Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pathogens ; 10(8)2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34451462

RESUMEN

Current climatic conditions limit the distribution of Aedes (Stegomyia) albopictus (Skuse, Diptera: Culicidae) in the north, but predictive climate models suggest this species could establish itself in southern Canada by 2040. A vector of chikungunya, dengue, yellow fever, Zika and West Nile viruses, the Ae. Albopictus has been detected in Windsor, Ontario since 2016. Given the potential public health implications, and knowing that Aedes spp. can easily be introduced by ground transportation, this study aimed to determine if specimens could be detected, using an adequate methodology, in southern Québec. Mosquitoes were sampled in 2016 and 2017 along the main roads connecting Canada and the U.S., using Biogent traps (Sentinel-2, Gravide Aedes traps) and ovitraps. Overall, 24 mosquito spp. were captured, excluding Ae. Albopictus, but detecting one Aedes (Stegomyia) aegypti (Skuse) specimen (laid eggs). The most frequent species among captured adults were Ochlerotatus triseriatus, Culex pipiens complex, and Ochlerotatus japonicus (31.0%, 26.0%, and 17.3%, respectively). The present study adds to the increasing number of studies reporting on the range expansions of these mosquito species, and suggests that ongoing monitoring, using multiple capture techniques targeting a wide range of species, may provide useful information to public health with respect to the growing risk of emerging mosquito-borne diseases in southern Canada.

2.
J Am Mosq Control Assoc ; 36(4): 269-271, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33647118

RESUMEN

The Asian bush mosquito, Aedes japonicus, is an invasive species that is well established in North America and Europe. Though it is considered a temperate species, we have observed an established population of Ae. japonicus in the subtropical climate of northwestern Florida. To evaluate the temporal patterns of Ae. japonicus abundance, mosquito larvae were collected from 15 artificial containers in Escambia County, FL, from August 2019 to July 2020, with the prediction that Ae. japonicus abundance would peak in the winter months and decline with increasing ambient temperatures. Aedes japonicus larvae were collected in low abundances during each month except for February (n = 51), with no clear temporal patterns of abundance. Larval contemporaries belonging to other species were considered in sampling of containers and were also cataloged. We demonstrate monthly observance of this temperate species at a single site in the Florida panhandle, exemplifying the persistence of Ae. japonicus through all seasons in a subtropical climate.


Asunto(s)
Aedes , Especies Introducidas , Estaciones del Año , Animales , Florida , Larva , Densidad de Población
3.
Ecohealth ; 16(1): 70-81, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30673905

RESUMEN

West Nile virus (WNV; family Flaviviridae) causes a disease in humans that may develop into a deadly neuroinvasive disease. In North America, several peridomestic bird species can develop sufficient viremia to infect blood-feeding mosquito vectors without succumbing to the virus. Mosquito species from the genus Culex, Aedes and Ochlerotatus display variable host preferences, ranging between birds and mammals, including humans, and may bridge transmission among avian hosts and contribute to spill-over transmission to humans. In this study, we aimed to test the effect of density of three mosquito species and two avian species on WNV mosquito infection rates and investigated the link between spatiotemporal clusters of high mosquito infection rates and clusters of human WNV cases. We based our study around the city of Ottawa, Canada, between the year 2007 and 2014. We found a large effect size of density of two mosquito species on mosquito infection rates. We also found spatiotemporal overlap between a cluster of high mosquito infection rates and a cluster of human WNV cases. Our study is innovative because it suggests a role of avian and mosquito densities on mosquito infection rates and, in turn, on hotspots of human WNV cases.


Asunto(s)
Enfermedades de las Aves/virología , Aves/virología , Mosquitos Vectores/virología , Fiebre del Nilo Occidental/epidemiología , Virus del Nilo Occidental/aislamiento & purificación , Animales , Canadá/epidemiología , Humanos , Análisis Espacio-Temporal , Especificidad de la Especie , Fiebre del Nilo Occidental/transmisión
4.
J Med Entomol ; 52(3): 452-60, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26334821

RESUMEN

Ochlerotatus triseriatus (Say), the primary vector of La Crosse virus (LAC), develops in a variety of natural and artificial aquatic containers where it often co-occurs with larvae of other mosquito species. We conducted a field study at two woodlots (South Farms and Trelease Woods) in Urbana, IL, to examine how container type influences vector abundance, body size, and susceptibility to LAC. Mosquito pupae were collected from tree holes, plastic bins, and waste tires, and eclosing adults were identified to species morphologically. Oc. triseriatus and Ochlerotatus japonicus (Theobald) females were orally challenged with LAC and midgut infection rate, disseminated infection rate, and body titer were determined by reverse-transcriptase real-time PCR. Oc. triseriatus was the dominant species collected in tree holes while Oc. japonicus and Culex restuans (Theobald) were mostly dominant in artificial containers. Female Oc. triseriatus and Oc. japonicus collected from plastic bins were significantly larger than those collected from tree holes or waste tires. Oc. japonicus females from South Farms were also significantly larger than those from Trelease Woods. Oc. triseriatus females collected from plastic bins and waste tires were significantly more susceptible to LAC infection relative to females collected from tree holes. In addition, Oc. triseriatus females from waste tires had significantly higher LAC titer relative to Oc. triseriatus from tree holes. For each container type and study site, wing length was not correlated to infection or dissemination rates. These findings suggest that the container type in which Oc.triseriatus develop may contribute to the spatial and temporal dynamics of LAC transmission.


Asunto(s)
Insectos Vectores/fisiología , Insectos Vectores/virología , Virus La Crosse/fisiología , Ochlerotatus/fisiología , Ochlerotatus/virología , Animales , Tamaño Corporal , Encefalitis de California/transmisión , Encefalitis de California/virología , Femenino , Illinois , Insectos Vectores/crecimiento & desarrollo , Larva/fisiología , Larva/virología , Masculino , Ochlerotatus/crecimiento & desarrollo , Reacción en Cadena de la Polimerasa , Densidad de Población , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA