Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.028
Filtrar
1.
Methods Mol Biol ; 2848: 25-36, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39240514

RESUMEN

The pathological mechanisms of cataract remain largely unknown due to the lack of appropriate in vitro cellular models. We developed a stable in vitro system, namely, a "fried egg" differentiation method to generate functional lentoid bodies (LBs) from induced pluripotent stem cells (iPSCs). The iPSCs-derived LBs exhibited crystalline lens-like morphology and a transparent structure, and expressed lens-specific markers. TEM examination and optical analysis further demonstrated that it has the same cell arrangement structure and magnifying ability as lens.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Cristalino , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Humanos , Cristalino/citología , Cristalino/metabolismo , Técnicas de Cultivo de Célula/métodos , Células Cultivadas , Catarata/patología
2.
Molecules ; 29(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39274937

RESUMEN

In this work, the integration of graphene nanoplatelets (GNPs) with amorphous germanium (Ge) substrates is explored. The optical properties were characterized using Variable-Angle Spectroscopic Ellipsometry (VASE). The findings of this study reveal a strong interaction between GNPs and amorphous germanium, indicated by a significant optical absorption. This interaction suggests a change in the electronic structure of the GNPs, implying that amorphous germanium could enhance their effectiveness in devices such as optical sensors, photodetectors, and solar cells. Herein, the use of amorphous germanium as a substrate for GNPs, which notably increases their refractive index and extinction coefficient, is introduced for the first time. By exploring this unique material combination, this study provides new insights into the interaction between GNPs and amorphous substrates, paving the way for the develop of high-performance, scalable optoelectronic devices with enhanced efficiency.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125146, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39299068

RESUMEN

We report on the structural, thermal, linear, and ultrafast third-order nonlinear optical (NLO) properties of two novel anthracene chalcones: (2E)-1-(anthracen-9-yl)-3-(5-methylthiophen-2-yl)prop-2-en-1-one (5ML2SANC) and (2E)-1-(9-anthryl)-3-(2,4,5-trimethoxyphenyl)prop-2-en-1-one (245TMANC). The chalcones were synthesized by Claisen-Schmidt condensation reaction, and the single crystals were grown by the solvent evaporation method. The molecular structure was confirmed by FTIR and NMR spectroscopy, while the crystal structure was determined using the single crystal XRD. Both crystals belong to centrosymmetric monoclinic crystal system with space group P21/n. The Hirshfeld surface was analyzed to understand intermolecular interactions, and the band structures - including HOMO-LUMO levels, excited state energies, GCRDs and MEPs-were studied using DFT. The ultrafast third-order NLO properties were investigated by Z-scan and degenerate four-wave mixing (DFWM) techniques using Ti: Sapphire amplifier laser delivering ∼50 fs pulses at 800 nm (1 kHz, ∼4 mJ, 2 W). Two-photon absorption, positive nonlinear refraction, optical limiting and optical switching behaviors were observed by Z-scan measurements. The time-resolved DFWM show that the decay time of 5ML2SANC is ∼127 fs, while for 245TMANC it is ∼142 fs. The second hyperpolarizability (γ) measured by Z-scan, DFWM and the estimations from the DFT theory are found to be in good agreement (∼10-34 esu). The ultrafast optical response, significant NLO properties and thermal stability of the synthesized chalcones demonstrate their potential suitability in optical limiting and switching applications.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125142, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39299078

RESUMEN

This study investigates the effect of a natural dye extracted from common poppy (Papaver rhoeas) waste flowers on the optical properties of chitosan (CS) films. The extraction of natural dyes from waste flowers can be considered a new field for research in green chemistry. CS films are flexible and biodegradable but have low optical activity and band gap, limiting their applications in optical devices. The doped CS polymer with different concentrations of Papaver rhoeas dye exhibited enhanced optical properties. Also, 30 % glycerol was added as a plasticizer to omit film brittleness. The FTIR examinations is helpful to propose a mechanism that explains the interaction of the dye with the host polymer. The UV-vis spectroscopic examination establish that the optical characteristics of the films can be modified by adjusting the dye concentration. Furthermore, optical absorption properties are described using the Tauc non-direct transition model, revealing an approximate optical band gap of 1.64 eV. This band gap defines the energy required for electron transitions, elucidating the material's electronic characteristics. The extinction coefficient (k) and refractive index (n) of the CS-doped films' shows a dispersion behavior at visible regions of EM radiation. The Wemple-DiDomenico single oscillator model was used to investigate the n dispersion and determine the oscillator energy equivalent to the optical band gap. Additionally, calculations have been performed on optical dielectric properties and optical conductivity. The Urbach energy was measured and used to detect the structure of the films. The findings underscore the potential applications of these natural dye-doped CS films in eco-friendly materials and optical devices.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125148, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39303338

RESUMEN

The use of small organic molecules, such as chalcones, for efficient applications as organic luminescent materials has attracted increasing attention owing to their interesting optical, photophysical, and biological properties. In this study, a new chalcone, 1-(4-isopropylphenyl)-5-(6-methoxynaphthalen-2-yl)pent-1-en-3-one (INM), was synthesized via base condensation between nabumetone and cuminaldehyde. INM was subsequently identified and characterized by FT-IR, NMR spectroscopy (1H and 13C), mass spectrometry, elemental analysis, X-ray diffraction, thermogravimetric analysis, and FESEM studies. Investigation of the solvent effect revealed that the π â†’ π* transition involved a bathochromic shift from hexane to water and a large Stokes-shifted, twisted intramolecular charge-transfer emission in water. Diffuse reflectance spectral studies confirmed the formation of transparent INM chalcones with excellent crystallinity, and photoluminescence studies substantiated the low recombination rate of electrons and holes. Tauc plot analysis with the Kubelka-Munk algorithm revealed higher direct (3.57 eV) and indirect (3.41 eV) bandgap energies of INM. Density functional theory calculations at B3LYP/6-31G(d,p) revealed that INM had promising nonlinear optical activity (ß ≈ 30.504 × 10-30 compared to a reference material, urea. Cell biocompatibility was evaluated after culturing skin fibroblasts and breast cancer cells with INM using the MTT assay and fluorescence microscopy of the live/dead cell assay. It was observed that INM exhibited good NIH/3T3 cell adhesion and proliferation and the weak inhibiting ability of MDA-MB231.

6.
Dent Mater ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39304479

RESUMEN

OBJECTIVES: To evaluate the influence of microstructure and chemical composition on the optical properties of CAD-CAM lithium disilicate glass-ceramics. METHODS: Samples (n = 5; 1.0 mm thickness) of shades A1, A2, and A3 were fabricated from CAD-CAM ceramic blocks (Ivoclar Vivadent): IPS e.max® CAD LT (emLT) and HT (emHT). Samples were polished to 1.0 ± 0.01 mm in thickness. The optical properties (R- reflectance; T- transmittance; µs'- reduced scattering and µa- absorption coefficients) from the post-crystallized samples were determined using the inverse adding-doubling (IAD) method based on integrating-sphere measurements. Additionally, scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were used to evaluate the microstructural properties. Energy-dispersive X-ray (EDX) was employed to analyze the chemical composition. The chemical and structural characterization were performed before and after crystallization of the ceramic samples. RESULTS: emLT showed higher values of µs'and lower values of µa and T than emHT for each shade in all wavelengths (p < 0.003). Considering T for emHT, there were no statistical differences for shades A1 and A2 at 488 nm and 514.5 nm (p > 0.003) and shades A1 and A3 at 457.9 nm (p > 0.003). emLT showed particle length ranging from 0.74 to 2.78 µm (mean = 1.57 µm and RF-relative frequency = 28 %) and particle width ranging from 0.21 to 0.74 µm (mean = 0.30 µm and RF = 31 %). emHT showed particle length ranging from 0.83 to 3.08 µm (mean = 1.86 µm and RF = 21 %) and particle width ranging from 0.24 to 1.12 µm (mean = 0.56 µm and RF = 28 %). In comparison with emHT, emLT showed greater vol% for C, K, and Zr and lower vol% for O and Al. SIGNIFICANCE: The optical properties of CAD-CAM lithium disilicate glass-ceramics are influenced by the chemical composition and, consequently, by the material microstructure.

7.
J Fluoresc ; 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39320629

RESUMEN

This work investigated the photoexcitation and relaxation kinetics of the ADS800AT dye dissolved in different solvents using transient absorption spectroscopy (TAS) with a white-light continuum probe. The dye was dissolved in various solvents, including dichloromethane (DCM), 1,2-dichlorobenzene (DCB), ethanol, and methanol, to study their impact on the dye's characteristics. The linear absorption peak varied from 835 to 809 nm, depending on the polarity of the solvent, and the pump wavelength for TAS was chosen accordingly. We observed ground-state bleaching and excited-state absorption after exciting the dye with the pump pulse. Global analysis was performed using Glotaran software to fit exponential decay curve models, allowing us to determine the relaxation time of the excited molecule. The relaxation time varied from 198 ps to 508 ps across the different solvents, decreasing as the polarity of the solvent increased. Additionally, we could experimentally correlate the dye molecule's nonlinear properties with the solvent's polarity.

8.
J Phys Condens Matter ; 36(50)2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39270723

RESUMEN

One-dimensional systems are nanostructures of significant interest in research due to their numerous potential applications. This study focuses on the investigation of one-dimensional boron-germanene nanoribbons (BGeNRs) and BGeNRs doped with Be, Mg, and Ti. Density functional theory combined with the Vienna Ab initio Simulation Package forms the foundation of this research. The electromagnetic and optical properties of these structures are systematically examined. The findings reveal that all the studied structures exhibit metallic behaviour, with differences in their magnetic properties. The magnetic moments of the pristine and Be-doped structures are both zero, whereas the Mg and Ti-doped structures exhibit magnetic moments of 0.012µBand 2.234µB, respectively. Partial density of states (PDOS) analyses highlight the contributions of various elements and the complex multi-orbital hybridization among them. The optical properties are investigated through the real and imaginary parts of the dielectric function, along with the absorption coefficient and electron-hole density. This study indicates potential applications in adsorption sensors, the modulation of system magnetism via adsorption, and information transmission technologies.

9.
J Biomed Opt ; 29(9): 095003, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39309245

RESUMEN

Significance: Optical properties of biological tissues, such as refractive index (RI), are fundamental properties, intrinsically linked to the tissue's composition and structure. We hypothesize that, as the RI and the functional properties of articular cartilage (AC) are dependent on the tissue's structure and composition, the RI of AC is related to its biomechanical properties. Aim: This study aims to investigate the relationship between RI of human AC and its biomechanical properties. Approach: Human cartilage samples ( n = 22 ) were extracted from the right knee joint of three cadaver donors (one female, aged 47 years, and two males, aged 64 and 68 years) obtained from a commercial biobank (Science Care, Phoenix, Arizona, United States). The samples were initially subjected to mechanical indentation testing to determine elastic [equilibrium modulus (EM) and instantaneous modulus (IM)] and dynamic [dynamic modulus (DM)] viscoelastic properties. An Abbemat 3200 automatic one-wavelength refractometer operating at 600 nm was used to measure the RI of the extracted sections. Similarly, Spearman's and Pearson's correlation coefficients were employed for non-normal and normal datasets, respectively, to determine the correlation between the depth-wise RI and biomechanical properties of the cartilage samples as a function of the collagen fibril orientation. Results: A positive correlation with statistically significant relations ( p - values < 0.05 ) was observed between the RI and the biomechanical properties (EM, IM, and DM) along the tissue depth for each zone, e.g., superficial, middle, and deep zones. Likewise, a lower positive correlation with statistically significant relations ( p - values < 0.05 ) was also observed for collagen fibril orientation of all zones with the biomechanical properties. Conclusions: The results indicate that, although the RI exhibits different levels of correlation with different biomechanical properties, the relationship varies as a function of the tissue depth. This knowledge paves the way for optically monitoring changes in AC biomechanical properties nondestructively via changes in the RI. Thus, the RI could be a potential biomarker for assessing the mechanical competency of AC, particularly in degenerative diseases, such as osteoarthritis.


Asunto(s)
Cartílago Articular , Refractometría , Humanos , Cartílago Articular/fisiología , Cartílago Articular/química , Persona de Mediana Edad , Femenino , Masculino , Anciano , Fenómenos Biomecánicos/fisiología , Refractometría/métodos , Articulación de la Rodilla/fisiología , Viscosidad , Módulo de Elasticidad/fisiología
10.
J Biomed Opt ; 29(9): 096002, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39290462

RESUMEN

Significance: Mueller matrix imaging (MMI) is a comprehensive form of polarization imaging useful for assessing structural changes. However, there is limited literature on the polarimetric properties of brain specimens, especially with multispectral analysis. Aim: We aim to employ multispectral MMI for an exhaustive polarimetric analysis of brain structures, providing a reference dataset for future studies and enhancing the understanding of brain anatomy for clinicians and researchers. Approach: A multispectral wide-field MMI system was used to measure six fresh lamb brain specimens. Multiple decomposition methods (forward polar, symmetric, and differential) and polarization invariants (indices of polarimetric purity and anisotropy coefficients) have been calculated to obtain a complete polarimetric description of the samples. A total of 16 labels based on major brain structures, including grey matter (GM) and white matter (WM), were identified. K -nearest neighbors classification was used to distinguish between GM and WM and validate the feasibility of MMI for WM identification. Results: As the wavelength increases, both depolarization and retardance increase, suggesting enhanced tissue penetration into deeper layers. Moreover, utilizing multiple wavelengths allowed us to track dynamic shifts in the optical axis of retardance within the brain tissue, providing insights into morphological changes in WM beneath the cortical surface. The use of multispectral data for classification outperformed all results obtained with single-wavelength data and provided over 95% accuracy for the test dataset. Conclusions: The consistency of these observations highlights the potential of multispectral wide-field MMI as a non-invasive and effective technique for investigating the brain's architecture.


Asunto(s)
Encéfalo , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Ovinos , Sustancia Blanca/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/anatomía & histología , Anisotropía , Imagen Óptica/métodos
11.
J Biomed Opt ; 29(9): 095001, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39247057

RESUMEN

Significance: Although spatial frequency domain imaging (SFDI) has been well characterized under diffuse optical conditions, tissue measurements made outside the diffuse regime can provide new diagnostic information. Before such measurements can become clinically relevant, however, the behavior of sub-diffuse SFDI and its effect on the accuracy of derived tissue parameters must be assessed. Aim: We aim to characterize the impact that both the assumed scattering phase function (SPF) and the polarization state of the illumination light source have on the accuracy of SFDI-derived optical properties when operating under diffuse or sub-diffuse conditions, respectively. Approach: Through the use of a set of well-characterized optical phantoms, SFDI accuracy was assessed at four wavelengths (395, 545, 625, and 850 nm) and two different spatial frequencies (0.3 and 1.0 mm - 1 ), which provided a broad range of diffuse and sub-diffuse conditions, using three different SPFs. To determine the effects of polarization, the SFDI accuracy was assessed using both unpolarized and cross-polarized illumination. Results: It was found that the assumed SPF has a direct and significant impact on the accuracy of the SFDI-derived optical properties, with the best choice of SPF being dictated by the polarization state. As unpolarized SFDI retains the sub-diffuse portion of the signal, optical properties were found to be more accurate when using the full SPF that includes forward and backscattering components. By contrast, cross-polarized SFDI yielded accurate optical properties when using a forward-scattering SPF, matching the behavior of cross-polarization to attenuate the immediate backscattering of sub-diffuse reflectance. Using the correct pairings of SPF and polarization enabled using a reflectance standard, instead of a more subjective phantom, as the reference measurement. Conclusions: These results provide the foundation for a more thorough understanding of SFDI and enable new applications of this technology in which sub-diffuse conditions dominate (e.g., µ a ≮ µ s ' ) or high spatial frequencies are required.


Asunto(s)
Fantasmas de Imagen , Dispersión de Radiación , Luz , Imagen Óptica/métodos , Reproducibilidad de los Resultados , Humanos , Procesamiento de Imagen Asistido por Computador/métodos
12.
Heliyon ; 10(17): e36159, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39263052

RESUMEN

The demand for increasingly fine detail in optical lithography for semiconductors necessitates the use of lower-wavelength lithographic light. This drives the need for lenses in optical lithography steppers made of vacuum ultraviolet-transparent (VUV-transparent) materials. In this work, the density functional theory (DFT) study of potassium magnesium fluoride KMgF3 is presented. Total energy was calculated with correlation functional generalized gradient approximation (GGA). The ground state quantities such as bulk modulus and lattice parameters have been evaluated. The material's cubic structure is scrutinized under various stress levels (0-100 GPa), revealing that KMgF3 starts to deform at 128 GPa. The C11, C12, and C44 independent elastic constants were used to analyze the structural stability of the KMgF3. The densities of states and electronic band structures have also been computed. According to electronic calculations, when stress is applied to KMgF3, the band gap increases for all values of stress (0-100 GPa). Mechanical parameters, including elastic constants and ratios, indicate the material's remarkable ductility and stability. Phonon density of states and thermal characteristics exhibit shifts and variations with increasing stress, providing insights into the material's behaviour below its melting point. The thermodynamic properties of KMgF3, such as enthalpy, free energy, entropy, heat capacity, and Debye temperatures at various temperatures ranging from 0 K to 1000 K, have also been examined to explore their basic properties. These findings contribute to a comprehensive understanding of KMgF3, opening avenues for its application in advanced technologies, particularly in the realms of semiconductors and optoelectronics.

13.
Saudi Dent J ; 36(9): 1227-1232, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39286581

RESUMEN

This laboratory research aimed to assess the Flexural strength, fracture toughness, Volumetric wear and optical properties of various recent 3D-printed denture tooth materials and compare them to CAD/CAM milled materials. Four 3D-printed denture tooth materials (Lucitone Tooth, OnX, Flexcera Ultra +, and VarseoSmile Crown Plus) and one CAD/CAM milled denture teeth material (Ivotion Dent) were used to fabricate fifteen specimens for each material (with total no. of 300 specimens). Tests were conducted according to ISO standards to assess flexural strength, fracture toughness, color staining, and volumetric wear. All materials were printed, washed, cured, or milled following the manufacturer's instructions. Flexural strength and fracture toughness values were obtained by a universal testing machine. Volumetric wear was evaluated using a non-contact optical profilometer. Color stability outcomes were obtained via a spectrophotometer for determining L*a*b* values, with color change (ΔE2000) based on the CIEDE2000 formula. Data were analyzed using one-way ANOVA and Tukey post-hoc analysis (α = 0.05). All 3D-printed materials exhibited higher flexural strength values than the milled material (p < 0.05). For fracture toughness, two of the 3D-printed materials showed higher values than the milled material, while the other two had lower values. Insignificant variances in volumetric wear were detected between the materials (p > 0.05). Color staining results varied, with milled materials generally demonstrating better-staining resistance compared to the 3D-printed materials. 3D-printed denture tooth materials exhibit good mechanical and optical properties, presenting a cost-effective and efficient alternative to CAD/CAM milled materials for denture tooth fabrication.

14.
J Mech Behav Biomed Mater ; 160: 106716, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39288665

RESUMEN

Polydimethylsiloxane (PDMS) is an elastomer that has received primary attention from researchers due to its excellent physical, chemical, and thermal properties, together with biocompatibility and high flexibility properties. Another material that has been receiving attention is beeswax because it is a natural raw material, extremely ductile, and biodegradable, with peculiar hydrophobic properties. These materials are applied in hydrophobic coatings, clear films for foods, and films with controllable transparency. However, there is no study with a wide range of mechanical, optical, and wettability tests, and with various proportions of beeswax reported to date. Thus, we report an experimental study of these properties of pure PDMS with the addition of beeswax and manufactured in a multifunctional vacuum chamber. In this study, we report in a tensile test a 37% increase in deformation of a sample containing 1% beeswax (BW1%) when compared to pure PDMS (BW0%). The Shore A hardness test revealed a 27% increase in the BW8% sample compared to BW0%. In the optical test, the samples were subjected to a temperature of 80 °C and the BW1% sample increased 30% in transmittance when compared to room temperature making it as transparent as BW0% in the visible region. The thermogravimetric analysis showed thermal stability of the BW8% composite up to a temperature of 200 °C. The dynamic mechanical analysis test revealed a 100% increase in the storage modulus of the BW8% composite. Finally, in the wettability test, the composite BW8% presented a contact angle with water of 145°. As a result of this wide range of tests, it is possible to increase the hydrophobic properties of PDMS with beeswax and the composite has great potential for application in smart devices, food and medicines packaging films, and films with controllable transparency, water-repellent surfaces, and anti-corrosive coatings.

15.
Beilstein J Nanotechnol ; 15: 1153-1169, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39290526

RESUMEN

Since the discovery of graphene in 2004, the unique properties of two-dimensional materials have sparked intense research interest regarding their use as alternative materials in various photonic applications. Transition metal dichalcogenide monolayers have been proposed as transport layers in photovoltaic cells, but the promising characteristics of group IV-VI dichalcogenides are yet to be thoroughly investigated. This manuscript reports on monolayer Ge2Se2 (a group IV-VI dichalcogenide), its optoelectronic behavior, and its potential application in photovoltaics. When employed as a hole transport layer, the material fosters an astonishing device performance. We use ab initio modeling for the material prediction, while classical drift-diffusion drives the device simulations. Hybrid functionals calculate electronic and optical properties to maintain high accuracy. The structural stability has been verified using phonon spectra. The E-k dispersion reveals the investigated material's key electronic properties. The calculations reveal a direct bandgap of 1.12 eV for monolayer Ge2Se2. We further extract critical optical parameters using the Kubo-Greenwood formalism and Kramers-Kronig relations. A significantly large absorption coefficient and a high dielectric constant inspired the design of a monolayer Ge2Se2-based solar cell, exhibiting a high open circuit voltage of V oc = 1.11 V, a fill factor of 87.66%, and more than 28% power conversion efficiency at room temperature. Our findings advocate monolayer Ge2Se2 for various optoelectronic devices, including next-generation solar cells. The hybrid quantum-to-macroscopic methodology presented here applies to broader classes of 2D and 3D materials and structures, showing a path to the computational design of future photovoltaic materials.

16.
Angew Chem Int Ed Engl ; : e202416856, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39291894

RESUMEN

Flexible crystals with unique mechanical properties have presented enormous applications in optoelectronics, soft robotics and sensors. However, there have been no reports of low-temperature-resistant flexible crystals with second-order nonlinear optical properties (NLO). Here, we report the flexible chiral Schiff-base crystals capable of efficient second harmonic generation (SHG). Both enantiomers and racemic modifications of these crystals are mechanically flexible in two directions at both room temperature and at -196 °C, although their mechanical responses differ. The enantiomers display SHG with an intensity of up to 12 times that of potassium dihydrogenphosphate (KDP) when pumped at 980 nm, and they also have high laser-induced damage thresholds (LDT). Even when bent, the crystals retain strong second harmonic generation, although with a different intensity distribution depending on the polarization, compared to when they are straight. This work describes the first instance of flexible organic crystal with NLO properties and lays the foundation for the development of mechanically flexible organic NLO materials.

17.
Sci Rep ; 14(1): 20724, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237527

RESUMEN

First-principles calculations engaging density functional theory (DFT) are employed to systematically study the optical characteristics of monolayer and bilayer boron nitride (BN) triphenylene-graphdiyne (Tp-BNyne) structures featuring varying lengths of C-chains. The thermal stability of Tp-BNyne structures at temperatures up to 1000 K is verified. The weak van der Waals interactions due to the small binding energies and significant interlayer distances maintain the cohesion between the layers. The investigation revealed that all Tp-BNyne structures under examination exhibit semiconductor behavior with a band gap in the range of 0.97-2.74 eV. The bilayer configurations demonstrated a narrower energy band gap in comparison to the monolayer ones. Increasing the length of C-chains leads to a reduction in the energy band gap. Delving into the optical behavior of Tp-BNyne structures under photon incidence with parallel and perpendicular polarizations, a distinct anisotropy in the optical characteristics of Tp-BNyne is revealed. The static dielectric constant increases and the optical band gap decreases with increasing C-chain length. The absorption coefficients of monolayer and bilayer Tp-BNyne structures, on the order of 107/m, demonstrate that these sheets can effectively absorb light in the visible and ultraviolet regions. These findings present Tp-BNyne sheets as promising candidates for use in photovoltaic devices to convert sunlight into electrical current, as well as for designing optical devices for ultraviolet protection. Additionally, Tp-BNyne structures are transparent materials, especially in the high-energy range.

18.
J Mol Model ; 30(10): 325, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240339

RESUMEN

CONTEXT: Nowadays, Perovskite materials with diverse compositions and structures have garnered significant attention for their potential applications across various industrial and technological fields. Here, we investigated the structural, electronic, optical, thermodynamic, thermoelectric, and magnetic properties of perovskite PrFeO3 using density functional theory and Monte Carlo simulations. The optimization results demonstrate that the ferromagnetic phase is more stable than the antiferromagnetic phase. Under the GGA + SOC + U and GGA + mBJ approaches, the electronic results of the PrFeO3 compound expose the half-metallic and magnetic behavior. It was also demonstrated that introducing dilatation strain can effectively enhance both the mechanical and thermal stability of PrFeO3. Additionally, the optical properties show that this material has potential uses for solar cells because of its capacity to absorb light in the ultraviolet (UV) spectrum. The maximum values of the Seebeck coefficient reach 90 µV/K at 1000 K, indicating the potential of PrFeO3 as an efficient thermoelectric material. The magnetic properties exhibit a first transition of spin reorientation (TSR) at 171.44 K, followed by a second-order transition at 707.15 K. This investigation provides valuable insights into the unstudied aspect of Perovskite PrFeO3. METHODS: To carry out this investigation, we employed the density functional theory (DFT) implemented in the Wien2k package. To determine the exchange-correlation potential, we utilized the GGA-PBE (Perdew, Burke, and Ernzerhof) approach. The SOC was included based on the second-variational method using scalar relativistic wavefunctions, and electron-electron Coulomb interactions for Fe and Pr are considered in the rotationally invariant way GGA + SOC + U. In this paper, the effective parameter Ueff = U - J was adopted, where U and J stand for the Coulomb and exchange parameters, respectively. Also, we opted for the modified Becke-Johnson potential (mBJ) for comparison. The thermodynamic properties are obtained using the quasi-harmonic Debye model via Gibbs2 software programs. For the calculation of thermoelectric coefficients, a combination of first-principles band structure calculations and the Boltzmann transport theory within the rigid band approximation (RBA) and the constant scattering time approximation (CSTA) was employed, utilizing the BoltzTrap code. Subsequently, we delve into the magneto-caloric and magnetic properties by employing Monte Carlo simulations.

19.
J Fluoresc ; 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39276306

RESUMEN

This study investigates the tuning of the UV-Vis/NIR absorption bands of pyrazine-based A-D-A switches for designing efficient UV retardancy over TiO2 surfaces. The electronic properties and optical characteristics of seven dyes (DP1-DP7) were analyzed using computational methods. The results indicate that the dyes possessed distinct UV-Vis/NIR absorption properties. Their absorption wavelengths ranged from 389 to 477 nm, with corresponding energies ranging from 2.59 to 3.19 eV. The major contributions to the absorption were found to be the HOMO-LUMO transitions, varying from 86 to 96%. The dyes exhibited different donor (D) and acceptor (A) groups, influencing their electronic properties and absorption characteristics. The tunable electronic and optical properties of these dyes make them promising candidates for applications requiring UV protection for TiO2-based materials. The results contribute to understand the structure-property relationships in the design of UV-Vis/NIR absorbers and provide a foundation for further experimental investigations in the field of UV retardancy.

20.
Polymers (Basel) ; 16(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39274079

RESUMEN

Stepwise photopolymerization is a miraculous strategy modulating the polymer skeleton and electro-optical properties of light modulators based on liquid crystal/polymer composites. However, owing to the indistinct polymerization mechanism and curing condition discrepancy, the required polymer structures and electro-optical properties are hard to be controlled precisely. Herein, a novel polymer-stabilized liquid crystal film based on acrylate/epoxy resin is proposed, fabricated and the relationships between preparation process, polymer content, polymer morphology and electro-optical properties are studied. The in-situ photopolymerization of acrylate/epoxy resin liquid crystalline polymer is fulfilled using cation photo-initiator UV 6976. The distinct photopolymerization speed between acrylate and epoxy resin benefits the polymer morphology control, and with accurate containment of the polymerization process and polymer composition, the superior electro-optical properties at a higher polymer content are acquired. The polymer morphology and electro-optical properties are influenced by the polymer content and mass ratio between acrylate and epoxy resin. The best electro-optical properties among samples are attained by controlling the mass ratio between acrylate and epoxy resin to 1:1, integrating higher densities of scattering centers and lower anchoring effect. With higher polymer content, the strategy of increasing the mass ratio of E6M benefits the improvement of E-O properties for alleviating polymer density. This work provides insights to stepwise polymerization of liquid crystalline monomers and offers a fancy strategy for the preparation of novel liquid crystal dimming films.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA