Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.901
Filtrar
1.
Environ Res ; 262(Pt 2): 119900, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39233026

RESUMEN

The presence of organic matter in sludge plays a significant role in sludge dewatering, anaerobic sludge digestion, resource (i.e., protein) recovery and pollutants removal (i.e., heavy metals) from sludge, as well as post-application of sludge liquid and solid digestate. This study summarized the current knowledge on using liquid chromatography organic carbon detection and organic nitrogen detection (LC-OCD-OND) for characterization and quantification of organic matter in sludge samples related with sludge treatment processes by fractionating organic matter into biopolymers, building blocks, humic substances, low molecular weight (LMW) acids, low LMW neutrals, and inorganic colloids. In addition, the fate, interaction, removal, and degradation of these fractions in different sludge treatment processes were summarized. A standardized extraction procedure for organic components in different extracellular polymeric substances (EPS) layers prior to the LC-OCD-OND analysis is highly recommended for future studies. The analysis of humic substances using the LC-OCD-OND analysis in sludge samples should be carefully conducted. In conclusion, this study not only provides a theoretical foundation and technical guidance for future experiments and practices in characterizing sludge organic matter using LC-OCD-OND, but also serves as a valuable resource for consulting engineers and other professionals involved in sludge treatment.

2.
Sci Total Environ ; 953: 176177, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39260484

RESUMEN

Dissolved organic carbon (DOC) components can be highly variable in aquatic ecosystems, and play a pivotal role in the global carbon cycles. To comprehend potential effects of nutrient enrichment on portion of DOC biodegradability (%BDOC), we conducted an extensive investigation on 26 urban lakes in a major metropolitan area in subtropical China in a small gradient of trophic levels from mesotrophic to light and middle eutrophic. In addition to field measurements on lake ambient conditions and laboratory analysis of DOC characteristics, we conducted a 28-day temperature-controlled incubation experiment, in which %BDOC of lake waters was determined. In the mesotrophic waters, %BDOC ranged from 0.6 to 41.4 % (11.2 ± 8.9 %). The %BDOC levels spanned from 5.2 to 20.2 % (10.7 ± 4.0 %) in the light eutrophic waters, and the %BDOC ranged from 2.7 to 35.0 % (13.7 ± 8.4 %) in the middle eutrophic waters. We found a significant change in DOC chemical composition across the study lakes characterized by shifting of trophic levels. Although the experiment found significant changes in the factors that can influence %BDOC, a significant difference was not observed in %BDOC among the three trophic levels. The %BDOC was primarily influenced by the inherent DOC concentration and aromaticity, with eutrophication leading to the varied driving factors of %BDOC in lake systems. We show that most of the lake water DOC was stable. The findings indicate the intricate interplay between biological metabolism and nutrient availability governing %BDOC dynamics in urban lake ecosystems.

3.
Environ Pollut ; 362: 124948, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39265767

RESUMEN

This study examined the effects of solar light driven plastic degradation on carbon chemistry in the coastal waters of eastern Arabian Sea along the west coast of India. The research was conducted through experimental incubations exposed to natural sunlight at multiple locations between December 2023-February 2024. Photodegradation induced a significant pH decrease (up to 0.38 ± 0.02) between controls and plastic incubations ranging from 8.17 ± 0.01 to 7.54 ± 0.02 with the highest variation in the Mumbai coast ranging from 8.13 ± 0.01 to 7.75 ± 0.03. pH variations are primarily caused by the leaching of organic acids and CO2 release during solar irradiated incubation. Plastic leaching due to natural light irradiation and subsequent changes in the water chemistry is of prime significance with dissolved organic carbon (DOC) leaching of 0.002-0.03% of plastic weight into the coastal waters. Our estimations suggest 15-75 metric tonnes (MT) of DOC release per year by plastic pollution in the eastern Arabian Sea coastal waters. Further, the fluorescent dissolved organic matter (FDOM) fragmentation, a part of DOC, may act as an organic source of synthetic contaminants and would promote heterotrophic microbial action in the coastal waters. Photodegradation of plastic and the interaction of natural DOC and plastic-derived DOC resulted in longer wavelengths FDOM, which may affect the penetration of photosynthetically active radiation in the water column, thereby impacting primary production. Finally, future research work focussing on the role of plastic pollution in coastal ocean acidification and vice-versa is essential and will be increasingly intense in the upcoming decades.

