Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Hazard Mater ; 473: 134588, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38797072

RESUMEN

Hazardous heavy metals and organic substances removal is of great significance for ensuring the safety of aquatic-ecosystem, yet the highly effective and selective extraction always remains challenging. To address this problem, magnetic hollow microcubes were fabricated through thermal carbonization of Fe3O4-COOH@ Î³-CD-MOFs, and core-shell structured precursors were in-situ greenly constructed on a large scale via microwave-assisted self-assembly strategy. As noted, the development of secondary crystallization was utilized to achieve uniform dispersion of cores within MOFs frameworks and thus improved magnetic and adsorption ability of composites. Acquired magnetic Fe3O4 @HC not only can harvest excellent extraction of heavy metals (Cd, Pb, and Cu of 129.87, 151.05, and 106.98 mg·g-1) but also exhibit highly selective adsorption ability for cationic organics (separation efficiency higher than 95.0 %). Impressively, Fe3O4 @HC achieved outstanding adsorption (60-80 %) of Cd in realistic mussel cooking broth with no obvious loss in amino acid. Characterizations better offer mechanistic insight into the enhanced selectivity of positively charged pollutants can be attributed to synergistic effect of ions exchange and electrostatic interaction of abundant oxygen-containing functional groups. Our study provides a feasible route by rationally developing core-shell structured composites to promote the practical applications of sustainable water treatment and value-added utilization of processing by-products.

2.
J Environ Manage ; 356: 120593, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38508004

RESUMEN

Operational mode and powdered activated carbon (PAC) are key factors facilitating microbial syntrophy and interspecies electron transfer during anaerobic digestion, consequently benefiting process stability and efficient methanogenesis. In this study, continuous-flow reactor (CFR) and sequencing batch reactor (SBR), with and without the addition of PAC, respectively, were operated to examine their effects on system performance and methanogenic activity. Based on the cycle-test result, the PAC-amended CFR (CFRPAC) recorded both the highest methane yield (690.1 mL/L) and the maximum CH4 production rate (28.8 mL/(L·h)), while SBRs exhibited slow methanogenic rates. However, activity assays indicated that SBRs were beneficial for organics removal in batch experiments fed with peptone. Taxonomic and functional analysis confirmed that CFRs were optimal for proliferating oligotrophs (e.g., Geobacter) and SBRs were more suitable for copiotrophs (e.g., Desulfobulbus). Metagenomic analysis revealed that CFRs had efficient acetate metabolic pathways from propionate and ethanol, whereas SBRs did not, resulting in the buildup of propionate. Furthermore, Methanobacterium and Methanothrix were acclimated to the different operational conditions, while acetoclastic Methanosarcina and hydrogenotrophic Methanolinea were acclimated in SBRs (5.1-13.4%) and CFRs (0.3-1.7%), respectively. This study confirmed the enhancement of microbial syntrophy by the addition of PAC as well as the acclimation of electroactive bacteria (e.g., Geobacter) with complex organic substances.


Asunto(s)
Carbón Orgánico , Propionatos , Propionatos/metabolismo , Anaerobiosis , Polvos , Oxidación-Reducción , Metano , Reactores Biológicos
3.
Bioresour Technol ; 396: 130431, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342279

RESUMEN

Organic matter concentration is a critical factor influencing the adaptability of anaerobic ammonium oxidation (anammox) bacteria to low-strength sewage treatment. To address this challenge and achieve stable anammox activity, a micro-aeration partial nitrification-anammox process was developed for continuous-flow municipal sewage treatment. Under limited ammonium conditions, the effective utilization of organics in denitrification promoted the stable accumulation of nitrite and enhanced anammox activity. This, in turn, led to enhanced nitrogen removal efficiency, reaching approximately 87.7%. During the start-up phase, the protein content of extracellular polymeric substances (EPS) increased. This enhanced EPS intensified the inhibitory effect of denitrifying bacteria (DNB) on nitrite-oxidizing bacteria through competition for nitrite, thereby facilitating the proliferation of anammox bacteria (AnAOB). Additionally, several types of DNB capable of utilizing slowly biodegradable organics contributed to the adaptability of AnAOB. These findings provide valuable insights for ensuring efficient anammox performance and robust nitrogen removal in the treatment of low-strength sewage.


Asunto(s)
Compuestos de Amonio , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Desnitrificación , Nitritos/metabolismo , Anaerobiosis , Reactores Biológicos/microbiología , Oxidación-Reducción , Nitrificación , Compuestos de Amonio/metabolismo , Nitrógeno/metabolismo , Bacterias/metabolismo
4.
Sci Total Environ ; 905: 167298, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37742972

RESUMEN

As representative organic and inorganic additives, both biochar and smectite exhibit an excellent capacity to improve humification efficiency during composting. Nevertheless, the mechanisms underlying biochar/smectite-induced compost humification have still not been fully explored from the perspective of overall organic substances. In this study, three composting treatments were performed as follows: 10 % biochar-amended composting, 10 % smectite-amended composting and natural composting without any additive. UV-visible parameters and synchronous hetero two-dimensional correlation spectra showed that biochar accelerated dissolved organic matter (DOM) complications, unsaturation and aromatization. For example, biochar promoted the C2 and simple C3 peaks to convert into a sophisticated C3/360 peak. However, the effect of smectite was negligible in complicating the DOM structure. Both biochar and smectite displayed an invigorating role in promoting humic substance (HS) formation. The strengthened relations between bacterial richness and physicochemical indicators and HS fractions might contribute to the positive action of biochar/smectite on HS synthesis. Network analysis showed that both bacterial functional omnipotence and specialization in response to the addition of catalysts may contribute to compost humification. The chemical pathway involved in DOM humification was intensified by enhancing the role of pH in biochar composting and weakening the degradation of unsaturated aromatic compounds of DOM with smectite addition. These findings benefit the practical application of biochar/smectite in promoting composting efficiency.


Asunto(s)
Pollos , Compostaje , Animales , Suelo/química , Estiércol/análisis , Sustancias Húmicas/análisis , Materia Orgánica Disuelta
5.
Membranes (Basel) ; 13(3)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36984727

RESUMEN

Membrane filtration methods were applied in this study to research natural waters specification (and speciation). Lysimetric waters (soil waters) of background territories in different seasons are considered. Features of the change in molecular weights, elemental composition, and zeta potential of organic matter during fractionation from 8 µm to 100 kDa were found. The number of labile and non-labile speciation of some elements obtained by membrane filtration and ion-exchange separation methods were found and compared. The highest molecular weights of organic substances were found in summer samples of lysimetric waters (more than 100 kDa) with a predominance of the aromatic component in the IR spectra of the samples. Several maxima were also found in the molecular weight distribution, including the increase in autochthonous organic substances. The most stable negative zeta potential, as a stabilized colloid matter, are represented in summer (near -26 mV) and in autumn (near -22 mV) lysimetric water. A slight increase in metal ions bound into organic complexes is typical for summer and autumn samples.

6.
Photochem Photobiol Sci ; 22(2): 419-426, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36318401

RESUMEN

The photoelectrochemical degradation of selected aromatic substances, acid orange 7 (AO7), salicylic acid (SA), benzoic acid (BA), and 4-chlorophenol (4-CP) was studied on hematite (α-Fe2O3) and compared with titanium dioxide (TiO2), both deposited as thin films on conducting substrates (FTO/glass). Batch type reactors were used under backside and front side illumination. Electrical bias was applied on the semiconducting electrodes, such that only valence band processes leading to oxidative pathways were followed. The initial Faradaic efficiency, f0, of degradation processes was determined from the UV-Vis absorbance decrease of the starting materials. f0 for 1 mM AO7 degradation in 0.01 M sulphuric acid was found to be 7.5%. When the pH of the solution was neutral (pH 7.2) or alkaline (pH 13), f0 decreased to 1.7%. For 1 mM SA, f0 was 6.2% on hematite photoanodes and 6.1% on titanium dioxide. For 1 mM benzoic acid and 4-chlorophenol, f0 was an order of magnitude lower, but only on hematite. This is ascribed to the lack of OH· radical formation on hematite, which seems to be essential for the photooxidation of these compounds.

7.
Molecules ; 27(21)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36364384

RESUMEN

Nettle and the sage herbs were used to obtain carbonaceous adsorbents. For the biochar preparation the precursors were dried and subjected to conventional pyrolysis. Activated carbons were obtained during precursor impregnation with phosphoric(V) acid and multistep pyrolysis. The textural parameters and acidic-basic properties of the obtained adsorbents were studied. The activated carbons prepared from the above herbs were characterized by the largely developed specific surface area. The obtained carbonaceous adsorbents were used for polymer removal from aqueous solution. Poly(acrylic acid) (PAA) and polyethylenimine (PEI) were chosen, due to their frequent presence in wastewater resulting from their extensive usage in many industrial fields. The influence of polymers on the electrokinetic properties of activated carbon were considered. PAA adsorption caused a decrease in the zeta potential and the surface charge density, whereas PEI increased these values. The activated carbons and biochars were used as polymer adsorbents from their single and binary solutions. Both polymers showed the greatest adsorption at pH 3. Poly (acrylic acid) had no significant effect on the polyethylenimine adsorbed amount, whereas PEI presence decreased the amount of PAA adsorption. Both polymers could be successfully desorbed from the activated carbons and biochar surfaces. The presented studies are innovatory and greatly required for the development of new environment protection procedures.


Asunto(s)
Carbón Orgánico , Polímeros , Carbón Orgánico/química , Polímeros/química , Polietileneimina , Adsorción
8.
J Infect Chemother ; 28(1): 67-72, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34635450

RESUMEN

INTRODUCTION: Human norovirus (HuNoV) is a leading cause of infectious gastroenteritis. Since HuNoV shows resistance to alcohol, chlorine-based sanitizers are applied to decontaminate the virus on environmental surfaces. Chlorous acid water (CA) has been recently approved as a novel chlorine-based disinfectant categorized as a Type 2 OTC medicine in Japan. In this study, we aimed to evaluate the capability of CA to inactivate HuNoV. METHODS: HuNoV (genogroups GII.2 and GII.4) was exposed to the test disinfectants including CA and sodium hypochlorite (NaClO), and the residual RNA copy was measured by reverse transcription quantitative PCR (RT-qPCR) after pretreatment with RNase. In addition, the log10 reduction of HuNoV RNA copy number by CA and NaClO was compared in the presence of bovine serum albumin (BSA), sheep red blood cells (SRBC), polypeptone, meat extract or amino acids to evaluate the stability of these disinfectants under organic-matter-rich conditions. RESULTS: In the absence of organic substances, CA with 200 ppm free available chlorine provided >3.0 log10 reduction in the HuNoV RNA copy number within 5 min. Even under high organic matter load (0.3% each of BSA and SRBC or 0.5% polypeptone), 200 ppm CA achieved >3.0 log10 reduction in HuNoV RNA copy number while less than 1.0 log10 reduction was observed with 1,000 ppm sodium hypochlorite (NaClO) in the presence of 0.5% polypeptone. CA reacted with only cysteine, histidine and glutathione while NaClO reacted with all of the amino acids tested. CONCLUSIONS: CA is an effective disinfectant to inactivate HuNoV under organic-matter-rich conditions.


Asunto(s)
Desinfectantes , Norovirus , Animales , Cloruros , Cloro/farmacología , Desinfectantes/farmacología , Humanos , Ovinos , Agua
9.
Environ Technol ; 43(17): 2590-2603, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33577403

RESUMEN

This study investigated for the first time the efficiency of an advanced oxidation process (AOP) zero valent iron/hydrogen peroxide (ZVI/H2O2) employing iron nails for the removal of Natural Organic Matter (NOM) from natural water of Regent's Park lake, London, UK. The low cost of nails and their easy separation from the water after the treatment make this AOP attractive for water utilities in low- and middle-income countries. The process was investigated as a pre-oxidation step for drinking water treatment. Results showed that UV254 removal in the natural water was lower than that of simulated water containing commercial humic acid (HA), indicating a matrix effect. Statistical analysis confirmed the maximum removal of dissolved organic carbon (DOC) in natural water depends on the initial pH (best at 4.5) and H2O2 dosage (best at 100% excess of stoichiometric dosage). DOC and UV254 removals under this operational condition were 51% and 89%, respectively. Molecular weight (MW) and specific UV absorbance (SUVA254) were significantly reduced to 74% and 78%, respectively. Formation of Chloroform THM in natural water sample after the ZVI/H2O2 process (initial pH 4.5) was below the limit for drinking water, and 48% less than the THM formation in the same water not subjected to pre-oxidation. Characterization of oxidation products on the iron-nail-ZVI surface after the ZVI/H2O2 treatment by SEM, XRD, and XPS identified the formation of magnetite and lepidocrocite. Results suggest that the investigated ZVI/H2O2 process is a promising technology for removing NOM and reducing THM formation during drinking water treatment.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Agua Potable/análisis , Peróxido de Hidrógeno/química , Hierro/química , Uñas/química , Oxidación-Reducción , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
10.
Plant Physiol Biochem ; 168: 305-320, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34673320

RESUMEN

In Sabkha biotope, several environmental factors (i.e., salinity, drought, temperature, etc.) especially during dry season affect halophytes developments. To cope with these harmful conditions, halophytes use multiple mechanisms of adaptations. In this study, we focused on the effect of environmental condition changes over a year in the Sabkha of Aïn Maïder (Medenine - Tunisia) on the physiological and biochemical behavior of Limoniastrum guyonianum using a modeling approach. Our study showed that the model depicted well (R2 > 0.75) the monthly fluctuations of the studied parameters in this habitat. During the dry period (June to September), the salinity of the soil increased remarkably (high level of EC and Na+ content), resulting in high Na+ content in the aerial parts followed by a nutrient deficiency in K+, Ca2+, and Mg2+. As a result of this disruption, L. guyonianum decreased its water potential to more negative values to maintain osmotic potential using inorganic osmolytes (i.e., Na+) and organic osmolytes (i.e., sugars: sucrose, fructose, glucose, and xylitol, and organic acids: citric and malic acids). In addition, CO2 assimilation rate, stomatal conductance, transpiration rate, and photosynthetic pigments decreased significantly with increasing salinity. The phenolic compounds contents and the antioxidant activity increased significantly in the dry period as a result of increased levels of H2O2 and lipid peroxidation. This increase was highly correlated with soil salinity and air temperature. The maintenance of tissue hydration (i.e., moderate decrease of relative water content), the accumulation of sugars and organic acids, the enhancement of phenolic compounds amounts, and the increase of antioxidant activity during the dry period suggest that L. guyonianum possesses an efficient tolerance mechanism that allows the plant to withstand the seasonal fluctuations of climatic conditions in its natural biotope.


Asunto(s)
Peróxido de Hidrógeno , Plumbaginaceae , Antioxidantes/metabolismo , Fotosíntesis , Plumbaginaceae/metabolismo , Salinidad , Estaciones del Año , Túnez
11.
J Environ Radioact ; 240: 106756, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34649194

RESUMEN

The volumetric activity of the divalent 90Sr ion in groundwater at the Chornobyl NPP industrial site ranges from 1 to 2 to 400-3800 Bq/l. The increase in groundwater radionuclides concentrations is associated with the reduced sorption properties of local sediments, which affect the migration capacity of radionuclides in the environment. The decrease of the 90Sr sorption properties of sediments is caused by changes in the chemical composition of groundwater. A new statistical method has been performed. Method based on the Monte Carlo method in order to evaluate the correlations between the 90Sr volumetric activity and the groundwater chemical composition components. Simulation results using this method suggest a correlation between the volumetric activity of 90Sr, the concentrations cations, the pH, and the oxidation index (organic contents). A direct correlation was established between the volumetric activity of 90Sr, Ca2+ concentrations and the pH of groundwater in the range from 7 to 12.4. It was revealed that the concentrations of Na+ and K+ do not affect the conditions of 90Sr migration with groundwater. There is an inverse correlation between the concentration of 90Sr and the oxidation index, which is an indirect indicator of the organic substances content in water. Thus, the presence of organic substances in the groundwater effectively promotes sorption of 90Sr. The proposed method of geochemical statistics enables a quantitative assessment of groundwater monitoring results.


Asunto(s)
Accidente Nuclear de Chernóbil , Agua Subterránea , Monitoreo de Radiación , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Radioisótopos de Estroncio , Contaminantes Químicos del Agua/análisis
12.
Membranes (Basel) ; 11(8)2021 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-34436357

RESUMEN

Anaerobically treated swine wastewater contains large amounts of orthophosphate phosphorus, ammonium nitrogen and organic substances with potential nutrients recovery via struvite electrochemical precipitation post-treatment. Lab-scale batch experiments were systematically conducted in this study to investigate the effects of initial pH, current density, organic substances upon nutrients removal, and precipitates quality (characterized by X-ray diffraction, scanning electron microscopy and element analysis via acid dissolution method) during the struvite electrochemical precipitation process. The optimal conditions for the initial pH of 7.0 and current density of 4 mA/cm2 favoured nutrients removal and precipitates quality (struvite purity of up to 94.2%) in the absence of organic substances. By contrast, a more adverse effect on nutrients removal, morphology and purity of precipitates was found by humic acid than by sodium alginate and bovine albumin in the individual presence of organic substances. Low concentration combination of bovine albumin, sodium alginate, and humic acid showed antagonistic inhibition effects, whereas a high concentration combination showed the accelerating inhibition effects. Initial pH adjustment from 7 to 8 could effectively mitigate the adverse effects on struvite electrochemical precipitation under high concentration combined with organic substances (500 mg/L bovine albumin, 500 mg/L sodium alginate, and 1500 mg/L humic acid); this may help improve struvite electrochemical precipitation technology in practical application for nutrients recovery from anaerobically treated swine wastewater.

13.
Molecules ; 26(5)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806418

RESUMEN

In topic-related literature pertaining to the treatment of water, there is a lack of information on the influence of iron ions in highly basic polyaluminum chlorides on the efficiency of purifying water with increased contents of organic substance. The aim of this work was to determine the changes in the content of organic substances as well as iron compounds in water intended for human consumption following unit treatment processes with particular attention paid to the coagulation process. As coagulants, polyaluminium chloride PAXXL10 with an alkalinity of 70%, as well as polyaluminium chloride PAXXL1911 with an alkalinity of 85% the composition of which also contained iron, were tested. The analysis of the obtained results showed that iron compounds and organic substances were removed to the greatest extent by the coagulation process, which also had a significant influence on the final efficiency of water treatment. The effectiveness of water treatment was determined by the type of tested polyaluminum chloride, which influenced the formation of iron-organic complexes. The reason behind the formation of colored iron-organic complexes during coagulation using PAXXL1911 coagulant was the high pH (approx. 8), at which the functional groups of organic substances, due to their dissociation, are more reactive in relation to iron, and possibly the fact of introducing additional iron ions along with the coagulant.


Asunto(s)
Álcalis/química , Hidróxido de Aluminio/química , Hierro/aislamiento & purificación , Compuestos Orgánicos/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , Concentración de Iones de Hidrógeno
14.
Environ Monit Assess ; 193(2): 108, 2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33532946

RESUMEN

Particulate matter (PM) is one of the existing air pollutants, which can cause damages to human health, public property, and the environment. The chemical composition of this pollutant greatly varies, mainly its organic fraction. Thus, our objective was to carry out a literature review based on articles, considering studies conducted in South America, whose authors address the characterization of the polar organic fraction of PM. We performed the review using the Scopus, SciELO, and Web of Science databases, considering publications dated from the years 2010 to 2019. A total of 14,575 articles were found, of which only 12 met the predefined selection criteria. According to our research, the most studied compound is levoglucosan, a biomass burning marker belonging to the group of anhydrous sugars. Besides, nitro-PAHs, which usually originate from vehicular sources and are compounds with mutagenic and carcinogenic characteristics, have also been found. Moreover, we concluded that, currently, there are few studies on the subject in South America, requiring more research on polar organic compounds present in PM in countries of this region. These studies are of great importance because some compounds can cause great damage to human health, such as the nitro-PAHs; furthermore, PM may still have unknown compounds that need identification and elucidation of their toxicity.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Humanos , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , América del Sur
15.
J Hazard Mater ; 401: 123884, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33113752

RESUMEN

Halogenated organic compounds, also termed organohalogens, were initially regarded to be of almost exclusively anthropogenic origin. However, recent research has demonstrated that photochemical reactions are important abiotic sources of organohalogen compounds in sunlit surface waters. Halide ions (X-, X represents Cl, Br and I) are common anions in natural waters and might be oxidized by reactive species originated from photochemistry of dissolved organic matter (DOM) or inorganic photoactive species. The resulting reactive halogen species may react with organic substances with diverse bimolecular reaction rate constants, depending on the complexity and structure of organic substances. Therefore, the chemical mechanism of halogenation remains challenging to be fully elucidated. To better understand the trends in the existing data and to identify the knowledge gaps that may merit further investigation, this review gives an integrative summary on the sources of reactive oxygen species (ROS) and halogen radicals (X/X2-). Photochemical halogenation of phenolic compounds and formation of methyl halide and brominated organic pollutants are highlighted. By evaluating existing literature and identifying some uncertainties, this review emphasizes the environmental significance of sunlight-driven halogenation and proposes further research directions on mechanistic investigation and rational experimental design close to natural systems.

16.
Sci Total Environ ; 751: 141789, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-32889474

RESUMEN

The high content of organic substances in strength agro-industrial wastewater has been documented to be among the major barriers hampering nutrient recovery efficiency of struvite precipitation. However, our results in this study show that the previously reported negative impacts of organic substances in high-strength agricultural wastewater on struvite precipitation might be overestimated. This study is the first to test the influence of three forms of organic substances from real high-strength wastewater that contains a complex of particulate, colloidal and soluble organic substances, on nutrient recovery efficiency and product quality through struvite precipitation at varying pH conditions. Our results demonstrated that the inhibition of organic substances on struvite formation only happens at the pH levels of <9.0 with recovery reduction of PO43- (5-15%) and NH4+ (6-13%). The inhibitory effect of the organic substances at the optimal pH range (9.5-10) reported from the literature review is only ≤5%. Moreover, the transformation in the contents of humic- and protein-like substances with an increment in pH was characterized and may contribute to mitigate the inhibition of nutrient recovery. Even though the particulate and colloidal organic substances slowed the precipitation reaction, they substantially increased the particle size (i.e., 70% and 40%, respectively) of the formed struvite. The presence of organic substances in all tested forms does not significantly influence the purity and crystalline structure of struvite which can still be used as a slow-releasing fertilizer. Regarding the relocation process of organic substances during struvite precipitation under varying pH conditions, understanding the interaction between organics and heavy metals which in turn affect the dynamics of heavy metals in solution and precipitates remains limited; thus, additional research is needed.

17.
Biotechnol Bioeng ; 118(3): 1152-1165, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33236769

RESUMEN

Biofouling represents an important limitation in photobioreactor cultures. The biofouling propensity of different materials (polystyrene, borosilicate glass, polymethyl methacrylate, and polyethylene terephthalate glycol-modified) and coatings (two spray-applied and nanoparticle-based superhydrophobic coatings and a hydrogel-based fouling release coating) was evaluated by means of a short-term protein test, using bovine serum albumin (BSA) as a model protein, and by the long-term culture of the marine microalga Nannochloropsis gaditana under practical conditions. The results from both methods were similar, confirming that the BSA test predicts microalgal biofouling on surfaces exposed to microalgae cultures whose cells secrete macromolecules, such as proteins, with a high capacity for forming a conditioning film before cell adhesion. The hydrogel-based coating showed significantly reduced BSA and N. gaditana adhesion, whereas the other surfaces failed to control biofouling. Microalgal biofouling was associated with an increased concentration of sticky extracellular proteins at low N/P ratios (below 15).


Asunto(s)
Proteínas Algáceas , Incrustaciones Biológicas , Materiales Biocompatibles Revestidos/química , Hidrogeles/química , Microalgas/crecimiento & desarrollo , Estramenopilos/crecimiento & desarrollo , Proteínas Algáceas/química , Proteínas Algáceas/metabolismo , Albúmina Sérica Bovina/química , Propiedades de Superficie
18.
Molecules ; 25(15)2020 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-32722467

RESUMEN

Due to the coexistence of organic matter and iron in groundwater, a certain part of the iron is present as iron-organic complexes in the form of colloids and/or dissolved complexes. The study was conducted to evaluate the impact of the type of oxidizing agent: O2, Cl2, H2O2, or KMnO4, on the efficiency of the oxidation and removal of iron compounds from three groundwaters with significantly different contents and types of organic substances among which humic and fulvic acids occurred. This study shows that after the aeration and the oxidation with Cl2 and H2O2, the increasing content of dissolved hydrophilic organic substances containing aromatic rings in the raw water reduced the effectiveness of Fe(II) oxidation and the effectiveness of iron removal during the sedimentation process. This regularity was not found only when KMnO4 was used as the oxidant. After oxidation with H2O2, the highest number of organo-iron complexes and an increased concentration of dissolved organic carbon were found. High concentrations of organo-ferrous connections were also found in aerated water samples. The highest KMnO4 efficiency of removing iron and organic substances and reducing the color intensity and turbidity was due to the catalytic and adsorptive properties of the precipitated MnO2, which also improved the sedimentation properties of the resultant oxidation products.


Asunto(s)
Agua Subterránea/química , Sustancias Húmicas/toxicidad , Compuestos de Hierro/química , Oxidantes/química , Adsorción/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/química , Hierro/química , Hierro/toxicidad , Compuestos de Hierro/toxicidad , Compuestos de Manganeso/química , Oxidantes/farmacología , Oxidación-Reducción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad
19.
Anal Bioanal Chem ; 412(20): 4941-4952, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32524369

RESUMEN

Persistent and mobile organic substances (PM substances) are a threat to the quality of our water resources. While screening studies revealed widespread occurrence of many PM substances, rapid trace analytical methods for their quantification in large sample sets are missing. We developed a quick and generic analytical method for highly mobile analytes in surface water, groundwater, and drinking water samples based on enrichment through azeotrope evaporation (4 mL water and 21 mL acetonitrile), supercritical fluid chromatography (SFC) coupled to high-resolution mass spectrometry (HRMS), and quantification using a compound-specific correction factor for apparent recovery. The method was validated using 17 PM substances. Sample preparation recoveries were between 60 and 110% for the vast majority of PM substances. Strong matrix effects (most commonly suppressive) were observed, necessitating a correction for apparent recoveries in quantification. Apparent recoveries were neither concentration dependent nor dependent on the water matrix (surface or drinking water). Method detection and quantification limits were in the single- to double-digit ng L-1 ranges, precision expressed as relative standard deviation of quadruplicate quantifications was on average < 10%, and trueness experiments showed quantitative results within ± 30% of the theoretical value in 77% of quantifications. Application of the method to surface water, groundwater, raw water, and finished drinking water revealed the presence of acesulfame and trifluoromethanesulfonic acid up to 70 and 19 µg L-1, respectively. Melamine, diphenylguanidine, p-dimethylbenzenesulfonic acid, and 4-hydroxy-1-(2-hydroxyethyl)-2,2,6,6-tetramethylpiperidine were found in high ng L-1 concentrations. Graphical abstract.

20.
Environ Monit Assess ; 192(5): 315, 2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32342208

RESUMEN

The aim of this study has been to evaluate the effect of sewage sludge and composted sewage sludge and municipal waste on the content of various forms of P in soil. The experiment scheme: C, control; NPK; FYM; DGSS, dried and granulated sewage sludge; CSS, composed sewage sludge; CSSS, composted sewage sludge and straw; CMMW, composted mixed municipal waste; CMGW, composted municipal green waste. The content of bound P was determined in the fractions: F1, easily soluble; F2, exchangeable; F3, organic; F4, carbonate; F5, stable organic-mineral and mineral bonds; and F6, residual. The NPK fertilisation as well as the soil fertilisation with organic substances raised the P-total content and of P bound in the fractions: F3, F4, F5 and F6. The highest amount of phosphorus in the studied soil was in fraction F3 (phosphorus in organic compounds) and the lowest in fraction F1 (phosphorus in the ionic form as H2PO4- and HPO42-). Composted sludge and straw introduced into the soil increased the content of readily soluble P (F1), while the NPK effect was reversed. NPK fertilisation and enhancement of soil organic matter (except CSSS, CMGW) led to a reduction of the P content in F2 fraction. The content of available P determined by the Egner-Riehm method depended on the content of C-organic, P-total and CEC soil. Among the determined phosphorus fractions, the content of available P was most strongly correlated with the content of P bound in the carbonate fraction (F4) and residual fraction (F6) and, less strongly, with the organic phosphorus fraction.


Asunto(s)
Monitoreo del Ambiente , Fertilizantes , Fósforo , Aguas del Alcantarillado , Suelo , Fertilizantes/análisis , Fertilizantes/normas , Fósforo/análisis , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA