RESUMEN
This paper presents a critical review of key issues related to the emergence of new networks for the spread of zoonotic diseases amid the mass extinction of species. Zoonotic and infectious diseases account for approximately 70% of new and existing diseases affecting humans and animals. The initial section argues that the term "zoonoses" should not be confined to single-cause events within veterinary medicine. Instead, zoonoses should be viewed as complex, systemic phenomena shaped by interrelated factors, including environmental, sociocultural, and economic elements, influenced by anthropogenic climate change. The second section presents bioethical principles and potential strategies for those engaged in zoonotic disease prevention. The third section uses the slaughter of animals in disaster settings as a case study to illustrate the need for further clarification of normative and interspecies justice conflicts in One Health ethics. This section concludes with an outlook on "zoonoethics". Section four develops the analysis of the interlinked elements that trigger zoonoses and examines antimicrobial resistance (AMR) from an ethical and political standpoint, concluding with policy recommendations for addressing AMR. Section five offers a critical reflection, integrating contributions from zoonoethics, human ecology, and the ecotheological turn. Finally, section six concludes with a call to action and policy recommendations for an inclusive, intercultural, and gender-sensitive One Health approach.
RESUMEN
Brazil's extensive coastline, tropical and subtropical climate, and well-preserved environment represent a conducive setting for dirofilariosis, a zoonotic mosquito-borne disease. Although this condition has long been recognised in the country, it has been relatively under-studied, and it is currently considered to be an emerging disease. Diagnosis, treatment, and control remain challenging due to the extensive gaps in knowledge. In order to help address this issue, this review aims to (i) summarise the available literature on the distribution of Dirofilaria spp. in Brazilian dogs over the last decade, (ii) review case reports of dirofilariosis in cats, wild animals, and humans over the last twenty years, and (iii) highlight the benefits of taking a One Health approach to managing this disease. While there have been several prevalence studies in dogs, disease distribution is poorly characterised in cats, and little is known about the occurrence of the parasite in wildlife. Human cases are sporadically reported, and no large-scale studies have been undertaken to date. Evidence indicates that Dirofilaria immitis is the main species circulating in Brazil, although Dirofilaria repens has also been detected. Molecular studies have also suggested the circulation of a highly virulent form of D. immitis, which may be genetically distinct from those of the Old World. A programme of epidemiological, ecological, genomic, and pathogenicity-based studies is required to quantify the impact of dirofilariosis in Brazil on both veterinary and public health and to inform others on its control.
RESUMEN
Tityus serrulatus Lutz & Mello (Scorpiones: Buthidae) is a scorpion endemic to Brazil adapted to synanthropic life, colonising and proliferating in the most populous urban areas in the country. Here, we evaluated its activity pattern in an urban cemetery in the municipality of Americana, state of São Paulo, Brazil. Additionally, we tested the effects of species reproduction and climatic seasons on the activity pattern. The Saudade Municipal Cemetery was sampled between 17:00 and 22:00 h during 455 nights from April 2006 to December 2013. The circular mean and the peak of activity were quantified for the total number of specimens, and for specimens with and without broods. Activity patterns were inferred using a rosette diagram. Circular analysis of variance was used to investigate if activity patterns changed across climatic seasons (wet and dry seasons). A total of 25,969 records (467 specimens with broods) were obtained in the field. The circular mean varied between 19:44 and 19:48 h, and the peak of activity occurred between 18:00 and 20:00 h for all groups. Peaks of activity differed from that recorded under laboratory conditions (between 21:00 and 23:00 h). Activity patterns did not differ for specimens with broods, suggesting that the reproductive condition does not alter the species activity pattern. The activity pattern differed between wet and dry seasons for all specimens and specimens without broods, but differences were small and probably biologically irrelevant, probably because the species tolerates a wide variation in abiotic conditions. Deepening the knowledge of the behaviour activity of T. serrulatus can have practical applications for health surveillance agencies, aiming to increase the effectiveness of scorpion control in urban areas.
Tityus serrulatus Lutz & Mello (Scorpiones: Buthidae) é um escorpião endêmico do Brasil adaptado à vida sinantrópica, colonizando e proliferando nas áreas urbanas mais populosas do país. Aqui avaliamos seu padrão de atividade em um cemitério urbano no município de Americana, estado de São Paulo, Brasil. Adicionalmente, testamos os efeitos da reprodução da espécie e das estações climáticas sobre o padrão de atividade. O Cemitério Municipal da Saudade foi amostrado entre 17:00 h e 22:00 h durante 455 noites, de abril de 2006 a dezembro de 2013. A média circular e o pico de atividade foram quantificados para o número total de espécimes, espécimes com e sem ninhadas. Os padrões de atividade foram inferidos usando um diagrama de roseta. Análises de variância circular foram utilizadas para investigar se os padrões de atividade mudavam com as estações climáticas (estações chuvosa e seca). Um total de 25.969 registros (467 espécimes com ninhadas) foram obtidos em campo. A média circular variou entre 19:44 h e 19:48 h e o pico de atividade ocorreu entre 18:00 h e 20:00 h para todos os grupos. Os picos de atividade diferiram dos registados em condições de laboratório (entre 21:00 h e 23:00 h). Os padrões de atividade não diferiram para os espécimes com ninhadas, sugerindo que a condição reprodutiva não altera o padrão de atividade da espécie. O padrão de atividade diferiu entre as estações chuvosa e seca para todos os espécimes e os espécimes sem ninhadas, mas as diferenças foram pequenas e provavelmente biologicamente irrelevantes, provavelmente porque a espécie tolera uma grande variação nas condições abióticas. Preencher lacunas sobre o comportamento de T. serrulatus pode ter aplicações práticas para órgãos de vigilância sanitária, visando aumentar a eficácia do controle de escorpiões em áreas urbanas.
RESUMEN
Nematophagous, or helminthophagous fungi of the genera Duddingtonia, Arthrobotrys, Monacrosporium, Pochonia, Paecilomyces, and Mucor, have been used over the years in in vitro and in vivo experiments to control helminth parasites that are potentially zoonotic. These fungi have shown efficacy against the following helminth genera: Ancylostoma, Toxocara, Enterobius, Strongyloides, Angiostrongylus, Taenia, Fasciola, and Schistosoma. The results obtained from these experiments, together with studies on soil contamination, suggest the viability of their use as a sustainable and effective strategy to reduce environmental contamination by these zoonotic parasites. Therefore, the aim of this review was to address the role of helminthophagous fungi in the biological control of potentially zoonotic helminths. To this end, we describe (1) a brief history of helminthophagous fungi; (2) a discussion of some potentially zoonotic intestinal parasites; (3) the importance of helminthophagous fungi in the control of nematodes, cestodes, and trematodes; and (4) the potential of helminthophagous fungi as a practical and sustainable strategy.
RESUMEN
Antibiotic resistance constitutes a significant public health challenge, with diverse reservoirs of resistant bacteria playing pivotal roles in their dissemination. Among these reservoirs, pets are carrying antibiotic-resistant strains. The objective of this study was to assess the resistance profiles of Escherichia coli, and the prevalence of extended-spectrum ß-lactamase (ESBL) producing E. coli strains in dogs and cats from Tamaulipas, Mexico. A total of 300 stool samples (150 dogs and 150 cats) from healthy pets were subjected to analysis. Antibiotic susceptibility testing and the identification of ESBLs were carried out by disc diffusion method. The presence of resistance genes, class 1, 2, and 3 integrons (intI1, intI2, and intI3) and phylogroups was determined by PCR analysis. The findings reveal that 42.6% (128/300) of the strains exhibited resistance to at least one of the eight antibiotics assessed, and 18.6% (56/300) demonstrated multidrug resistance (MDR), that distributed across 69 distinct resistance patterns. Altogether 2.6% of E. coli strains (8/300) were confirmed as TEM and CTX-M type ESBL producers. These outcomes underscore the roles of dogs and cats in Tamaulipas as reservoirs for the dissemination of MDR and/or ESBL strains. The results underscore the necessity for conducting prevalence studies on ESBL-producing E. coli, forming a foundation for comprehending the present scenario and formulating strategies for the control and mitigation of this issue.
Asunto(s)
Antibacterianos , Escherichia coli , Heces , Pruebas de Sensibilidad Microbiana , Mascotas , beta-Lactamasas , Animales , Perros/microbiología , México , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Gatos/microbiología , Antibacterianos/farmacología , Mascotas/microbiología , beta-Lactamasas/genética , Heces/microbiología , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/microbiología , Farmacorresistencia Bacteriana Múltiple , Farmacorresistencia Bacteriana , Integrones , Enfermedades de los Gatos/microbiología , Enfermedades de los Perros/microbiología , PrevalenciaRESUMEN
Colistin resistance poses a major therapeutic challenge and resistant strains have now been reported worldwide. However, the occurrence of such bacteria in aquatic environments is considerably less understood. This study aimed to isolate and characterize colistin-resistant strains from water and plastic litter collected in an urban recreational estuary. Altogether, 64 strains with acquired colistin resistance were identified, mainly Acinetobacter spp. and Enterobacter spp. From these, 40.6% were positive for at least one mcr variant (1-9), 26.5% harbored, extended-spectrum beta-lactamases, 23.4% harbored, sulfonamide resistance genes, and 9.3% harbored, quinolone resistance genes. merA, encoding mercury resistance, was detected in 10.5% of these strains, most of which were also strong biofilm producers. The minimum inhibitory concentration toward colistin was determined for the mcr-positive strains and ranged from 2 to ≥512 µg ml-1. Our findings suggest that Gram-negative bacteria highly resistant to a last-resort antimicrobial can be found in recreational waters and plastic litter, thereby evidencing the urgency of the One Health approach to mitigate the antimicrobial resistance crisis.
Asunto(s)
Antibacterianos , Colistina , Farmacorresistencia Bacteriana , Estuarios , Pruebas de Sensibilidad Microbiana , Plásticos , Colistina/farmacología , Antibacterianos/farmacología , Microbiología del Agua , Bacterias/genética , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Bacterias/clasificación , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/aislamiento & purificaciónRESUMEN
Background: Cystic echinococcosis (CE) is a widespread neglected zoonotic disease caused by Echinococcus granulosus sensu lato (EG) with a global burden of control in the billions of dollars. E. granulosus' life cycle involves definitive, intermediate, and humans as dead-end hosts. Echinococcosis control programs use strategies that focus on any of these hosts. We aimed to provide a comprehensive and up-to-date overview of the EG control interventions worldwide. Methods: We conducted a scoping review by mapping all studies on interventions for EG control following the Arksey and O'Malley Framework. We screened identified articles, and charted and coded selected papers. We classified the data based on target host, type of study, and control mechanism. We described the efficacy or safety outcomes, and the associated barriers/facilitators for the intervention. Critical appraisal was conducted. Results: From 7,853 screened studies, we analyzed 45: seven centered on human interventions, 21 on animals, and 17 on both. Studies on humans focused on educational strategies and human CE monitoring. The studies on animals were field trials and most were based on Praziquantel (PZQ) for dogs. Studies focused on both animals and humans had, in general, more participants, lasted longer, and covered larger geographical areas. Overall, the quality of studies was moderate to low. Conclusions: Available evidence suggests that long-term interventions aimed at both animals and humans can achieve significant reduction in EG transmission, particularly when PZQ treatment for dogs is included. Higher quality evidence, standardization of methodologies, and better reporting on post-intervention outcomes are necessary for drawing stronger conclusions. Further evidence is needed to assess the sustainability and scalability of control measures. Nonetheless, an integrative One Health approach is essential for overcoming the multiple challenges associated with sustaining long-term control efforts for Echinococcosis.
RESUMEN
Leptospirosis and toxoplasmosis are re-emerging zoonosis caused by infection with pathogenic spirochaetes of Leptospira and the protozoa Toxoplasma gondii, respectively. Wild boars (Sus scrofa), an exotic invasive species in Brazil, could play a role in the diseases' epidemiological cycles, but this issue is still unexplored. This study aimed to evaluate the Leptospira spp. and T. gondii seropositivity in wild boars in Rio Grande do Sul state, south Brazil. Of evaluated animals, 16% (13/80) and 85% (52/61) had antibodies to T. gondii and Leptospira spp., respectively. Sex, weight, age, hunt location and season of hunt were evaluated by their association with seropositivity for both pathogens, but none of them had statistical significance. This study revealed that wild boars should be considered as a potential source of Leptospira spp. and T. gondii dissemination for humans and animal species in shared environments in Rio Grande do Sul state.
Asunto(s)
Anticuerpos Antiprotozoarios , Leptospira , Leptospirosis , Sus scrofa , Enfermedades de los Porcinos , Toxoplasma , Toxoplasmosis Animal , Animales , Leptospirosis/epidemiología , Leptospirosis/veterinaria , Brasil/epidemiología , Toxoplasmosis Animal/epidemiología , Toxoplasmosis Animal/inmunología , Toxoplasma/inmunología , Leptospira/inmunología , Sus scrofa/parasitología , Porcinos , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/parasitología , Enfermedades de los Porcinos/microbiología , Anticuerpos Antiprotozoarios/sangre , Masculino , Femenino , Estudios Seroepidemiológicos , Anticuerpos Antibacterianos/sangre , Zoonosis/epidemiología , Zoonosis/parasitología , Humanos , Salud PúblicaRESUMEN
The genus Citrobacter comprises clinically important human pathogens but has been less frequently associated with wildlife infections. Citrobacter pasteurii was first identified as causing human diarrhea and remains rarely documented. In this study, a Gram-negative bacterial strain, named A318, was identified as causing diarrhea in a black lion tamarin. This strain was biochemically identified as Trabulsiella guamensis, a species of unusual nature, and was submitted to whole-genome characterization. Curiously, phylogenomic analysis showed that A318 strain belonged to the genus Citrobacter, with confirmation of the species C. pasteurii by average nucleotide identity (99.02â¯%) and digital DNA-DNA hybridization (93.80â¯%) analyzes. Cases of misidentification of C. pasteurii as Citrobacter youngae were detected and corrected in this study. In addition to the genome sequence of the type strain of C. pasteurii, only two others from the Australian cockle and Portuguese silver gull are publicly available. Single nucleotide polymorphism differences among all C. pasteurii indicated a highly diverse population. No acquired antimicrobial resistance genes and plasmid replicons were found. Therefore, our findings emphasize the importance of gold-standard methods for accurate identification and underscores the importance of continued surveillance and research to mitigate the risks posed by zoonotic and zooanthroponotic pathogens.
Asunto(s)
Citrobacter , Genoma Bacteriano , Filogenia , Animales , Citrobacter/genética , Citrobacter/aislamiento & purificación , Citrobacter/clasificación , Brasil , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/veterinaria , Especies en Peligro de Extinción , Diarrea/microbiología , Diarrea/veterinaria , Secuenciación Completa del Genoma , Polimorfismo de Nucleótido SimpleRESUMEN
The occurrence of carbapenemases encoding genes in Providencia rettgeri is a critical public health concern since this species has intrinsic resistance to several antimicrobials, including polymyxins. The identification of this multidrug-resistant (MDR) pathogen outside the hospital setting has become increasingly frequent, and raises an alert for the global health agencies, as they indicate a possible spread of such pathogens. Herein, we described three MDR P. rettgeri isolates carrying a diversity of antimicrobial resistance genes (ARGs) isolated from stool samples of swine and bovine in Brazil. Molecular analysis revealed that all isolates belonged to the same clone. The whole genome sequencing (WGS) of a representative isolate (PVR-188) was performed by MiSeq Illumina® platform, while the assembling and annotation was achieved using SPAdes and Prooka, respectively. The WGS analyses indicated the presence of ARGs that confer resistance to ß-lactams (bla NDM-1, bla CTX-M-2), quinolones (qnrD1), aminoglycosides (aadA2, aadA1, aph(3')-Via), phenicol (catB2), sulfonamides (sul1, sul2), and trimethoprim (dfrA12, dfrA1). The presence of three plasmid replicons (Col3M, IncQ1, and IncT) was detected, but no phage sequences were found. The phylogenetic analyses confirmed the genomic relationship of the PVR-188 with P. rettgeri isolates recovered from animals and humans in the USA and Malaysia. In conclusion, we report the occurrence of MDR P. rettgeri clone colonizing the gut microbiota of food-producing animals in Brazil, revealing the spread of this pathogen beyond hospital boundaries.
RESUMEN
Antimicrobial-resistant Escherichia coli is a global health challenge from a One Health perspective. However, data on its emergence in the Caatinga biome are limited. This biome is exclusive to the Brazilian Northeast and offers unique epidemiological conditions that can influence the occurrence of infectious diseases and antimicrobial resistance. In this study, the carriage proportion, antimicrobial susceptibility, and population structure of cephalosporin-resistant E. coli were assessed in 300 cloacal swab samples of free-range chickens from three Brazilian states covered by the Caatinga biome. The results showed that 44 (14.7%) samples were positive for cephalosporin-resistant E. coli, and Paraíba state had the highest frequency of isolates (68.2%). Genes encoding cephotaximase-Munich or ampicillin class C (AmpC) enzymes were identified in 30 (68.2%) and 8 (18.2%) isolates, respectively, comprising 31 E. coli isolates. Overall, molecular typing by genome restriction using XbaI endonuclease followed by pulsed-field gel electrophoresis revealed four clusters from two properties of Paraíba state composed by extended-spectrum ß-lactamase-producing and AmpC-producing E. coli carrying blaCTX-M-1-like and blaMIR-1/ACT-1 genes and belonging to different phylogenetic groups. There is a need to control antimicrobial resistance while taking into account the genetic diversity of the strains and their implications for animal and public health, especially in free-range chickens reared in the Brazilian Caatinga biome.
Asunto(s)
Pollos , Farmacorresistencia Bacteriana Múltiple , Infecciones por Escherichia coli , Escherichia coli , Enfermedades de las Aves de Corral , Animales , Pollos/microbiología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Brasil , Enfermedades de las Aves de Corral/microbiología , Farmacorresistencia Bacteriana Múltiple/genética , Infecciones por Escherichia coli/veterinaria , Infecciones por Escherichia coli/microbiología , Antibacterianos/farmacología , beta-Lactamasas/genética , Pruebas de Sensibilidad MicrobianaRESUMEN
Slaughterhouses produce huge volumes of effluents throughout the production chain that, when discharged untreated into bodies of water, can become a source of environmental contamination. This is particularly worrisome if these effluents are used for irrigation since they increase contamination levels and spread pathogens and resistance determinants to humans and animals. Therefore, in this study, we assessed antimicrobial resistance in bacteria isolated from inlet water, equalization wastewater tanks, treatment plant wastewater, and treated wastewater in slaughterhouse facilities in Rio de Janeiro, Brazil. Four samples were collected at each of the collection points, between June 2021 and July 2022. Following bacterial isolation and identification, the samples were analyzed for antimicrobial resistance using the disk diffusion method to test aminoglycoside, beta-lactam, and fluoroquinolone antimicrobials. A total of 229 bacteria were isolated, with 74 isolates selected from the genera Citrobacter (12), Enterobacter (14), Klebsiella (35), Serratia (5), and Pseudomonas (8). Inlet water had the lowest number of isolates and was the only point with gentamicin-resistant isolates. Raw effluent from the equalization tank showed the highest number of isolated bacteria and resistance levels, followed by treated wastewater and the treatment plant. Across all samples, a high rate of cefoxitin-resistance was observed among the isolated bacteria. Klebsiella pneumoniae stood out as the species that demonstrated the greatest resistance to a variety of antimicrobials. These results highlight the importance of water quality monitoring in mitigating public health and environmental risks and high antimicrobial resistance levels.
RESUMEN
Leptospirosis is a zoonosis with global public health impact, particularly in poor socio-economic settings in tropical regions. Transmitted through urine-contaminated water or soil from rodents, dogs, and livestock, leptospirosis causes over a million clinical cases annually. Risk factors include outdoor activities, livestock production, and substandard housing that foster high densities of animal reservoirs. This One Health study in southern Chile examined Leptospira serological evidence of exposure in people from urban slums, semi-rural settings, and farm settings, using the Extreme Gradient Boosting algorithm to identify key influencing factors. In urban slums, age, shrub terrain, distance to Leptospira-positive households, and neighborhood housing density were contributing factors. Human exposure in semi-rural communities was linked to environmental factors (trees, shrubs, and lower vegetation terrain) and animal variables (Leptospira-positive dogs and rodents and proximity to Leptospira-positive households). On farms, dog counts, animal Leptospira prevalence, and proximity to Leptospira-contaminated water samples were significant drivers. The study underscores that disease dynamics vary across landscapes, with distinct drivers in each community setting. This case study demonstrates how the integration of machine learning with comprehensive cross-sectional epidemiological and geospatial data provides valuable insights into leptospirosis eco-epidemiology. These insights are crucial for informing targeted public health strategies and generating hypotheses for future research.
RESUMEN
One Health (OH) is an integrative approach to human, animal, and environmental health and can be used as a comprehensive indicator for comparative purposes. Although an OH index has been proposed for comparing cities, states, and countries, to date, no practical study has compared countries using this approach. Accordingly, this study aimed to assess OH initiatives using a survey with a veterinary public health focus. The questionnaire contained 104 quantitative questions and was sent to representatives of governmental institutions of 32 countries in the Americas. After exclusion criteria were considered, a total of 35 questionnaires from 17 countries were analyzed, with country names remaining undisclosed during the statistical analyses to protect potentially sensitive information. Principal component analysis (PCA) of health parameters in Latin America and the Caribbean (LAC) as a function of country perception (self-vector) showed that food safety was ranked higher than public policies (p = 0.009), and that both (p = 0.003) were ranked higher than institutional routines related to zoonosis programs. National policies in accordance with international standards, regulations, recommendations, and guidelines was considered the standout topic for public policy, with higher-ranking topics including standard. Meanwhile, challenging topics included tools, preparedness, governance, and research. Food safety showed both strengths and challenges in the coordination of its activities with other sectors. Food safety communication was scored as a strength, while foodborne diseases prevention was ranked as a challenge. Institutional routines for zoonosis maintained both strong and challenging topics in the execution and implementation of attributions and daily routine. Thus, the survey showed that topics such as access to and compliance with international guidelines and intercountry integration were ranked higher than in-country articulation, particularly among food safety, zoonoses, and environmental institutions.
RESUMEN
Neglected and underutilized species of plants (NUS) have been identified by the Food and Agriculture Organization as valuable resources for fighting poverty, hunger and malnutrition as they can help make agricultural production systems more sustainable and resilient. Adaptation of NUS to changing environments over several millennia has rendered most of these plants resistant to pests and climate change. In this paper, we explore the potential values of some of the Mayan fruit trees justifying conservation efforts in their native habitats. Our research was primarily based on a scoping review using Google Scholar. We considered articles published in English, Spanish and Portuguese. Our review rendered two sets of articles including those focusing on the nutritional and medicinal properties of NUS and their products, and those focusing on their uses in traditional medicine. Both sets of papers strongly support arguments for conservation of NUS. Additionally, our scoping review expands and includes a case study on the conservation of NUS, highlighting the critical role of civil society on how it can spearhead rescue efforts of botanical resources through the creation of what is possibly the first arboretum of its kind in the Americas. Among the project's key selling points was not only the rescue of an important component of Yucatan's cultural heritage but its nutritional value as well as its potential medicinal properties. Our paper is not prescriptive on how to preserve or even commercially exploit NUS. It is intended as a thought-provoking piece on the potential of a One Health approach as a multisectoral platform to support conservation efforts, while stimulating greater interest in the subject and encouraging more action from the academic and pharmaceutical sectors as well as civil society.
RESUMEN
The exposome approach, emphasizing lifelong environmental exposures, is a holistic framework exploring the intricate interplay between genetics and the environment in shaping health outcomes. Complementing this, the one health approach recognizes the interconnectedness of human and ecological health within a shared ecosystem, extending to planetary health, which encompasses the entire planet. Integrating Disease Surveillance Systems with exposome, one health, and planetary health signifies a paradigm shift in health management, fostering a comprehensive public health framework. This publication advocates for combining traditional health surveillance with exposome and one health/planetary health approach, proposing a three-step approach: ecological analysis, territorial intervention in identified issues, and an analytical phase for assessing interventions. Particularly relevant for Latin American countries facing a double burden of diseases, integrating the exposome into traditional health surveillance proves cost-effective by leveraging existing data and environmental measurements. In conclusion, the integration of exposome and one health approaches into traditional health surveillance presents a robust framework for monitoring population health, especially in regions like Latin America with complex health challenges. This innovative approach enables tailored interventions, disease outbreak predictions, and a holistic understanding of the intricate links between human health and the environment, offering substantial benefits for public health and disease prevention despite existing challenges.
Asunto(s)
Exposoma , Salud Única , Humanos , América Latina , Exposición a Riesgos Ambientales/prevención & control , Salud Pública , Vigilancia de la Población/métodosRESUMEN
Plague is a deadly zoonosis that still poses a threat in many regions of the world. We combined epidemiologic, host, and vector surveillance data collected during 1961-1980 from the Araripe Plateau focus in northeastern Brazil with ecologic, geoclimatic, and Yersinia pestis genomic information to elucidate how these factors interplay in plague activity. We identified well-delimited plague hotspots showing elevated plague risk in low-altitude areas near the foothills of the plateau's concave sectors. Those locations exhibited distinct precipitation and vegetation coverage patterns compared with the surrounding areas. We noted a seasonal effect on plague activity, and human cases linearly correlated with precipitation and rodent and flea Y. pestis positivity rates. Genomic characterization of Y. pestis strains revealed a foundational strain capable of evolving into distinct genetic variants, each linked to temporally and spatially constrained plague outbreaks. These data could identify risk areas and improve surveillance in other plague foci within the Caatinga biome.
Asunto(s)
Peste , Yersinia pestis , Peste/epidemiología , Peste/microbiología , Brasil/epidemiología , Yersinia pestis/genética , Humanos , Animales , Epidemias , Siphonaptera/microbiología , Genoma Bacteriano , Genómica/métodos , Estaciones del AñoRESUMEN
Stray dogs and cats pose significant challenges for public health and animal welfare due to their potential involvement in zoonotic disease transmission, accidents, and aggressions. Large urban centers exacerbated challenges due to the presence of these animals in public areas with high human density. Ethical Population Management Programs (EPMP), rooted in the One Health approach, are crucial for addressing this issue comprehensively. This study aimed to demonstrate the approach on cats and dogs EPMP and evaluate the perceptions of academic community regarding EPMP implementation on a campus situated in urban territory. The study was conducted at the Pampulha campus of UFMG in Belo Horizonte, Brazil. In response to issues of animal abandonment and conflicts, the Permanent Commission for Animal Policies (CPPA-UFMG) was established in 2019 to manage the campus's dog, cat, and wildlife populations. The commission implemented the Trap-Neuter-Return (TNR) method, along with health assessments and vaccinations for animals. Interviews were conducted with campus staff to gauge their perception of animal management strategies. Retrospective and prospective analyses of the commission's actions were carried out to assess implementation processes and challenges. The animal population survey conducted on campus between July 2018 and September 2021 revealed a total of 266 animals recorded. Among these animals, 195 were cats (73.3%) and 71 were dogs (26.7%), with the majority being adults. Subsequent surveys in 2019 and 2021 showed a slight increase in the animal population, with measures such as sterilization contributing to population control. Perception analysis among campus users indicated strategies such as TNR were widely endorsed for population control. The employees perception questionnaire was applied to 115 individuals, representing 42 units/departments and five gates. Associations were found between these beliefs and support for institutional actions. The majority favored sterilization (92.17%) and agreed that TNR is an appropriate approach to population control. Overall, the study reflects a community concerned about animal welfare and supportive of measures to address population management and cruelty prevention. The continuous efforts of the university's CPPA have led to stability in the resident animal population, indicating success in achieving population control objectives.
RESUMEN
Antimicrobial resistance is a natural mechanism in microorganisms, making the treatment of infections more complex in human and veterinary medicine. Global exotic and ornamental bird markets have significantly increased, and the close relationship between pets and humans makes exploring the potential role of these birds as vectors for the spread of antimicrobial-resistant bacteria imperative. This study aimed to use culture-dependent methods to investigate cloacal bacteria and the presence of antibiotic-resistant bacteria in four breeding stocks of ornamental birds. Cloacal swab samples were collected from 53 birds (canaries = 32, cockatiels = 17, and budgies = 4) and used for culturing and isolating facultative anaerobic and/or obligatory aerobic Gram-positive and Gram-negative bacteria. The antimicrobial susceptibility profile of each isolate was determined by the disk diffusion method. Thirty-four isolates were obtained, most of which belonged to the Staphylococcus genus. Bacterial richness was higher in canaries and in one of the breeding stockings, where Gram-negative bacteria were more abundant than in the others. In addition, canaries exhibited a predominance of resistant isolates, particularly multidrug-resistant strains, probably due to prophylactic antimicrobial usage. Most Gram-negative bacteria were resistant to at least one drug tested. A vancomycin-resistant Enterococcus faecalis strain was isolated. Most Staphylococcus strains were resistant to gentamycin, followed by penicillin. Eight strains were cefoxitin-resistant, including oxacillin-resistant S. epidermidis, in which the mecA gene was detected. Understanding the prevalence of resistance in avian species is crucial in the collaborative pursuit of maintaining antibiotic effectiveness and strengthening public health defense against emerging infectious risks.
A resistência antimicrobiana é um mecanismo natural dos microrganismos, complicando o tratamento de infecções na medicina humana e veterinária. O mercado global de aves exóticas e ornamentais cresceu significativamente, e a relação próxima entre esses animais e humanos destaca a necessidade de investigar o papel das aves na disseminação de bactérias resistentes. Este estudo utilizou métodos dependentes de cultura para examinar bactérias cloacais e a presença de resistência a antibióticos em quatro plantéis de aves ornamentais. Amostras de suabe cloacal foram coletadas de 53 aves (canários = 32, calopsitas = 17, periquitos = 4) e usadas para cultivar e isolar bactérias Gram-positivas e Gram-negativas, facultativas anaeróbias e aeróbias obrigatórias. A suscetibilidade antimicrobiana foi determinada pelo método de difusão em disco. Foram obtidos 34 isolados, principalmente do gênero Staphylococcus. A riqueza bacteriana foi maior nos canários e em um dos plantéis, onde houve aumento de Gram-negativos. Canários mostraram predominância de isolados resistentes, especialmente cepas multirresistentes, provavelmente devido ao uso profilático de antimicrobianos. A maioria das bactérias Gram-negativas foi resistente a pelo menos um fármaco testado. Um Enterococcus faecalis resistente à vancomicina foi isolado. A maioria dos Staphylococcus foi resistente à gentamicina e penicilina; oito cepas foram resistentes à cefoxitina, incluindo S. epidermidis resistente à oxacilina com o gene mecA detectado. Compreender a prevalência de resistência em aves é crucial para manter a eficácia dos antibióticos e fortalecer a saúde pública contra riscos infecciosos emergentes.