4.
Sensors (Basel) ; 24(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39275580

RESUMEN

Accurate estimation of the distribution of POC in the sea surface is an important issue in understanding the carbon cycle at the basin scale in the ocean. This study explores the best machine learning approach to determine the distribution of POC in the ocean surface layer based on data obtained using satellite remote sensing. In order to estimate and verify the accuracy of this method, it is necessary to obtain a large amount of POC data from field observations, so this study was conducted in the Mediterranean Sea, where such data have been obtained and published. The research initially utilizes the Geographic Detector (GD) method to identify spatial correlations between POC and 47 environmental factors in the region. Four machine learning models of a Bayesian optimized random forest (BRF), a backpropagation neural network, adaptive boosting, and extreme gradient boosting were utilized to construct POC assessment models. Model validation yielded that the BRF exhibited superior performance in estimating sea-surface POC. To build a more accurate tuneRanger random forest (TRRF) model, we introduced the tuneRanger R package for further optimization, resulting in an R2 of 0.868, a mean squared error of 1.119 (mg/m3)2, and a mean absolute error of 1.041 mg/m3. It was employed to estimate the surface POC concentrations in the Mediterranean for May and June 2017. Spatial analysis revealed higher concentrations in the west and north and lower concentrations in the east and south, with higher levels near the coast and lower levels far from the coast. Additionally, we deliberated on the impact of human activities on the surface POC in the Mediterranean. This research contributes a high-precision method for satellite retrieval of surface POC concentrations in the Mediterranean, thereby enriching the understanding of POC dynamics in this area.

5.
Vet Res Forum ; 15(8): 425-434, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39280855

RESUMEN

A 35-day study investigated the impact of carbon sources and carbon/nitrogen (C/N) ratios on the microbial community of biofloc. For this purpose, we utilized a combination of phospho-lipid fatty acids (PLFAs) profiles and DNA-based sequencing methods to investigate changes in the microbial community composition and structure. The experiment involved three carbon sources including Dextrin (DEX), corn starch (CS) and wheat bran (WB) at two C/N ratios (19 and 30). The results indicated that WB and CS were found to decrease nitrogen metabolite concentration while increasing total suspended solids and bacterial density compared to DEX. The treatments exhibited variations in microbial communities and the use of polymerase chain reaction/ denaturing gradient gel electrophoresis analysis revealed distinct dominant bacterial species linked to carbon sources and C/N ratios. Furthermore, the highest levels of bacteria and protozoa PLFAs biomarkers were observed in the C/N30 ratio and WB treatment while the ratio for poly-ß-hydroxybutyrate/PLFAs and fungi biomarkers displayed a decrease. Also, by incorporating the results of PLFAs profile and conducting a principal component analysis, the treatments were categorized into distinct groups based on both the carbon source and C/N ratios. Overall, both methods yield consistent results. PLFAs offered additional insights into the microbial composition beyond bacterial structure while DNA-based analysis provided finer taxonomic resolution.

6.
Environ Pollut ; 362: 124965, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39284406

RESUMEN

Although the effects of plastic residues on soil organic carbon (SOC) have been studied, variations in SOC and soil carbon-enzyme activities at different plant growth stages have been largely overlooked. There remains a knowledge gap on how various varieties of plastics affect SOC and carbon-enzyme activity dynamics during the different growing stages of plants. In this study, we conducted a mesocosm experiment under field conditions using low-density polyethylene and poly (butylene adipate-co-terephthalate) debris (LDPE-D and PBAT-D, 500-2000 µm (pieces), 0%, 0.05%, 0.1%, 0.2%, 0.5%, 1%, 2%), and low-density polyethylene microplastics (LDPE-M, 500-1000 µm (powder), 0%, 0.05%, 0.1%, 0.5%) to investigate SOC and C-enzyme activities (ß-xylosidase, cellobiohydrolase, ß-glucosidase) at the sowing, seedling, flowering and harvesting stages of soybean (Glycine Max). The results showed that SOC in the LDPE-D treatments significantly increased from the flowering to harvesting stage, by 12.69%-13.26% (p < 0.05), but significantly decreased in the 0.05% and 0.1% LDPE-M treatments from the sowing to seedling stage (p < 0.05). However, PBAT-D had no significant effect on SOC during the whole growing period. For C-enzyme activities, only LDPE-D treatments inhibited GH (17.22-38.56%), BG (46.7-66.53%) and CBH (13.19-23.16%), compared to treatment without plastic addition, from the flowering stage to harvesting stage. Meanwhile, C-enzyme activities and SOC responded nonmonotonically to plastic abundance and the impacts significantly varied among the growing stages, especially in treatments with PBAT-D (p < 0.05). These risks to soil organic carbon cycling are likely mediated by the effects of plastic contamination and degradation soil microbe. These effects are sensitive to plastic characteristics such as type, size, and shape, which, in turn, affect the biogeochemical and mechanical interactions involving plastic particles. Therefore, further research on the interactions between plastic degradation processes and the soil microbial community may provide better mechanistic understanding the effect of plastic contamination on soil organic carbon cycling.

7.
Sci Total Environ ; : 176140, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39288878

RESUMEN

The Yellow River is distinguished by the highest sediment load in mainland China and significant siltation in artificial reservoirs along its main channel, reducing water availability, sediment trapping, and carbon burial in the hydrological project. Since 2002, the Water Sediment Regulation Scheme (WSRS) has been progressively implemented as a hydraulic management strategy to mitigate reservoir sedimentation in the middle-lower basin reservoirs. However, this substantial release of sediment and water has also affected river morphology, carbon burial, and sediment trapping. This research assesses the evolution of particulate organic carbon burial and sediment trapping in eight Yellow River reservoirs from 2002 to 2018, covering the upper and middle-lower basins and two reservoirs in the Yiluo River sub-basin. We calculated the annual and seasonal variations using hydrological data from 11 stations along the Yellow River. A hydrological framework was developed to calculate sediment trapping, and a Monte Carlo analysis was performed to estimate particulate organic carbon burial across all the evaluated reservoirs. We found that sediment trapping and carbon burial in upper basin reservoirs are most influenced by shifts in the precipitation regime, particularly by natural events such as severe droughts or heavy rainfall. A strong correlation was observed between annual precipitation variations and sediment load. In middle-lower basin reservoirs, the major artificial sediment regulation is strongly linked to a significant reduction in sediment trapping and particulate organic carbon burial. This impact is especially notable in the Yiluo River Sub-basin reservoirs, which have experienced a >90 % reduction compared to levels before the WSRS implementation. Finally, we highlight the consequences of climate change and artificial water management strategies in reservoirs, demonstrating how both affect their capacity for sediment trapping and impact their role as significant carbon sinks.

8.
Sci Rep ; 14(1): 21695, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39289455

RESUMEN

Our study from an ongoing research experiment initiated in Rabi 1967 at the Research Farm of CCS Haryana Agricultural University, Haryana, India, reports that during the 51st wheat cycle in pearl millet-wheat sequence, adding FYM in both seasons significantly impacted various soil parameters at different wheat growth stages compared to the rabi season. The application of 15 t of FYM ha-1 resulted in a considerable increase in dissolved organic carbon content (9.1-11.2%), available P (9.7-12.1%), and available S (12.6-17.1%), DHA levels by 7.3-22.0%, urease activity (10.1 and 17.0%), ß-Glucosidase activity (6.2-8.4%), and APA activity (5.2-10.6%), compared to 10 t FYM ha-1. Application of N120 exhibited a considerable improvement in DHA (11.0-23.2%), ß-Glucosidase (9.4-19.2%), urease (13.3-28.3%), and APA (3.3-6.2%) activity compared to control (N0). At stage 3, the box plot revealed that 50% of the available N, P, and S values varied from 223.1 to 287.9 kg ha-1, 53.0 to 98.2 kg ha-1, and 50.0 to 97.6 kg ha-1, respectively. Principal component analysis, with PC1 explaining 94.7% and PC2 explaining 3.15% of the overall variability, and SOC had a polynomial relationship with soil characteristics (R2 = 0.89 to 0.99). Applying FYM15 × N120 treatment during both seasons proved beneficial in sustaining the health of sandy loam soil in North-West India.


Asunto(s)
Fertilizantes , Pennisetum , Suelo , Triticum , Triticum/crecimiento & desarrollo , Suelo/química , Pennisetum/crecimiento & desarrollo , Pennisetum/metabolismo , Nitrógeno/metabolismo , India , Ureasa/metabolismo , Estaciones del Año
9.
Sci Total Environ ; 952: 175894, 2024 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-39222817

RESUMEN

Understanding the dynamics of sedimentary organic carbon (SOC) in the productive continental marginal sea surrounding Antarctica is crucial for elucidating the effect of this sea on the global carbon cycle. We analyzed 31 surface sediment samples and eight sediment cores collected from Prydz Bay (PB) and the adjacent basin area. The element and stable isotope compositions, grain size compositions, and biogenic silica and lithogenic minerals of these samples were used to evaluate the spatial variations in the sources, transport mechanisms, and preservation patterns of SOC, with a particular focus on the efficiency of the biological carbon pump (BCP). Our findings reveal that the SOC originated from mixed marine/terrestrial sources. The δ13C values were higher in the Prydz Bay Gyre (PBG) region than in the open sea area. Biogenic matter-rich debris, associated with fine-grained particles (silt and clay), was concentrated in the PBG, while abiotic ice-rafted debris and coarse-grained particles were preferentially deposited in the bank and ice shelf front regions. Lithogenic matter predominated in the basin sediments. The annual accumulation rate of SOC in PB ranged from 1.6 to 6.2 g·m-2·yr-1 (mean 4.2 ± 1.9 g·m-2·yr-1), and the rates were higher in the PBG than in the ice shelf front region. Estimates based on our tentative box model suggest that the efficiency of the BCP, which refers to the proportion of surface-produced organic carbon successfully transferred to deep waters, is approximately 5.7 % in PB, surpassing the global average (∼0.8 %) and the efficiencies reported for other polar environments. Furthermore, our calculations indicate that the SOC preservation efficiency (the ratio of preserved to initially deposited organic carbon in sediments) in PB is approximately 79 % ± 20 %, underscoring the significant carbon sequestration potential within PB. The results of this study have important implications for the effects of sediment dynamics on the carbon cycle in the sea surrounding Antarctica.

10.
Plants (Basel) ; 13(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39273938

RESUMEN

Vegetation restoration is an effective measure to cope with global climate change and promote soil carbon sequestration. However, during vegetation restoration, the turnover and properties of carbon within various aggregates change. The effects of plant source carbon input on surface soil and subsurface soil may be different. Thus, the characteristics of carbon components in aggregates are affected. Therefore, the research object of this study is the Robinia pseudoacacia forest located in 16-47a of the Loess Plateau, and compared with farmland. The change characteristics of organic carbon functional groups in 0-20 cm, 20-40 cm, and 40-60 cm soil layers were analyzed by Fourier near infrared spectroscopy, and the relationship between the chemical structure of organic carbon and the content of organic carbon components in soil aggregates was clarified, and the mechanism affecting the distribution of organic carbon components in soil aggregates was revealed in the process of vegetation restoration. The results show the following: (1) The stability of surface aggregates is sensitive, while that of deep aggregates is weak. Vegetation restoration increased the surface soil organic carbon content by 1.97~3.78 g·kg-1. (2) After vegetation restoration, the relative contents of polysaccharide functional groups in >0.25 mm aggregates were significantly reduced, while the relative contents of aromatic and aliphatic functional groups of organic carbon were significantly increased. The opposite is true for aggregates smaller than 0.25 mm. (3) With the increase in soil depth, the effect of litter on organic carbon gradually decreased, while the effect of root input on the accumulation of inert carbon in deep soil was more lasting.

11.
Plants (Basel) ; 13(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39273988

RESUMEN

Returning straw to the field is a crucial practice for enhancing soil quality and increasing efficient use of secondary crop products. However, maize straw has a higher carbon-to-nitrogen ratio compared to other crops. This can result in crop nitrogen loss when the straw is returned to the field. Therefore, it is crucial to explore how different methods of straw return affect maize (Zea mays L.) farmland. In this study, a field experiment was performed with three treatments (I, no straw returned, CK; II, direct straw return, SR; and III, straw returned in deep furrows, ISR) to explore the effects of the different straw return modes on soil carbon and nitrogen content and greenhouse gas emissions. The results indicated that the SR and ISR treatments increased the dissolved organic carbon (DOC) content in the topsoil (0-15 cm). Additionally, the ISR treatment boosted the contents of total nitrogen (TN), nitrate nitrogen (NO3--N), ammonium nitrogen (NH4+-N), dissolved organic nitrogen (DON), and DOC in the subsurface soil (15-30 cm) compared with CK. When it comes to greenhouse gas emissions, the ISR treatment led to an increase in CO2 emissions. However, SR and ISR reduced N2O emissions, with ISR showing a more pronounced reduction. The ISR treatment significantly increased leaf and grain biomass compared to CK and SR. The correlation analyses showed that the yield was positively correlated with soil DOC, and soil greenhouse gas emission was correlated with soil NO3--N. The ISR technology has great potential in sequestering soil organic matter, improving soil fertility, and realizing sustainable agricultural development.

12.
Environ Int ; 191: 109007, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39278048

RESUMEN

BACKGROUND: Epidemiological evidence on the association between wildfire-specific fine particulate matter (PM2.5) and its carbonaceous components with perinatal outcomes is limited. We aimed to examine the short-term effects of wildfire-specific PM2.5 and its carbonaceous components on perinatal outcomes. METHODS: A multicentre cohort of 9743 singleton births during the wildfire seasons from 1 September 2009 to 31 December 2015 across six cities in New South Wales, Australia were linked with daily wildfire-specific PM2.5 and carbonaceous components (organic carbon and black carbon). Adjusted distributed lag Cox regression models with spatial clustering were performed to estimate daily and cumulative adjusted hazard ratios (aHRs) during the last four gestational weeks for preterm birth, stillbirth, nonvertex presentation, low 5-min Apgar score, special care nursery/neonatal intensive care unit (SCN/NICU) admission, and caesarean section. RESULTS: Daily aHRs per 10 µg/m3 PM2.5 showed nearly inverted 'U'-shaped positive associations and daily cumulative aHRs that increased with increasing duration of the exposures. The aHRs for lag 0-6 days were 1.17 (95 % CI: 1.04, 1.32) for preterm birth, 1.40 (95 % CI: 1.11, 1.78) for stillbirth, 1.20 (95 % CI: 1.08, 1.33) for nonvertex presentation, 1.12 (95 % CI: 0.93, 1.35) for low 5-min Apgar score, 0.99 (95 % CI: 0.83, 1.19) for SNC/NICU admission, and 1.01 (95 % CI: 0.94, 1.08) for caesarean section. Organic carbon and black carbon components for lag 0-6 days showed positive associations. The highest component-specific aHRs were 1.09 (95 % CI: 1.03, 1.15) and 4.57 (95 % CI: 1.96, 10.68) for stillbirth per 1 µg/m3 organic carbon and black carbon, respectively. The subgroups identified as most vulnerable were female births, births to mothers with low socioeconomic status, and births to mothers with high biothermal exposure. CONCLUSIONS: Positive associations of short-term wildfire-specific PM2.5 exposure and its carbonaceous components with adverse perinatal outcomes suggest that policies to reduce exposure would benefit public health.

13.
Environ Sci Technol ; 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39279153

RESUMEN

Floodplain soils are vast reservoirs of organic carbon often attributed to anaerobic conditions that impose metabolic constraints on organic matter degradation. What remains elusive is how such metabolic constraints respond to dynamic flooding and drainage cycles characteristic of floodplain soils. Here we show that microbial depolymerization and respiration of organic compounds, two rate-limiting steps in decomposition, vary spatially and temporally with seasonal flooding of mountainous floodplain soils (Gothic, Colorado, USA). Combining metabolomics and -proteomics, we found a lower abundance of oxidative enzymes during flooding coincided with the accumulation of aromatic, high-molecular weight compounds, particularly in surface soils. In subsurface soils, we found that a lower oxidation state of carbon coincided with a greater abundance of chemically reduced, energetically less favorable low-molecular weight metabolites, irrespective of flooding condition. Our results suggest that seasonal flooding temporarily constrains oxidative depolymerization of larger, potentially plant-derived compounds in surface soils; in contrast, energetic constraints on microbial respiration persist in more reducing subsurface soils regardless of flooding. Our work underscores that the potential vulnerability of these distinct anaerobic carbon storage mechanisms to changing flooding dynamics should be considered, particularly as climate change shifts both the frequency and extent of flooding in floodplains globally.

14.
Carbon Balance Manag ; 19(1): 31, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39259316

RESUMEN

BACKGROUND: Southeast Asian (SEA) mangroves are globally recognized as blue carbon hotspots. Methodologies that measure mangrove soil carbon stock (SCS) are either accurate but costly (i.e., elemental analyzers), or economical but less accurate (i.e., loss-on-ignition [LOI]). Most SEA countries estimate SCS by measuring soil organic matter (OM) through the LOI method then converting it into organic carbon (OC) using a conventional conversion equation (%Corg = 0.415 * % LOI + 2.89, R2 = 0.59, n = 78) developed from Palau mangroves. The local site conditions in Palau does not reflect the wide range of environmental settings and disturbances in the Philippines. Consequently, the conventional conversion equation possibly compounds the inaccuracies of converting OM to OC causing over- or under-estimated SCS. Here, we generated a localized OM-OC conversion equation and tested its accuracy in computing SCS against the conventional equation. The localized equation was generated by plotting % OC (from elemental analyzer) against the % OM (from LOI). The study was conducted in different mangrove stands (natural, restored, and mangrove-recolonized fishponds) in Oriental Mindoro and Sorsogon, Philippines from the West and North Philippine Sea biogeographic regions, respectively. The OM:OC ratios were also statistically tested based on (a) stand types, (b) among natural stands, and (c) across different ages of the restored and recolonized stands. Increasing the accuracy of OM-OC conversion equations will improve SCS estimates that will yield reasonable C emission reduction targets for the country's commitments on Nationally Determined Contributions (NDC) under the Paris Agreement. RESULTS: The localized conversion equation is %OC = 0.36 * % LOI + 2.40 (R2 = 0.67; n = 458). The SOM:OC ratios showed significant differences based on stand types (x2 = 19.24; P = 6.63 × 10-05), among natural stands (F = 23.22; p = 1.17 × 10-08), and among ages of restored (F = 5.14; P = 0.03) and recolonized stands (F = 3.4; P = 0.02). SCS estimates using the localized (5%) and stand-specific equations (7%) were similar with the values derived from an elemental analyzer. In contrast, the conventional equation overestimates SCS by 20%. CONCLUSIONS: The calculated SCS improves as the conversion equation becomes more reflective of localized site conditions. Both localized and stand-specific conversion equations yielded more accurate SCS compared to the conventional equation. While our study explored only two out of the six marine biogeographic regions in the Philippines, we proved that having a localized conversion equation leads to improved SCS measurements. Using our proposed equations will make more realistic SCS targets (and therefore GHG reductions) in designing mangrove restoration programs to achieve the country's NDC commitments.

15.
Heliyon ; 10(16): e35784, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39220944

RESUMEN

The deteriorating state of soil fertility and low agricultural productivity in Ethiopia can be traced to the lack of equivalent consideration given to the soil's biological, chemical, and physical properties. A pot experiment was conducted to investigate the effect of mixed manure and blended nitrogen, phosphorus, sulfur and boron (NPSB) fertilizer on phosphorus adsorption, and other properties of Vertisols, nutrient uptake, and growth performance of maize. The study findings indicate that the combined application of mixed manure and blended NPSB significantly reduced soil pH from 7.87 to 7.68, phosphorus adsorption efficiency from 93 to 88.5 %, and Freundlich adsorption capacity from 194 to 100.75 mg kg-1 , intensity from 1.96 to 1.27 compared to control. However, combined application of these two treatments significantly increased the organic carbon from 0.81 to 1.64 %, total nitrogen from 0.04 to 0.13 %, and available phosphorus from 6.96 to 73.82 g kg-1. The study further revealed that mixed manure and blended NPSB resulted in significantly (p ≤ 0.05) higher contents of nitrogen and phosphorus in the maize leaves as well as their uptake compared to their sole application and control. The highest values of these parameters were observed in plots treated with a combined application of 15 t ha-1 mixed manure with each rate of 100 and 150 kg ha-1 blended NPSB. Additionally, the maize plant height (p ≤ 0.05) and above-ground biomass (p ≤ 0.01) also exhibited significant increase. Compared to the control and full dose of NPSB, all the treatments that received a combined application of 15 t ha-1 mixed manure with blended NPSB ranging from 50 to 150 kg ha-1 resulted in significantly higher above-ground biomass of maize. The results suggest that the combined use of mixed manure and blended NPSB could be a practical and effective approach to improve soil properties and maize above-ground biomass yield.

16.
J Comp Physiol B ; 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39245661

RESUMEN

Many flatfish species are partially euryhaline, such as the Pacific sanddab which spawn and feed in highly dynamic estuaries ranging from seawater to near freshwater. With the rapid increase in saltwater invasion of freshwater habitats, it is very likely that in these estuaries, flatfish will be exposed to increasing levels of dissolved organic carbon (DOC) of freshwater origin at a range of salinities. As salinity fluctuations often coincide with changes in DOC concentration, two natural freshwater DOCs [Luther Marsh (LM, allochthonous) and Lake Ontario (LO, autochthonous) were investigated at salinities of 30 and 7.5 ppt. Optical characterization of the two natural DOC sources indicate salinity-dependent differences in their physicochemistry. LO and LM DOCs, as well as three model compounds [tannic acid (TA), sodium dodecyl sulfate (SDS) and bovine serum albumin (BSA)] representing key chemical moieties of DOC, were used to evaluate physiological effects on sanddabs. In the absence of added DOC, an acute decrease in salinity resulted in an increase in diffusive water flux (a proxy for transcellular water permeability), ammonia excretion and a change in TEP from positive (inside) to negative (inside). The effects of DOC (10 mg C L-1) were salinity and source-dependent, with generally more pronounced effects at 30 than 7.5 ppt, and greater potency of LM relative to LO. Both LM DOC and SDS increased diffusive water flux at 30 ppt but only SDS had an effect at 7.5 ppt. TA decreased ammonia excretion at 7.5 ppt. LO DOC decreased urea-N excretion at both salinities whereas the stimulatory effect of BSA occurred only at 30 ppt. Likewise, the effects of LM DOC and BSA to reduce TEP were present at 30 ppt but not 7.5 ppt. None of the treatments affected oxygen consumption rates. Our results demonstrate that DOCs and salinity interact to alter key physiological processes in marine flatfish, reflecting changes in both gill function and the physicochemistry of DOCs between 30 and 7.5 ppt.

17.
Glob Chang Biol ; 30(9): e17502, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39252425

RESUMEN

Priming effects of soil organic matter decomposition are critical to determine carbon budget and turnover in soil. Yet, the overall direction and intensity of soil priming remains under debate. A second-order meta-analysis was performed with 9296-paired observations from 363 primary studies to determine the intensity and general direction of priming effects depending on the compound type, nutrient availability, and ecosystem type. We found that fresh carbon inputs induced positive priming effects (+37%) in 97% of paired observations. Labile compounds induced larger priming effects (+73%) than complex organic compounds (+33%). Nutrients (e.g., N, P) added with organic compounds reduced the intensity of priming effects compared to compounds without N and P, reflecting "nutrient mining from soil organic matter" as one of the main mechanisms of priming effects. Notably, tundra, lakebeds, wetlands, and volcanic soils showed much larger priming effects (+125%) compared to soils under forests, croplands, and grasslands (+24…+32%). Our findings highlight that positive priming effects are predominant in most soils at a global scale. Optimizing strategies to incorporate fresh organic matter and nutrients is urgently needed to offset the priming-induced accelerated organic carbon turnover and possible losses.


Asunto(s)
Suelo , Suelo/química , Carbono/análisis , Ecosistema , Nitrógeno/análisis , Fósforo/análisis
18.
Int J Environ Health Res ; : 1-20, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254320

RESUMEN

Four hundred and sixty-six references with 625 data reports were included in our study. The high frequency of ratio OC/EC for PM0.1 was observed in 3.92-5.93; PM1 in 1.08-3.08; PM2.5, 2.08-4.08; PM10 in 2.70-4.70 and TSP in 2.66-4.66. The rank order of areas based on the pooled concentration of OC bound to PM2.5 was traffic (17.893 µg/m3) > industrial (10.58 µg/m3) > urban (7.696 µg/m3) > rural (4.08 µg/m3). The rank order of areas based on the pooled (mean) concentration of EC in PM2.5 was traffic (17.893 µg/m3) > industrial (2.65 µg/m3) > Urban (1.48 µg/m3) > rural (1.06 µg/m3). The pooled concentrations of OC and EC bound to PM2.5 in traffic areas were higher than in other areas. Therefore, it is recommended that monitoring and effectively reducing concentration plans are carried out, especially in traffic areas.

19.
Appl Environ Microbiol ; : e0127224, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39254329

RESUMEN

Mineral-organic matter-microbe interactions greatly impact the biogeochemical processes and biodiversity in soils. An increasing trend of particle size (PS) in mangrove soils has been observed because of the relative sea level rise. However, the impacts of PS increase on the microbial biogeochemical functions and carbon sink in the mineral-associated microcosms are exceedingly nebulous. This work showed a remarkable difference in the communities of mineral-associated microorganisms (MMOs) in various PS fractions. Heavy metal contents and urease activity were the factors that mostly driven the MMO community variation in different PS fractions. Large PS fraction attenuated the stability of MMO communities according to the co-occurrence network characteristics. The PS increase significantly (P < 0.05) lowered the gene abundances for carbon input (e.g., carbon fixation) and raised the gene abundances for carbon loss (e.g., aerobic respiration). Combined with the significant decrease of mineral-associated organic carbon (MOC) in large PS fraction (P < 0.05), this work inferred that the PS increase could weaken the MOC sink partially due to the MMO function shift for carbon cycle. The current work indicated unhealthy changes of MMO communities and MOC storage in mangrove soils, and PS was of significance as an indicator for predicting the carbon sink function, especially for the stable form, such as MOC, in the soils of mangroves under the ecological background of climate migration. IMPORTANCE: Carbon with stable forms, such as mineral-associated organic carbon (MOC), is crucial for the sink capabilities in mangrove soils, and mineral-associated microorganisms (MMOs) are important players for the formation and metabolism of MOC. Therefore, the future successions of the MMO functions and MOC contents under the background of climate change are of value for a deeper understanding of mangrove ecology. The relative sea level rise caused by the global warming results in the increase of mangrove soil particle size (PS), which provides distinct microcosms for MMOs and MOC. However, the responses of MMO functions and MOC content to the PS increase of mangrove soils are unknown. The current study aims to reveal the succession regulations of MMO functions and their potential ecological impacts for the storages of MOC in different PS fractions, therefore widening our knowledge of future function migration and promoting the research development of mangrove.

20.
Glob Chang Biol ; 30(9): e17480, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39221621

RESUMEN

Coastal-wetlands play a crucial role as carbon (C) reservoirs on Earth due to their C pool composition and functional sink, making them significant for mitigating global climate change. However, due to the development and utilization of wetland resources, many wetlands have been transformed into other land-use types. The current study focuses on the alterations in soil organic-C (SOC) in coastal-wetlands following reclamation into aquaculture ponds. We conducted sampling at 11 different coastal-wetlands along the tropical to temperate regions of the China coast. Each site included two community types, one with solely native species (Suaeda salsa, Phragmites australis and Mangroves) and the other with an adjacent reclaimed aquaculture pond. Across these 11 locations we compared SOC stock, active OC fractions, and soil physicochemical properties between coastal wetlands and aquaculture ponds. We observed that different soil uses, sampling sites, and their interaction had significant effects on SOC and its stock (p < .05). Reclamation significantly declined SOC concentration at depths of 0-15 cm and 15-30 cm by 35.5% and 30.3%, respectively, and also decreased SOC stock at 0-15 cm and 15-30 cm depths by 29.1% and 37.9%, respectively. Similar trends were evident for SOC stock, labile organic-C, dissolved organic-C and microbial biomass organic-C concentrations (p < .05), indicating soil C-destabilization and losses from soil following conversion. Soils in aquaculture ponds exhibited higher bulk density (BD; 11.3%) and lower levels of salinity (61.0%), soil water content (SWC; 11.7%), total nitrogen (TN) concentration (23.8%) and available-nitrogen concentration (37.7%; p < .05) than coastal-wetlands. Redundancy-analysis revealed that pH, BD and TN concentration were the key variables most linked with temporal variations in SOC fractions and stock between two land use types. This study provides a theoretical basis for the rational utilization and management of wetland resources, the achievement of an environment-friendly society, and the preservation of multiple service functions within wetland ecosystems.


Asunto(s)
Acuicultura , Carbono , Suelo , Humedales , Suelo/química , Carbono/análisis , China , Estanques/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA