Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(21): e2400672, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38605674

RESUMEN

Artificial 1D and 2D lattices have emerged as a powerful platform for the emulation of lattice Hamiltonians, the fundamental study of collective many-body effects, and phenomena arising from non-trivial topology. Exciton-polaritons, bosonic part-light and part-matter quasiparticles, combine pronounced nonlinearities with the possibility of on-chip implementation. In this context, organic semiconductors embedded in microcavities have proven to be versatile candidates to study nonlinear many-body physics and bosonic condensation, and in contrast to most inorganic systems, they allow the use at ambient conditions since they host ultra-stable Frenkel excitons. A well-controlled, high-quality optical lattice is implemented that accommodates light-matter quasiparticles. The realized polariton graphene presents with excellent cavity quality factors, showing distinct signatures of Dirac cone and flatband dispersions as well as polariton lasing at room temperature. This is realized by filling coupled dielectric microcavities with the fluorescent protein mCherry. The emergence of a coherent polariton condensate at ambient conditions are demonstrated, taking advantage of coupling conditions as precise and controllable as in state-of-the-art inorganic semiconductor-based systems, without the limitations of e.g. lattice matching in epitaxial growth. This progress allows straightforward extension to more complex systems, such as the study of topological phenomena in 2D lattices including topological lasers and non-Hermitian optics.

2.
Proc Natl Acad Sci U S A ; 120(32): e2300980120, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37527345

RESUMEN

In quantum gases, two-body interactions are responsible for a variety of instabilities that depend on the characteristics of both trapping and interactions. These instabilities can lead to the appearance of new structures or patterns. We report on the Floquet engineering of such a parametric instability, on a Bose-Einstein condensate held in a time-modulated optical lattice. The modulation triggers a destabilization of the condensate into a state exhibiting a density modulation with a new spatial periodicity. This new crystal-like order, which shares characteristic correlation properties with a supersolid, directly depends on the modulation parameters: The interplay between the Floquet spectrum and interactions generates narrow and adjustable instability regions, leading to the growth, from quantum or thermal fluctuations, of modes with a density modulation noncommensurate with the lattice spacing. This study demonstrates the production of metastable exotic states of matter through Floquet engineering and paves the way for further studies of dissipation in the resulting phase and of similar phenomena in other geometries.

3.
Philos Trans A Math Phys Eng Sci ; 381(2245): 20220075, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-36842989

RESUMEN

We consider a quasi-one-dimensional Bose-Einstein condensate with contact and long-range dipolar interactions, under the action of the time-periodic modulation applied to the harmonic-oscillator and optical-lattice trapping potentials. The modulation results in generation of a variety of harmonics in oscillations of the condensate's width and centre-of-mass coordinate. These include multiple and combinational harmonics, represented by sharp peaks in the system's spectra. Approximate analytical results are produced by the variational method, which are verified by systematic simulations of the underlying Gross-Pitaevskii equation. This article is part of the theme issue 'New trends in pattern formation and nonlinear dynamics of extended systems'.

4.
Sci Bull (Beijing) ; 67(22): 2291-2297, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36546219

RESUMEN

High-precision sensing of vectorial forces has broad impact on both fundamental research and technological applications such as the examination of vacuum fluctuations and the detection of surface roughness of nanostructures. Recent years have witnessed much progress on sensing alternating electromagnetic forces for the rapidly advancing quantum technology-orders of magnitude improvement has been accomplished on the detection sensitivity with atomic sensors, whereas such high-precision measurements for static electromagnetic forces have rarely been demonstrated. Here, based on quantum atomic matter waves confined by a two-dimensional optical lattice, we perform precision measurement of static electromagnetic forces by imaging coherent wave mechanics in the reciprocal space. The lattice confinement causes a decoupling between real-space and reciprocal dynamics, and provides a rigid coordinate frame for calibrating the wavevector accumulation of the matter wave. With that we achieve a state-of-the-art sensitivity of 2.30(8)×10-26 N/Hz. Long-term stabilities on the order of 10-28 N are observed in the two spatial components of a force, which allows probing atomic Van der Waals forces at one millimeter distance. As a further illustrative application, we use our atomic sensor to calibrate the control precision of an alternating electromagnetic force applied in the experiment. Future developments of this method hold promise for delivering unprecedented atom-based quantum force sensing technologies.

5.
Sci Bull (Beijing) ; 67(24): 2550-2556, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36604033

RESUMEN

Ramping a physical parameter is one of the most common experimental protocols in studying a quantum system, and ramping dynamics has been widely used in preparing a quantum state and probing physical properties. Here, we present a novel method of probing quantum many-body correlation by ramping dynamics. We ramp a Hamiltonian parameter to the same target value from different initial values and with different velocities, and we show that the first-order correction on the finite ramping velocity is universal and path-independent, revealing a novel quantum many-body correlation function of the equilibrium phases at the target values. We term this method as the non-adiabatic linear response since this is the leading order correction beyond the adiabatic limit. We demonstrate this method experimentally by studying the Bose-Hubbard model with ultracold atoms in three-dimensional optical lattices. Unlike the conventional linear response that reveals whether the quasi-particle dispersion of a quantum phase is gapped or gapless, this probe is more sensitive to whether the quasi-particle lifetime is long enough such that the quantum phase possesses a well-defined quasi-particle description. In the Bose-Hubbard model, this non-adiabatic linear response is significant in the quantum critical regime where well-defined quasi-particles are absent. And in contrast, this response is vanishingly small in both superfluid and Mott insulators which possess well-defined quasi-particles. Because our proposal uses the most common experimental protocol, we envision that our method can find broad applications in probing various quantum systems.

6.
Proc Natl Acad Sci U S A ; 118(25)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34161286

RESUMEN

A key open issue in condensed-matter physics is how quantum and classical correlations emerge in an unconventional superconductor from the underlying normal state. We study this problem in a doped Mott insulator with information-theory tools on the two-dimensional (2D) Hubbard model at finite temperature with cluster dynamical mean-field theory. We find that the local entropy detects the superconducting state and that the difference in the local entropy between the superconducting and normal states follows the same difference in the potential energy. We find that the thermodynamic entropy is suppressed in the superconducting state and monotonically decreases with decreasing doping. The maximum in entropy found in the normal state above the overdoped region of the superconducting dome is obliterated by superconductivity. The total mutual information, which quantifies quantum and classical correlations, is amplified in the superconducting state of the doped Mott insulator for all doping levels and shows a broad peak versus doping, as a result of competing quantum and classical effects.

7.
Proc Natl Acad Sci U S A ; 115(14): 3547-3550, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29555763

RESUMEN

The quantum motion of nuclei, generally ignored in the physics of sliding friction, can affect in an important manner the frictional dissipation of a light particle forced to slide in an optical lattice. The density matrix-calculated evolution of the quantum version of the basic Prandtl-Tomlinson model, describing the dragging by an external force of a point particle in a periodic potential, shows that purely classical friction predictions can be very wrong. The strongest quantum effect occurs not for weak but for strong periodic potentials, where barriers are high but energy levels in each well are discrete, and resonant Rabi or Landau-Zener tunneling to states in the nearest well can preempt classical stick-slip with nonnegligible efficiency, depending on the forcing speed. The resulting permeation of otherwise unsurmountable barriers is predicted to cause quantum lubricity, a phenomenon which we expect should be observable in the recently implemented sliding cold ion experiments.

8.
Sci Adv ; 3(4): e1602685, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28439552

RESUMEN

The prospect of studying topological matter with the precision and control of atomic physics has driven the development of many techniques for engineering artificial magnetic fields and spin-orbit interactions. Recently, the idea of introducing nontrivial topology through the use of internal (or external) atomic states as effective "synthetic dimensions" has garnered attraction for its versatility and possible immunity from heating. We engineer tunable gauge fields through the local control of tunneling phases in an effective two-dimensional manifold of discrete atomic momentum states. We demonstrate the ability to create homogeneous gauge fields of arbitrary value, directly imaging the site-resolved dynamics of induced chiral currents. Furthermore, we engineer the first inhomogeneous artificial gauge fields for cold atoms, observing the magnetic reflection of atoms incident upon a step-like variation of an artificial vector potential. These results open new possibilities for the study of topological phases and localization phenomena in atomic gases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA