): 8897-8907, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35588324

RESUMEN

Undesirable ammonium concentrations can lead to unstable anaerobic digestion processes, and Methanosarcina spp. are the representative methanogens under inhibition. However, no known work seems to exist for directly exploring the detailed metabolic regulation of pure cultured representative Methanosarcina spp. to ammonium inhibition. We used transcriptomics and proteomics to profile the metabolic regulation of Methanosarcina barkeri to 1, 4, and 7 g N/L of total ammoniacal nitrogen (TAN), where free ammonia concentrations were between 1.5 and 36.1 mg N/L. At the initial stages of ammonium inhibition, the genes participating in the acquisition and assimilation of reduced nitrogen sources showed significant upregulation where the minimal fold change of gene transcription was about 2. Apart from nitrogen metabolism, the transcription of some genes in methanogenesis also significantly increased at the initial stages. For example, the genes encoding alternative heterodisulfide reductase subunits (HdrAB), energy-converting hydrogenase subunit (EchC), and methanophenazine-dependent hydrogenase subunits (VhtAC) were significantly upregulated by at least 2.05 times. For the element translocation at the initial stages, the genes participating in the uptake of ferrous iron, potassium ion, and molybdate were significantly upregulated with a minimal fold change of 2.10. As the cultivation proceeded, the gene encoding the cell division protein subunit (FtsH) was significantly upregulated by 13.0 times at 7 g N/L of TAN; meanwhile, an increment in OD600 was observed at the terminal sampling point of 7 g N/L of TAN. The present study explored the metabolic regulation of M. barkeri in stress response, protein synthesis, signal transduction, nitrogen metabolism, methanogenesis, and element translocation. The results would contribute to the understanding of the metabolic effects of ammonium inhibition on methanogens and have significant practical implication in inhibited anaerobic digestion.


Asunto(s)
Compuestos de Amonio , Hidrogenasas , Compuestos de Amonio/metabolismo , Hidrogenasas/genética , Hidrogenasas/metabolismo , Metano/metabolismo , Methanosarcina/genética , Methanosarcina/metabolismo , Methanosarcina barkeri/genética , Methanosarcina barkeri/metabolismo , Nitrógeno/metabolismo
4.
Waste Manag Res ; 40(9): 1440-1449, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35212588

RESUMEN

Anaerobic digestion, one of the most currently remarkable techniques for biogas production, has provided a method of high organic solid waste disposal. Operating temperature, especially in the winter of northern city, makes biomass degradation less efficient. The microorganisms that take on the role of gas production are greatly affected by temperature. In our study, solar energy was selected for anaerobic digestion and winter was selected as the experimental environment. Anaerobic digestion was performed with solar heating and electric heating separately. Parameters were tested (pH, soluble chemical oxygen demand, total ammonia nitrogen, total volatile fatty acids), and microbial structure was monitored. The volume of methane produced was measured over 60 days. The methane yield differed by 15.92% under different conditions. It is clearly shown that methane yield can be improved by a steady temperature environment. Nevertheless, dominant bacteria and microbial structure did not seem to be much different. This study may provide more energy-saving ideas for winter anaerobic digestion projects in northern regions.


Asunto(s)
Eliminación de Residuos , Energía Solar , Anaerobiosis , Biocombustibles , Reactores Biológicos , Alimentos , Calefacción , Metano , Eliminación de Residuos/métodos , Temperatura
5.
Front Microbiol ; 12: 687103, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630342

RESUMEN

Globally, the expansion of livestock and fisheries production is severely constrained due to the increasing costs and ecological footprint of feed constituents. The utilization of black soldier fly (BSF) as an alternative protein ingredient to fishmeal and soybean in animal feed has been widely documented. The black soldier fly larvae (BSFL) used are known to voraciously feed and grow in contaminated organic wastes. Thus, several concerns about their safety for inclusion into animal feed remain largely unaddressed. This study evaluated both culture-dependent sequence-based and 16S rDNA amplification analysis to isolate and identify bacterial species associated with BSFL fed on chicken manure (CM) and kitchen waste (KW). The bacteria species from the CM and KW were also isolated and investigated. Results from the culture-dependent isolation strategies revealed that Providencia sp. was the most dominant bacterial species detected from the guts of BSFL reared on CM and KW. Morganella sp. and Brevibacterium sp. were detected in CM, while Staphylococcus sp. and Bordetella sp. were specific to KW. However, metagenomic studies showed that Providencia and Bordetella were the dominant genera observed in BSFL gut and processed waste substrates. Pseudomonas and Comamonas were recorded in the raw waste substrates. The diversity of bacterial genera recorded from the fresh rearing substrates was significantly higher compared to the diversity observed in the gut of the BSFL and BSF frass (leftovers of the rearing substrates). These findings demonstrate that the presence and abundance of microbiota in BSFL and their associated waste vary considerably. However, the presence of clinically pathogenic strains of bacteria in the gut of BSFL fed both substrates highlight the biosafety risk of potential vertical transmission that might occur, if appropriate pre-and-postharvest measures are not enforced.

6.
Environ Monit Assess ; 193(8): 480, 2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34240260

RESUMEN

The study evaluates Hermetia illucens larvae's ability to decrease direct methane emissions and nutrients from cattle and swine manure. Hermetia illucens larvae were put into fresh cattle and swine manure, and the same conditions, without larvae, for the control treatment were established. The methane emissions were measured until the first prepupae appeared. The methane emissions from the bioconversion of animal manure by Hermetia illucens larvae were up to 86% lower than in the control treatments (conventional storage). The cumulative methane emissions from cattle and swine manure bioconversion were 41.4 ± 10.5 mg CH4 kg-1 and 134.2 ± 17.3 mg CH4 kg-1, respectively. Moreover, Hermetia illucens larvae could reduce 32% of dry matter, 53% nitrogen, 14% phosphorus, and 42% carbon in swine manure. Meanwhile, in cattle manure, reductions of 17% of dry matter, 5% of nitrogen, 11% of phosphorus, and 15% of carbon and pH reductions in both swine and cattle manure were found. Thus, the production of larvae was higher in swine manure than cattle manure. Furthermore, the larvae frass from swine manure was appropriate for agricultural use, unlike the larvae frass from cattle manure requiring further processing. These results reveal the ability of Hermetia illucens larvae to mitigate methane emissions from animal manure and show it to be a promising technology for manure treatment, with great potential to promote a circular economy in the livestock sector.


Asunto(s)
Dípteros , Estiércol , Animales , Bovinos , Monitoreo del Ambiente , Larva , Metano , Porcinos
7.
Biotechnol Rep (Amst) ; 27: e00503, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32714853

RESUMEN

In Brazil, a significant amount of organic waste is produced in households and restaurants. This study thus aimed to determine the ideal conditions for generating methane from the treatment of household waste by anaerobic digestion, under mesophilic (37 °C) and thermophilic (55 °C) conditions, to determine the maximum organic loading rate (OLR) in the reactors, and to evaluate kinetic parameters by statistical models: Modified Gompertz, First-Order, Logistic and Transference functions. The experiments were conducted in anaerobic batch reactors. Different proportions of pre-prepared waste (PPW)/leftover waste (LW) were used: 100/0, 75/25, 50/50, 25/75, and 0/100 and different ORL: 0.15; 0.30; 0.45; 0.60; and 0.90 g TVS (Total Volatile Solids).L-1.d-1. For both conditions, the optimal proportions of PPW/LW were 100/0 and 75/25 %. Under mesophilic condition, the best results were observed (869 mL of CH4.g TVS-1). The maximum organic load was 0.30 g TVS.L-1.d-1. The best data adjustment was performed by the Transference function.

8.
Artículo en Inglés | MEDLINE | ID: mdl-32107954

RESUMEN

Microorganisms with efficient organic matter degradation ability are essential for organic waste treatment. In this study, a thermophilic bacterium, Bacillus thermoliquefaciens, was identified to have excellent cellulase, amylase, and protease activity, and provided efficient degradation of food waste. This is the first report on the organic matter degradation potential of B. thermoliquefaciens. Using a "one-variable-at-a-time" approach and response surface methodology, the optimal culture conditions for B. thermoliquefaciens were determined to be a 5% inoculation level, 50 °C culture temperature, 25 mL filling volumes in 250 mL flasks, and 180 rpm shaking for 24 h. The optimized medium was formulated as 1 g Na2HPO4, 1 g KH2PO4, 0.05 g MgSO4, 3 g NaCl, 0.05 g CaCl2, 11.44 g wheat bran powder, 4.92 g soybean meal, and 1 L distilled water at pH 7.12. The maximum biomass attained was 1.57 ± 0.153 × 109 CFU/mL. The cost of this medium was 4.18 times less than that before optimization. This promising result lays a foundation for future industrial application of this bacterium to the degradation of organic waste.


Asunto(s)
Bacillus/crecimiento & desarrollo , Medios de Cultivo/química , Alimentos , Eliminación de Residuos/métodos , Residuos Sólidos , Bacillus/metabolismo , Biodegradación Ambiental , Biomasa , Análisis Costo-Beneficio , Geobacillus stearothermophilus , Concentración de Iones de Hidrógeno , Temperatura
9.
Ecotoxicol Environ Saf ; 185: 109667, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31569031

RESUMEN

In most resource-oriented sanitation (ROS) systems, the composting process has been a sustainable treatment method for source separated feces. Nonetheless, a slow and low degradation efficiency-combined with hygienic concerns, especially for the high amount of waste produced -makes the selection of the composting bulk additives a critical decision for the process. This study presents the efficiency improvement of adding different natural additives to enhance the composting process of the source separated feces in ROS systems. Three different natural additives, including sawdust, rice husk, and rice husk charcoal were utilized for the composting process of fresh feces with an additive w/w ratio of 2:1. To evaluate the impact of additives on compost properties, chemical, physical, and biological characteristics of composting materials were measured. Results indicated that using rice husk charcoal as an additive of the process was effective and generated a degradation of more than 40% of total organic carbon (TOC), reduced the nitrogen loss to less than 0.2%, and improved the germination index (GI) to more than 80%. Moreover, in terms of fecal indicators, the Escherichia coli (E. coli) stains were totally removed after five weeks. The efficacy of utilizing rice husk charcoal as a composting matrix in resource oriented sanitation systems can be, therefore, demonstrated as a nature-based treatment for source separated feces.


Asunto(s)
Carbón Orgánico/química , Compostaje , Heces/química , Oryza/química , Madera/química , Escherichia coli/crecimiento & desarrollo , Heces/microbiología , Nitrógeno/análisis , Suelo/química
10.
ACS Appl Bio Mater ; 2(9): 3790-3798, 2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-35021352

RESUMEN

The identification and quantification of microorganisms in water samples are crucial to improve processes in organic waste treatment facilities. Most of the currently available tests are either labor intense or costly, and they do not allow determination of the dynamics within microbial communities in digestate samples. This study is the first report on the use of thermal analysis, specifically the heat transfer method (HTM), to monitor microbial load in aqueous systems and digestate samples. Staphylococcus aureus was used as a model organism, and different concentrations in water were measured by the HTM. It was demonstrated that there was a positive correlation between the thermal resistance and concentration of the bacterial cells. Subsequently, the influence of temperature on growth rates was studied and confirmed by plating experiments and scanning electron microscopy (SEM). These results showed the possibility to monitor the temperature-dependent growth of S. aureus using the HTM. To determine if this technique can be applied for studying complex matrices, digestate samples were collected from a number of sources and plated on nutrient agar plates. The bacterial cultures derived from single colonies were characterized and identified by sequencing of DNA regions for 16S rRNA. HTM measurements were performed in diluted or centrifuged digestate samples that were enriched with S. aureus. The results indicated that it is possible to evaluate microbial load even in samples containing other organic material. The thermal analysis method has the potential to provide a low-cost monitoring option, which is simple to use and provides real-time analysis, thus improving the existing monitoring procedures in organic waste treatment facilities.

11.
Bioresour Technol ; 260: 68-75, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29614453

RESUMEN

Growth of heterotrophic bacterium Bacillus subtilis was metabolically coupled with the photosynthetic activity of an astaxanthin-producing alga Haematococcus pluvialis for conversion of starch-containing waste stream into carotenoid-enriched biomass. The H. pluvialis accounted for 63% of the produced co-culture biomass of 2.2 g/L. Importantly, the binary system requires neither exogenous supply of gaseous substrates nor application of energy-intensive mass transfer technologies due to in-situ exchange in CO2 and O2. The maximum reduction in COD, total nitrogen and phosphorus reached 65%, 55% and 30%, respectively. Conducted techno-economic assessment suggested that the astaxanthin-rich biomass may potentially offset the costs of waste treatment, and, with specific productivity enhancements (induction of astaxanthin to 2% and increase H. pluvialis fraction to 80%), provide and additional revenue stream. The outcome of this study demonstrates a successful proof-of-principle for conversion of waste carbon and nutrients into value-added products through metabolic coupling of heterotrophic and phototrophic metabolisms.


Asunto(s)
Carbono , Chlorophyta , Biomasa , Luz , Fotosíntesis
12.
Waste Manag ; 76: 294-305, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29571569

RESUMEN

Driven by the gradual changes in the structure of energy consumption and improvements of living standards in China, the volume of on-farm organic solid waste is increasing. If untreated, these unutilized on-farm organic solid wastes can cause environmental problems. This paper presents the results of a life cycle assessment to compare the environmental impacts of different on-farm organic waste (which includes dairy manure, corn stover and tomato residue) treatment strategies, including anaerobic digestion (AD), composting, and AD followed by composting. The input life cycle inventory data are specific to China. The potential environmental impacts of different waste management strategies were assessed based on their acidification potential (AP), eutrophication potential (EP), global warming potential (GWP), ecotoxicity potential (ETP), and resource depletion (RD). The results show that the preferred treatment strategy for dairy manure is the one that integrated corn stover and tomato residue utilization and solid state AD technologies into the system. The GWP of integrated solid state AD and composting was the least, which is -2900 kg CO2 eq/ t of dairy manure and approximately 14.8 times less than that of current status (i.e., liquid AD of dairy manure). Solid state AD of dairy manure, corn stover and tomato residues is the most favorable option in terms of AP, EP and ETP, which are more than 40% lower than that of the current status (i.e., AP: 3.11 kg SO2, EP: -0.94 kg N, and ETP: -881 CTUe (Comparative Toxic Units ecotoxicity)). The results also show that there is a significant potential for AP, EP, ETP, and GWP reduction, if AD is used prior to composting. The scenario analysis for transportation distance showed that locating the AD plant and composting facility on the farm was advantageous in terms of all the life cycle impact categories.


Asunto(s)
Compostaje , Granjas , China , Estiércol , Administración de Residuos
13.
Environ Sci Pollut Res Int ; 25(6): 5379-5385, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29209974

RESUMEN

Black soldier fly, Hermetia illucens (Linnaeus, 1758), is an important economic fly as its larvae can be used for recycling organic waste, such as food waste and manure. H. illucens larvae (BSFL) could uptake Cd from substrates and accumulate it inside bodies, which need to be monitored during waste treatment. Metallothionein (MT) usually serve as biomarker because of its role in metal homeostasis, detoxification, and dose response of heavy metals. Therefore, a MT gene was cloned from H. illucens (HIMT) that encoded 40 amino acids with typical cysteine rich features, which had a high sequence identity with other insect MTs. The expression of HIMT and total MT protein was measured in BSFL fed by meals spiked with gradient dose of Cd (0, 5, 50, 500 mg/kg) for 24, 48, 72, and 96 h, respectively. Dose-associated response of HIMT and total MT were found and the possible correlative range of Cd was from 5 to 50 mg/kg. The expression of HIMT might be a potential biomarker for monitoring Cd contamination by H. illucens in terrestrial organic matters, which might further apply in waste transformation system.


Asunto(s)
Biomarcadores Ambientales/genética , Larva/metabolismo , Metalotioneína/genética , Reciclaje/métodos , Simuliidae , Animales , Cadmio/metabolismo , Cadmio/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Larva/genética , Metalotioneína/metabolismo , Metales Pesados/metabolismo , Metales Pesados/farmacología , Simuliidae/genética , Simuliidae/metabolismo
14.
Waste Manag Res ; 32(3): 207-14, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24616343

RESUMEN

The aim of this work was to investigate anaerobic digestibility of artichoke waste resulting from industrial transformation. A series of batch anaerobic digestion tests was performed in order to evaluate the biochemical methane potential of the matrix in respect of the process. A comparison of the different performances of the laboratory-scale reactors operating in mesophilic conditions and utilizing three different values of the inoculum/substrate ratio was carried out. The best performance was achieved with an inoculum/substrate ratio of 2. Artichoke-processing byproducts showed a classical organic waste decomposition behaviour: a fast start-up phase, an acclimation stage, and a final stabilization phase. Following this approach, artichoke waste reached chemical oxygen demand removal of about 90% in 40 days. The high methane yield (average 408.62 mL CH4 gvs (-1) voltatile solids), makes artichoke waste a good product to be utilized in anaerobic digestion plants for biogas production.


Asunto(s)
Biocombustibles/análisis , Cynara scolymus/química , Industria de Procesamiento de Alimentos , Residuos Industriales/análisis , Metano/metabolismo , Anaerobiosis , Análisis de la Demanda Biológica de Oxígeno , Reactores Biológicos , Flores/química , Hojas de la Planta/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA