Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Bull Exp Biol Med ; 177(4): 552-558, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39266922

RESUMEN

A new gene-cell construct expressing nerve growth factor (NGF) has been developed. After obtaining engineered adenovectors Ad5-RGD-CAG-NGF and Ad5-RGD-CAG-EGFP, transduction efficiency and transgene expression were studied and multiplicity of infection was determined. The efficacy of transduced human olfactory ensheathing cells expressing NGF in restoring motor activity in rats has been shown in a limited period of time. Improved rat hindlimb mobility and cyst size reduction after gene-cell construct transplantation were more likely due to the cellular component of the construct.


Asunto(s)
Quistes , Vectores Genéticos , Factor de Crecimiento Nervioso , Mucosa Olfatoria , Animales , Factor de Crecimiento Nervioso/genética , Factor de Crecimiento Nervioso/metabolismo , Ratas , Mucosa Olfatoria/metabolismo , Mucosa Olfatoria/citología , Humanos , Quistes/terapia , Quistes/genética , Quistes/patología , Quistes/metabolismo , Vectores Genéticos/genética , Transducción Genética , Terapia Genética/métodos , Adenoviridae/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo
2.
Basic Clin Neurosci ; 15(2): 211-220, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39228451

RESUMEN

Introduction: Olfactory ensheathing cells (OECs) are widely used in transplantation studies. The high purification of this unique cell type is valuable for medical applications. Although recent improvements in OECs isolation procedures opened a new era in this field, the high purification efficacy and viability rate are still of concern. The most widely used OECs isolation techniques can be broadly classified based on adherence properties, particularly in olfactory bulb-derived OEC isolation. Considering the invasive nature of harvesting OECs from human olfactory bulbs, a highly efficient purification of these cells from olfactory mucosa can benefit clinical trials. In this study, we isolated OECs from rats' olfactory bulbs and mucosa due to their differential adherence properties and compared them. Methods: Cell preparations were characterized by NGFR p75 and S100ß antibodies, the specific markers for OECs, using immunocytochemistry and western blot analysis, respectively. OECs morphology and viability were monitored over time by microscopy and MTT (3-[4,5-dimethylthiazol2-yl]-2,5-diphenyltetrazolium bromide) assay. Results: We found that OECs could be purified from the olfactory mucosa using our suggested method as efficiently as the olfactory bulb. Both derived OECs showed high levels of NGFR p75 and S100ß expression, although the S100ß expression was higher in olfactory mucosa-derived OECs preparations (P<0.05). Moreover, there was no significant difference between the two sources in cell viability in our suggested protocol. Conclusion: Due to the non-invasive harvesting method, olfactory mucosa-derived OECs are preferred from a clinical point of view in transplantation studies.

3.
Mil Med Res ; 11(1): 48, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39034405

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopaminergic neurons in the substantia nigra (SN). Activation of the neuroinflammatory response has a pivotal role in PD. Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic approach for various nerve injuries, but there are limited reports on their use in PD and the underlying mechanisms remain unclear. METHODS: We investigated the effects of clinical-grade hypoxia-preconditioned olfactory mucosa (hOM)-MSCs on neural functional recovery in both PD models and patients, as well as the preventive effects on mouse models of PD. To assess improvement in neuroinflammatory response and neural functional recovery induced by hOM-MSCs exposure, we employed single-cell RNA sequencing (scRNA-seq), assay for transposase accessible chromatin with high-throughput sequencing (ATAC-seq) combined with full-length transcriptome isoform-sequencing (ISO-seq), and functional assay. Furthermore, we present the findings from an initial cohort of patients enrolled in a phase I first-in-human clinical trial evaluating the safety and efficacy of intraspinal transplantation of hOM-MSC transplantation into severe PD patients. RESULTS: A functional assay identified that transforming growth factor-ß1 (TGF-ß1), secreted from hOM-MSCs, played a critical role in modulating mitochondrial function recovery in dopaminergic neurons. This effect was achieved through improving microglia immune regulation and autophagy homeostasis in the SN, which are closely associated with neuroinflammatory responses. Mechanistically, exposure to hOM-MSCs led to an improvement in neuroinflammation and neural function recovery partially mediated by TGF-ß1 via activation of the anaplastic lymphoma kinase/phosphatidylinositol-3-kinase/protein kinase B (ALK/PI3K/Akt) signaling pathway in microglia located in the SN of PD patients. Furthermore, intraspinal transplantation of hOM-MSCs improved the recovery of neurologic function and regulated the neuroinflammatory response without any adverse reactions observed in patients with PD. CONCLUSIONS: These findings provide compelling evidence for the involvement of TGF-ß1 in mediating the beneficial effects of hOM-MSCs on neural functional recovery in PD. Treatment and prevention of hOM-MSCs could be a promising and effective neuroprotective strategy for PD. Additionally, TGF-ß1 may be used alone or combined with hOM-MSCs therapy for treating PD.


Asunto(s)
Modelos Animales de Enfermedad , Células Madre Mesenquimatosas , Mucosa Olfatoria , Enfermedad de Parkinson , Factor de Crecimiento Transformador beta1 , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Trasplante de Células Madre Mesenquimatosas/métodos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/terapia , Recuperación de la Función , Factor de Crecimiento Transformador beta1/metabolismo
4.
Redox Biol ; 75: 103272, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-39047637

RESUMEN

Constituents of air pollution, the ultrafine particles (UFP) with a diameter of ≤0.1 µm, are considerably related to traffic emissions. Several studies link air pollution to Alzheimer's disease (AD), yet the exact relationship between the two remains poorly understood. Mitochondria are known targets of environmental toxicants, and their dysfunction is associated with neurodegenerative diseases. The olfactory mucosa (OM), located at the rooftop of the nasal cavity, is directly exposed to the environment and in contact with the brain. Mounting evidence suggests that the UFPs can impact the brain directly through the olfactory tract. By using primary human OM cultures established from nasal biopsies of cognitively healthy controls and individuals diagnosed with AD, we aimed to decipher the effects of traffic-related UFPs on mitochondria. The UFP samples were collected from the exhausts of a modern heavy-duty diesel engine (HDE) without aftertreatment systems, run with renewable diesel (A0) and petroleum diesel (A20), and from an engine of a 2019 model diesel passenger car (DI-E6d) equipped with state-of-the-art aftertreatment devices and run with renewable diesel (Euro6). OM cells were exposed to three different UFPs for 24-h and 72-h, after which cellular processes were assessed on the functional and transcriptomic levels. Our results show that UFPs impair mitochondrial functions in primary human OM cells by hampering oxidative phosphorylation (OXPHOS) and redox balance, and the responses of AD cells differ from cognitively healthy controls. RNA-Seq and IPA® revealed inhibition of OXPHOS and mitochondrial dysfunction in response to UFPs A0 and A20. Functional validation confirmed that A0 and A20 impair cellular respiration, decrease ATP levels, and disturb redox balance by altering NAD and glutathione metabolism, leading to increased ROS and oxidative stress. RNA-Seq and functional assessment revealed the presence of AD-related alterations in human OM cells and that different fuels and engine technologies elicit differential effects.


Asunto(s)
Enfermedad de Alzheimer , Mitocondrias , Mucosa Olfatoria , Material Particulado , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/inducido químicamente , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Material Particulado/efectos adversos , Material Particulado/toxicidad , Mucosa Olfatoria/metabolismo , Mucosa Olfatoria/patología , Mucosa Olfatoria/efectos de los fármacos , Emisiones de Vehículos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Masculino , Femenino , Anciano , Especies Reactivas de Oxígeno/metabolismo , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/efectos adversos
5.
Inhal Toxicol ; 36(4): 250-260, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38738559

RESUMEN

OBJECTIVE: The purpose of these studies was to investigate the uptake of atrazine across the nasal mucosa to determine whether direct transport to the brain through the olfactory epithelium is likely to occur. These studies were undertaken to provide important new information about the potential for the enhanced neurotoxicity of herbicides following nasal inhalation. MATERIALS AND METHODS: Transport of atrazine from aqueous solution and from commercial atrazine-containing herbicide products was assessed using excised nasal mucosal tissues. The permeation rate and the role of membrane transporters in the uptake of atrazine across the nasal mucosa were also investigated. Histological examination of the nasal tissues was conducted to assess the effects of commercial atrazine-containing products on nasal tissue morphology. RESULTS: Atrazine showed high flux across both nasal respiratory and olfactory tissues, and efflux transporters were found to play an essential role in limiting its uptake at low exposure concentrations. Commercial atrazine-containing herbicide products showed remarkably high transfer across the nasal tissues, and histological evaluation showed significant changes in the morphology of the nasal epithelium following exposure to the herbicide products. DISCUSSION: Lipophilic herbicides such as atrazine can freely permeate across the nasal mucosa despite the activity of efflux transporters. The adjuvant compounds in commercial herbicide products disrupt the nasal mucosa's epithelial barrier, resulting in even greater atrazine permeation across the tissues. The properties of the herbicide itself and those of the formulated products play crucial roles in the potential for the enhanced neurotoxicity of herbicides following nasal inhalation.


Asunto(s)
Atrazina , Herbicidas , Mucosa Nasal , Atrazina/toxicidad , Atrazina/farmacocinética , Herbicidas/toxicidad , Herbicidas/farmacocinética , Mucosa Nasal/efectos de los fármacos , Mucosa Nasal/metabolismo , Animales , Proteínas de Transporte de Membrana/metabolismo , Masculino , Administración Intranasal , Absorción Nasal/efectos de los fármacos
6.
IUBMB Life ; 76(9): 697-711, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38662920

RESUMEN

The aim of this study was to develop an alternative treatment method for neurodegenerative diseases with dopaminergic neuron loss such as Parkinson's disease by differentiating cells obtained from human olfactory mucosa-derived neural stem cells (hOM-NSCs) with neurotrophic agents in vitro. hOM-NSCs were isolated and subjected to immunophenotypic and MTT analyses. These hOM-NSCs were then cultured in a 3D environment to form neurospheres. The neurospheres were subjected to immunophenotypic analysis and neuronal differentiation assays. Furthermore, hOM-NSCs were differentiated into dopaminergic neuron-like cells in vitro. After differentiation, the dopaminergic neuron-like cells were subjected to immunophenotypic (TH, MAP2) and genotypic (DAT, PITX3, NURR1, TH) characterization. Flow cytometric analysis showed that NSCs were positive for cell surface markers (CD56, CD133). Immunofluorescence analysis showed that NSCs were positive for markers with neuronal and glial cell characteristics (SOX2, NESTIN, TUBB3, GFAP and NG2). Immunofluorescence analysis after differentiation of hOM-NSCs into dopaminergic neuron-like cells in vitro showed that they were positive for a protein specific for dopaminergic neurons (TH). qRT-PCR analysis showed that the expression of dopaminergic neuron-specific genes (DAT, TH, PITX3, NURR1) was significantly increased. It was concluded that hOM-NSCs may be a source of neural stem cells that can be used for cell replacement therapies in neurodegenerative diseases such as Parkinson's disease, are resistant to cell culture, can differentiate into neuronal and glial lineage, are easy to obtain and are cost effective.


Asunto(s)
Diferenciación Celular , Neuronas Dopaminérgicas , Células-Madre Neurales , Mucosa Olfatoria , Humanos , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Mucosa Olfatoria/citología , Mucosa Olfatoria/metabolismo , Células Cultivadas , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Tirosina 3-Monooxigenasa/genética , Neurogénesis
7.
Anat Histol Embryol ; 53(3): e13034, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38563613

RESUMEN

The ultrastructure of the olfactory system of most fossorial rodents remains largely unexplored. This study sought to investigate the functional structure of the olfactory mucosa and olfactory bulb of two species of fossorial rodents that have distinct behaviour and ecology, the East African root rat (RR) and the naked mole rat (NMR). Transmission electron microscopy and scanning electron microscopy were employed. The basic ultrastructural design of the olfactory system of the two species was largely comparable. In both species, the olfactory mucosa comprised an olfactory epithelium and an underlying lamina propria. The olfactory epithelium revealed olfactory knobs, cilia and microvilli apically and sustentancular cells, olfactory receptor neurons and basal cells in the upper, middle and basal zones, respectively. The lamina propria was constituted by Bowman's glands, olfactory nerve bundles and vasculature supported by loose connective tissue. Within the olfactory bulb, intracellular and extracellular structures including cell organelles, axons and dendrites were elucidated. Notable species differences were observed in the basal zone of the olfactory epithelium and on the luminal surface of the olfactory mucosa. The basal zone of the olfactory epithelium of the RR consisted of a single layer of flattened electron-dense horizontal basal cells while the NMR had juxtaposed electron-dense and electron-lucent heterogenous cells, an occurrence seen as being indicative of quiescent and highly proliferative states of the olfactory epithelia in the two species, respectively. The olfactory epithelial surface of the NMR comprised an elaborate cilia network that intertwined extensively forming loop-like structures whereas in the RR, the surface was rugged and consisted of finger-like processes and irregular masses. With gross and histological studies showing significant differences in the olfactory structures of the two species, these findings are a further manifestation that the olfactory system of the RR and the NMR have evolved differently to reflect their varied olfactory functional needs.


Asunto(s)
Ratas Topo , Neuronas Receptoras Olfatorias , Animales , Axones , Cilios , África Oriental
8.
Methods Mol Biol ; 2754: 387-410, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38512678

RESUMEN

A region-specific catheter-based intranasal administration method was successfully developed, established, and validated as reported previously. By using this method, drugs can be applicated specifically to the olfactory region. Thereby, intranasally administered drugs could be delivered via neuronal connections to the central nervous system. Here, we present a detailed protocol with a step-by-step procedure for nose-to-brain delivery via the olfactory mucosa.Fc receptors such as the neonatal Fc receptor (FcRn) and potentially Fcγ receptor IIb (FcγRIIb) are involved in the uptake and transport of antibodies via the olfactory nasal mucosa. To better characterize their expression levels and their role in CNS drug delivery via the nose, an in situ hybridization (ISH) protocol was adapted for nasal mucosa samples and described in abundant details.


Asunto(s)
Encéfalo , Mucosa Nasal , Ratones , Animales , Administración Intranasal , Encéfalo/metabolismo , Preparaciones Farmacéuticas/metabolismo , Anticuerpos/metabolismo , Receptores Fc/genética , Receptores Fc/metabolismo , Hibridación in Situ , Sistemas de Liberación de Medicamentos/métodos
9.
Environ Res ; 249: 118451, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38341073

RESUMEN

Respiratory viruses have a significant impact on health, as highlighted by the COVID-19 pandemic. Exposure to air pollution can contribute to viral susceptibility and be associated with severe outcomes, as suggested by recent epidemiological studies. Furthermore, exposure to particulate matter (PM), an important constituent of air pollution, is linked to adverse effects on the brain, including cognitive decline and Alzheimer's disease (AD). The olfactory mucosa (OM), a tissue located at the rooftop of the nasal cavity, is directly exposed to inhaled air and in direct contact with the brain. Increasing evidence of OM dysfunction related to neuropathogenesis and viral infection demonstrates the importance of elucidating the interplay between viruses and air pollutants at the OM. This study examined the effects of subacute exposure to urban PM 0.2 and PM 10-2.5 on SARS-CoV-2 infection using primary human OM cells obtained from cognitively healthy individuals and individuals diagnosed with AD. OM cells were exposed to PM and subsequently infected with the SARS-CoV-2 virus in the presence of pollutants. SARS-CoV-2 entry receptors and replication, toxicological endpoints, cytokine release, oxidative stress markers, and amyloid beta levels were measured. Exposure to PM did not enhance the expression of viral entry receptors or cellular viral load in human OM cells. However, PM-exposed and SARS-CoV-2-infected cells showed alterations in cellular and immune responses when compared to cells infected only with the virus or pollutants. These changes are highly pronounced in AD OM cells. These results suggest that exposure of human OM cells to PM does not increase susceptibility to SARS-CoV-2 infection in vitro, but it can alter cellular immune responses to the virus, particularly in AD. Understanding the interplay of air pollutants and COVID-19 can provide important insight for the development of public health policies and interventions to reduce the negative influences of air pollution exposure.


Asunto(s)
COVID-19 , Mucosa Olfatoria , Material Particulado , SARS-CoV-2 , Material Particulado/toxicidad , Humanos , Mucosa Olfatoria/efectos de los fármacos , Mucosa Olfatoria/virología , COVID-19/inmunología , Contaminantes Atmosféricos/toxicidad , Anciano , Masculino , Femenino , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/virología , Persona de Mediana Edad , Citocinas/metabolismo , Anciano de 80 o más Años , Estrés Oxidativo/efectos de los fármacos
10.
Int J Mol Sci ; 25(2)2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38255817

RESUMEN

Demyelination in the central nervous system (CNS) resulting from injury or disease can cause loss of nerve function and paralysis. Cell therapies intended to promote remyelination of axons are a promising avenue of treatment, with mesenchymal stromal cells (MSCs) a prominent candidate. We have previously demonstrated that MSCs derived from human olfactory mucosa (hOM-MSCs) promote myelination to a greater extent than bone marrow-derived MSCs (hBM-MSCs). However, hOM-MSCs were developed using methods and materials that were not good manufacturing practice (GMP)-compliant. Before considering these cells for clinical use, it is necessary to develop a method for their isolation and expansion that is readily adaptable to a GMP-compliant environment. We demonstrate here that hOM-MSCs can be derived without enzymatic tissue digestion or cell sorting and without culture antibiotics. They grow readily in GMP-compliant media and express typical MSC surface markers. They robustly produce CXCL12 (a key secretory factor in promoting myelination) and are pro-myelinating in in vitro rodent CNS cultures. GMP-compliant hOM-MSCs are comparable in this respect to those grown in non-GMP conditions. However, when assessed in an in vivo model of demyelinating disease (experimental autoimmune encephalitis, EAE), they do not significantly improve disease scores compared with controls, indicating further pre-clinical evaluation is necessary before their advancement to clinical trials.


Asunto(s)
Antibacterianos , Células Madre Mesenquimatosas , Humanos , Técnicas de Cultivo , Axones , Transporte Biológico
11.
BMC Pulm Med ; 24(1): 14, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38178092

RESUMEN

BACKGROUND: Pulmonary fibrosis (PF) is a progressive fibrosing interstitial pneumonia that leads to respiratory failure and other complications, which is ultimately fatal. Mesenchymal stem cells (MSCs) transplant is a promising strategy to solve this problem, while the procurement of MSCs from the patient for autotransplant remains a challenge. METHODS: Here, we presented olfactory mucosa mesenchymal stem cells (OM-MSCs) from mouse turbinate and determined the preventing efficacy of allotransplant for PF. We demonstrated the antiinflammation and immunomodulatory effects of OM-MSCs. Flow cytometric analysis was used to verify the effect of OM-MSCs on monocyte-derived macrophage populations in the lung. RESULTS: Administration of OM-MSCs reduces inflammation, attenuates the matrix metallopeptidase 13 (MMP13) expression level and restores the bleomycin (BLM)-induced pulmonary fibrosis by assessing the architecture of lung, collagen type I; (COL1A1), actin alpha 2, smooth muscle, aorta (ACTA2/α-SMA) and hydroxyproline. This therapeutic effect of OM-MSCs was related to the increase in the ratio of nonclassical monocytes to proinflammatory monocytes in the lung. CONCLUSIONS: This study suggests that transplant of OM-MSCs represents an effective and safe treatment for PF.


Asunto(s)
Células Madre Mesenquimatosas , Fibrosis Pulmonar , Humanos , Ratones , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/terapia , Fibrosis Pulmonar/metabolismo , Inflamación/metabolismo , Células Madre Mesenquimatosas/metabolismo , Inmunomodulación , Mucosa Olfatoria/metabolismo
12.
Eur Arch Otorhinolaryngol ; 281(1): 201-205, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37608216

RESUMEN

BACKGROUND: Quantitative (hyposmia and anosmia) and qualitative (phantosmia and parosmia) olfactory disorders are common consequences of COVID-19 infection found in more than 38% of patients even months after resolution of acute disease. SARS-CoV-2 has tropism for angiotensin-converting enzyme 2 (ACE2) in the respiratory system, suggesting that it is the mechanism of damage to the olfactory neuroepithelium and of involvement at the central nervous system. The olfactory bulb is the organ with the highest insulin uptake in the central nervous system. Insulin increases the production of Growth Factors (GF); therefore, in this study, the administration of intranasal insulin is proposed as a viable treatment for olfactory disturbances. The aim of this study was to obtain improvement in olfaction after 4 weeks of intranasal insulin administration in a group of patients presenting chronic olfactory disturbances secondary to COVID-19 infection, quantified using the Threshold, Discrimination, and Identification (TDI) score based on the Sniffin Sticks®. METHODS: Experimental, longitudinal, prolective and prospective study of patients with a previous diagnosis of COVID-19 in the last 3-18 months and who persisted with anosmia or hyposmia. The sample size was calculated with "satulator". The intervention was performed from January to May 2022. Throughout four appointments, a baseline olfactory measurement was obtained using the TDI score based on the Sniffin Sticks® test. In the first three appointments, Gelfoam® cottonoids soaked in 40 IU of NPH insulin were placed on the nasal roof of each nostril for 15 min. Descriptive statistics, student's paired t test and a multiple linear regression were utilized to ascertain statistical significance of the outcome on the TDI score obtained on the fourth and final appointment. RESULTS: 27 patients were included in the study. Table 1 summarizes the sample characteristics. The results exhibit that 93% of the sample had an improvement. The initial mean TDI score was 67% (63-71) compared to the final mean of 83% (80-86, p < 0.01). TDI subsection analysis is shown in Table 2. There was no significant difference in pre-intervention and post-intervention glucose measurements after the intranasal insulin administration. CONCLUSIONS: The administration of intranasal insulin has promising results, pointing towards an alternative of treatment for chronic olfactory disturbances secondary to neuroepithelial damage caused by upper respiratory tract infections. Furthermore, this is the first study to use a three-point assessment of olfaction in post-COVID-19 patients, while using the Sniffin Sticks® TDI score adapted to Latin Spanish.


Asunto(s)
Anosmia , COVID-19 , Insulina , Administración Intranasal , Insulina/administración & dosificación , Insulina/farmacología , Insulina/uso terapéutico , COVID-19/complicaciones , Anosmia/terapia , Anosmia/virología , Humanos , Estudios Prospectivos , Estudios Longitudinales , Masculino , Femenino , Adulto , Olfato/efectos de los fármacos , Umbral Sensorial/efectos de los fármacos
13.
World Neurosurg ; 181: e551-e561, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37898276

RESUMEN

OBJECTIVE: To present strategies for managing tumor mass formation and their corresponding postoperative outcomes. METHODS: We conducted a systematic literature review following the guidelines and protocol of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We searched the PubMed and EMBASE databases, screened titles and abstracts, and further evaluated full-text publications to select relevant studies. Additionally, a narrative review of other pertinent articles on PubMed was performed. Case reports, cohort studies, and clinical trials were included. Animal studies were excluded. RESULTS: Of 6 patients enrolled in this study, most had American Spinal Injury Association Impairment Scale grade A (66.7%) following intramedullary injury, and 1 patient had American Spinal Injury Association Impairment Scale grade D (16.65%). The discovery time of the intramedullary mass formation ranged from approximately 5 to 14 years. Surgical intervention was performed in most cases (66.7%), with improvement reported in 3 of the surgical cases (75%). The majority of cases (83.3%) involved cervical lesions, while only 1 case (16.7%) involved a thoracic lesion. CONCLUSIONS: Due to the scarcity of described cases, there is no specific treatment for this tumor. Although our patient remained stable after conservative treatment, other studies have shown improvement in symptoms after mass resection. It is essential that the management of this complication be researched further due to the variety of clinical characteristics presented.


Asunto(s)
Neoplasias , Traumatismos de la Médula Espinal , Traumatismos Vertebrales , Animales , Humanos , PubMed , Traumatismos de la Médula Espinal/etiología , Traumatismos de la Médula Espinal/cirugía , Traumatismos de la Médula Espinal/patología , Trasplante Autólogo
14.
Alzheimers Dement ; 20(2): 1156-1165, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37908186

RESUMEN

INTRODUCTION: We assessed TAR DNA-binding protein 43 (TDP-43) seeding activity and aggregates detection in olfactory mucosa of patients with frontotemporal lobar degeneration with TDP-43-immunoreactive pathology (FTLD-TDP) by TDP-43 seeding amplification assay (TDP43-SAA) and immunocytochemical analysis. METHODS: The TDP43-SAA was optimized using frontal cortex samples from 16 post mortem cases with FTLD-TDP, FTLD with tau inclusions, and controls. Subsequently, olfactory mucosa samples were collected from 17 patients with FTLD-TDP, 15 healthy controls, and three patients carrying MAPT variants. RESULTS: TDP43-SAA discriminated with 100% accuracy post mortem cases presenting or lacking TDP-43 neuropathology. TDP-43 seeding activity was detectable in the olfactory mucosa, and 82.4% of patients with FTLD-TDP tested positive, whereas 86.7% of controls tested negative (P < 0.001). Two out of three patients with MAPT mutations tested negative. In TDP43-SAA positive samples, cytoplasmatic deposits of phosphorylated TDP-43 in the olfactory neural cells were detected. DISCUSSION: TDP-43 aggregates can be detectable in olfactory mucosa, suggesting that TDP43-SAA might be useful for identifying and monitoring FTLD-TDP in living patients.


Asunto(s)
Demencia Frontotemporal , Degeneración Lobar Frontotemporal , Humanos , Demencia Frontotemporal/genética , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/patología , Proteínas tau/genética , Proteínas tau/metabolismo , Lóbulo Frontal/metabolismo , Neuronas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo
15.
Stem Cell Res Ther ; 14(1): 237, 2023 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-37674249

RESUMEN

BACKGROUND AND AIMS: Refractory epilepsy is also known as drug-resistant epilepsy with limited clinical treatment. Benefitting from its safety and easy availability, olfactory mucosa mesenchymal stem cells (OM-MSCs) are considered a preferable MSC source for clinical application. This study aims to investigate whether OM-MSCs are a promising alternative source for treating refractory epilepsy clinically and uncover the mechanism by OM-MSCs administration on an epileptic mouse model. METHODS: OM-MSCs were isolated from turbinal and characterized by flow cytometry. Autologous human OM-MSCs treatment on a patient was carried out using intrathecal administration. Epileptic mouse model was established by 1 mg/kg scopolamine and 300 mg/kg pilocarpine treatment (intraperitoneal). Stereotaxic microinjection was employed to deliver the mouse OM-MSCs. Mouse electroencephalograph recording was used to investigate the seizures. Brain structure was evaluated by magnetic resonance imaging (MRI). Immunohistochemical and immunofluorescent staining of GFAP, IBA1, MAP2, TUBB3, OLIG2, CD4, CD25, and FOXP3 was carried out to investigate the neural cells and Treg cells. QRT-PCR and ELISA were performed to determine the cytokines (Il1b, Il6, Tnf, Il10) on mRNA and protein level. Y-maze, the object location test, and novel object recognition test were performed to measure the cognitive function. Footprint test, rotarod test, balance beam test, and grip strength test were conducted to evaluate the locomotive function. Von Frey testing was carried out to assess the mechanical allodynia. RESULTS: Many beneficial effects of the OM-MSC treatment on disease status, including seizure type, frequency, severity, duration, and cognitive function, and no apparent adverse effects were observed at the 8-year follow-up case. Brain MRI indicated that autologous OM-MSC treatment alleviated brain atrophy in epilepsy patients. A study in an epileptic mouse model revealed that OM-MSC treatment recruited Treg cells to the brain, inhibited inflammation, rebuilt the neural network, and improved the cognitive, locomotive, and perceptive functions of epileptic mice. CONCLUSIONS: Autologous OM-MSC treatment is efficacious for improving chronic refractory epilepsy, suggesting a future therapeutic candidate for epilepsy. TRIAL REGISTRATION: The study was registered with Chinese Clinical Trial Registry (ChiCTR2200055357).


Asunto(s)
Epilepsia Refractaria , Células Madre Mesenquimatosas , Humanos , Animales , Ratones , Epilepsia Refractaria/terapia , Encéfalo , Redes Neurales de la Computación , Modelos Animales de Enfermedad , Mucosa Olfatoria
16.
Methods Mol Biol ; 2710: 19-30, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37688721

RESUMEN

Spatial transcriptomics allows for the genome-wide profiling of topographic gene expression patterns within a tissue of interest. Here, we describe our methodology to generate high-quality RNA-seq libraries from cryosections from fresh frozen mouse whole olfactory mucosae. This methodology can be extended to virtually any vertebrate organ or tissue sample.


Asunto(s)
Crioultramicrotomía , Perfilación de la Expresión Génica , Animales , Ratones , ARN , RNA-Seq
17.
Chem Senses ; 482023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37586060

RESUMEN

Smell detection depends on nasal airflow, which can make absorption of odors to the olfactory epithelium by diffusion through the mucus layer. The odors then act on the chemo-sensitive epithelium of olfactory sensory neurons (OSNs). Therefore, any pathological changes in the olfactory area, for instance, dry nose caused by Sjögren's Syndrome (SS) may interfere with olfactory function. SS is an autoimmune disease in which aquaporin (AQP) 5 autoantibodies have been detected in the serum. However, the expression of AQP5 in olfactory mucosa and its function in olfaction is still unknown. Based on the study of the expression characteristics of AQP5 protein in the nasal mucosa, the olfaction dysfunction in AQP5 knockout (KO) mice was found by olfactory behavior analysis, which was accompanied by reduced secretion volume of Bowman's gland by using in vitro secretion measure system, and the change of acid mucin in nasal mucus layer was identified. By excluding the possibility that olfactory disturbance was caused by changes in OSNs, the result indicated that AQP5 contributes to olfactory functions by regulating the volume and composition of OE mucus layer, which is the medium for the dissolution of odor molecules. Our results indicate that AQP5 can affect the olfactory functions by regulating the water supply of BGs and the mucus layer upper the OE that can explain the olfactory loss in the patients of SS, and AQP5 KO mice might be used as an ideal model to study the olfactory dysfunction.


Asunto(s)
Trastornos del Olfato , Síndrome de Sjögren , Ratones , Humanos , Animales , Olfato , Mucosa Olfatoria/metabolismo , Síndrome de Sjögren/metabolismo , Síndrome de Sjögren/patología , Acuaporina 5/genética , Acuaporina 5/metabolismo , Trastornos del Olfato/genética , Trastornos del Olfato/metabolismo
18.
Parkinsonism Relat Disord ; 112: 105440, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37267818

RESUMEN

INTRODUCTION: Pathological α-synuclein (α-Syn) propagation may cause Parkinson's disease progression. We aimed to verify whether single-dose intranasal administration of α-Syn preformed fibrils (PFFs) induces α-Syn pathology in the olfactory bulb (OB). METHODS: A single dose of α-Syn PFFs was administered to the left nasal cavity of wild-type mice. The untreated right side served as a control. The α-Syn pathology of the OBs was examined up to 12 months after the injection. RESULTS: Lewy neurite-like aggregates were observed in the OB 6 and 12 months after the treatment. CONCLUSIONS: These findings suggest that pathological α-Syn can propagate from the olfactory mucosa to the OB and reveal the potential dangers of α-Syn PFFs inhalation.


Asunto(s)
Enfermedad de Parkinson , Sinucleinopatías , Ratones , Animales , Cuerpos de Lewy/patología , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/patología , Administración Intranasal , alfa-Sinucleína/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/patología , Sinucleinopatías/patología
19.
Acta Otolaryngol ; 143(2): 201-204, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36861186

RESUMEN

BACKGROUND: Previous studies demonstrated the difficulty of patients with Head and Neck Cancer (HNC) in sensing food taste, a function in which olfaction has a significant role. However, neither study employed psychophysical tests or control groups to establish the veracity of such complaints. AIMS/OBJECTIVES: In this study, we quantitatively tested the olfactory function of HNC individuals and compared their function to that of healthy controls. METHODS: Thirty-one HNC naïve treatment patients and thirty-one controls, matched for sex, age, schooling, and smoking, were tested with the University of Pennsylvania Smell Identification Test (UPSIT). RESULTS: The olfactory function was significantly worse among the patients diagnosed with head and neck cancer [UPSIT cancer = 22.9(CI 95%: 20.5-25.4) vs. UPSIT controls = 29.1(CI 95%: 26.9-31.3); p < .001]. Most patients with HNC had olfactory disorders (n = 29, 93.5%). The risk of olfactory loss was higher in the cancer group [OR: 10.5(CI 95%: 2.1-51.9; p = .001)]. CONCLUSION AND SIGNIFICANCE: Olfactory disorders can be detected in more than 90% of patients with head and neck cancer when evaluated using a well-validated olfactory test. Smell disorders may be a potential marker for early diagnosis of HNC.


Asunto(s)
Neoplasias de Cabeza y Cuello , Trastornos del Olfato , Humanos , Olfato , Prevalencia , Trastornos del Olfato/diagnóstico , Trastornos del Olfato/epidemiología , Trastornos del Olfato/etiología , Neoplasias de Cabeza y Cuello/complicaciones , Neoplasias de Cabeza y Cuello/epidemiología , Anosmia
20.
Artículo en Inglés | MEDLINE | ID: mdl-36870298

RESUMEN

The olfactory mucosa (OM) and olfactory bulb (OB) are neuronal tissues that contribute to the early processing of olfactory information. They contain significant amounts of n-3 and n-6 polyunsaturated fatty acids (PUFAs), which are crucial for neuronal tissue development. In this study, we evaluated the impact of feeding mice diets that are either deficient in α-linolenic acid (ALA) or supplemented with n-3 long-chain PUFAs from gestation to adolescence on the phospholipid and ganglioside composition of these tissues. Both diets modified the levels of some phospholipid classes, notably the phosphatidylserine and phosphatidylethanolamine levels. In addition, the low-ALA diet enriched n-6 PUFAs in the main phospholipid classes of both tissues, while the diet supplemented with n-3 PUFAs enhanced the n-3 PUFA-containing phospholipid species level, mainly in OM. The diets also modulated the levels and profiles of several ganglioside classes in OM and OB. These modifications may have repercussions on the olfactory sensitivity.


Asunto(s)
Ácidos Grasos Omega-3 , Fosfolípidos , Embarazo , Femenino , Ratones , Animales , Gangliósidos , Destete , Dieta , Ácidos Grasos Omega-6
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA